Valentin Valjetić

PONUDA USLUGA TEMELJENIH NA LOKACIJI PUTEM MOBILNIH MREŽA

ZAVRŠNI RAD

Zagreb, 2016.
ZAVRŠNI RAD

PONUDA USLUGA TEMELJENIH NA LOKACIJI PUTEM MOBILNIH MREŽA

OFFER OF LOCATION BASED SERVICES USING MOBILE NETWORKS

Mentor: doc. dr. sc. Mario Muštra
Student: Valentin Valjetić

Zagreb, 2016.
SAŽETAK

Napretkom tehnologije dolazi do konstantnog rasta i poboljšanja performansi mobilnih uređaja, a samim time porasta usluga temeljenih na lokaciji. Svaka usluga koja prilikom rada koristi sustav za pozicioniranje naziva se lokacijski bazirana usluga (LBS, Location Based Service). Računanje lokacije korisnika obavlja se pomoću raznih matematičkih parametara te svaka tehnologija ima određene specifičnosti. Trenutna lokacija može se odrediti direktno putem mobilne mreže ili u kombinaciji mobilne mreže i satelitskih navigacijskih sustava. Usluge temeljene na lokaciji koriste se u svakodnevnim djelatnostima kao što su promet, turizam, marketing i medicina kako bi olakšali procese unutar samih djelatnosti, često se koriste i za zabavu te su važan dio socijalnog aspekta života.

SUMMARY

With the evolution of technology comes to the constant growth and improvement of mobile devices performances and also increase in number of customers and applications in location-based services. Each service which uses some kind of positioning system is called location-based services (LBS). User's location is calculation using various mathematical parameters, and each technology has certain characteristics. The current location can be determined directly via mobile network or in combination with global navigation satellite systems. Location-based services are used in everyday activities such as transport, tourism, marketing and medicine to facilitate the processes inherent in the activities. LBS are also used for fun and they became an important part in the social aspect of life.
SADRŽAJ

1 UVOD ... 1

2 Značajke mobilne mreže .. 3
 2.1 Prijenos signala .. 3
 2.2 Sustavi prve generacije ... 4
 2.3 Sustavi druge generacije .. 5
 2.4 Sustavi treće generacije ... 5
 2.5 Sustavi četvrte generacije .. 6
 2.6 Arhitektura mobilne mreže .. 6

3 Lokacijske tehnologije i metode .. 8
 3.1 Metode lociranja .. 8
 3.1.1 Triangulacija ... 8
 3.1.2 Lateracija ... 8
 3.1.3 Računsko pozicioniranje ... 10
 3.2 Lokacijske tehnologije ... 10
 3.2.1 Rješenja temeljena na mobilnoj mreži ... 11
 3.2.1.1 ID celije ... 11
 3.2.1.2 AOA ... 12
 3.2.1.3 TOA .. 12
 3.2.1.4 E-OTD .. 13
 3.2.1.5 U-TDOA .. 14
 3.2.1.6 OTDOA ... 15
 3.2.2 Rješenja temeljena na mobilnoj mreži i korisničkom uređaju 16
 3.2.2.1 A-GPS ... 17
 3.2.2.2 Hibridne tehnologije .. 17

4 Lokacijske usluge i terminalni uređaji ... 18
 4.1 Funkcijske jedinice ... 18
4.2 Komunikacijska sklopowska podrška ... 19
 4.2.1 IrDA .. 19
 4.2.2 Bluetooth ... 19
 4.2.3 WiFi .. 19

4.3 Pametni satovi ... 20

4.4 Mobilni telefoni .. 22

5 Lokacijske usluge i operacijski sustavi ... 24
 5.1 Android ... 25
 5.2 iOS ... 25
 5.3 Windows Phone .. 26
 5.4 Symbian .. 26

6 Lokacijski bazirane aplikacije ... 28

7 Zaštita i sigurnost .. 32

8 Zaključak ... 35

LITERATURA ... 36

LITERATURNI IZVORI SLIKA, TABLICA I GRAFOVA .. 38

POPIS TABLICA I GRAFOVA .. 40

POPIS KRATICA .. 41
1 UVOD

Današnji svijet gotovo je nemoguće zamisliti bez mobilnih mreža. Upravo zbog toga će biti definirani osnovni pojmovi vezani uz ovu tematiku što uključuje definiciju mobilnih mreža, lokacijskih tehnologija i usluga te terminalnih uređaja. Nadalje će biti potrebno razumjeti što koriste pojedine mobilne aplikacije za trenutno lociranja uređaja.

Naziv završnog rada je: Ponuda usluga temeljenih na lokaciji putem mobilnih mreža, i podijeljen je na osam velikih poglavlja u kojima će se razmotriti ponuda lokacijskih usluga temeljenih na mobilnim mrežama:

1. Uvod
2. Značajke mobilnih mreža
3. Lokacijske tehnologije i metode
4. Lokacijske usluge i terminalni uređaji
5. Lokacijske usluge i operacijski sustav
6. Lokacijski bazirane aplikacije
7. Zaštita i sigurnost
8. Zaključak

Uvodno poglavlje uvodi u predmet rada te izlaganje njegovog problema. Bitno je shvatiti što su mobilne mreže te što je dovelo do toga da nuđenje usluga bude temeljeno na lokaciji putem njih.

U drugom poglavlju bit će definirane mobilne mreže te princip rada između izvorišta do odredišta putem nje. Kako su se mobilni sustavi uvelike razvijali proteklih 40 godina, u nastavku poglavlja bit će kronološki objašnjene četiri velike generacije sustava.

Treće poglavlje donosi lokacijske tehnologije i metode. Ovdje treba razumjeti metode lociranja, kako se triangulacijom određuje položaj koristeći geometrijska načela trokuta i kutova, kada se primjenjuje lateracija i što je to računsko pozicioniranje. Cilj primjene tih navedenih metoda je točno određivanje lokacije korisničkih mobilnih uređaja

Četvrta cjelina se bavi lokacijskim uslugama i terminalnim uređajima. Kako je jedna od važnijih stavki modernih terminalnih uređaja pozicioniranje u prostoru, tako se na tržištu se trenutno nalaze različite vrste terminalnih uređaja i proizvođača. Radi kvalitetnog
razumijevanja ovog poglavlja, u nastavku će biti definirane funkcijeske jedinice, komunikacijska sklopopvska podrška, pametni satovi i mobilni telefoni.

Veza između lokacijskih usluga i operacijskih sustava bit će objašnjeno u petom poglavlju. Operativni sustavi je softver koji djeluje kao veza između korisnika i hardvera. Dijele se na Non – proprietary OS (eng. Operating system) i Proprietary OS, a neki od današnjih operacijskih sustava su: Android, iOS, Windows Phone i Symbian.

U skupinu lokacijski baziranih aplikacija spadaju sve aplikacije koje koriste informacije o trenutnoj lokaciji uređaja pa će u ovoj šestoj cjelini biti opisane njihove podjele, primjena i implementacija usluge u većinu mobilnih uređaja.

Zadnja cjelina prije zaključka odnosi se na zaštitu i sigurnost. Sigurnost informacijskih sustava obuhvaća primjenu mjera za zaštitu podataka koji su u obradi, ili su pohranjeni, ili je u tijeku njihov prijenos, od gubitka povjerljivosti, cjelovitosti i raspoloživosti, te radi sprječavanja gubitaka cjelovitosti ili raspoloživosti samih sustava.
2 Značajke mobilne mreže

Mobilne mreže su mreže koje za povezivanje između izvorišta i odredišta koriste elektromagnetske radio signale. Koriste se elektromagnetski valovi mikrovalnog područja od 300 MHz do 3 GHz. One su strого ograničene i usklađene sa sveukupnom podjelom spektra u određenim zemljama. Mobilne mreže najčešće koriste ćelijski koncept.

2.1 Prijenos signala

Za prijenos signala potreban je odašiljač i prijemnik. Odašiljač je izvor signala koji transformira signal poruke kako bi bio pogodan za bežični prijenos. Prijemnik je uređaj koji prima signal i obavlja postupke kako bi informacija bila čitljiva primatelju.

Slika 1. Blok shema odašiljača, Izvor: [1]

Modulator je sklop koji obavlja upisivanje informacije u elektromagnetski val. Demodulator obavlja istu funkciju ali na inverzan način. Svrha pojačala je pojačati snagu signala kako bi bio otporan na slabljenje radi udaljenosti i ostale smetnje na prijenosnom putu. Zadaća oscilatora je pretvorba istosmjerne struje izvora napajanja u izmjeničnu struju visoke frekvencije. [22]

Prijelaz između sklopovlja odašiljača koji su realizirani u nekoj od sklopovskih tehnologija prema slobodom prostoru osiguravaju antene. Antene su elementi koji napone i struju pretvaraju u elektromagnetski val i obratno. Kada su u pitanju antene, opisuju ih parametri kao što su polarizacija, dijagram zračenja, impedancija, usmjerenost, temperatura šuma, dobitak i dr.

Modulacija je postupak izmjene signala u cilju optimalnog prenošenja komunikacijskim kanalom. Demodulacijom se ostvaruje obratni postupak kako bi se ponovno dobila informacija. Kod analognih modulacija signala mijenja se amplituda (AM), frekvencija (FM) ili faza (PM) sinusnog signala. U digitalnim modulacijskim postupcima također postoje promjene frekvencije (FSK), amplitude (ASK) i faze (PSK) koje su diskretnе. Osim osnovnih vrsta modulacija postoje i hibridne kao MSK (eng. Minimum Shift Keying), GMSK (GSM Minimum Shift Keying).

Tablica 1. Prikaz značajki mobilnih mrežnih tehnologija

<table>
<thead>
<tr>
<th></th>
<th>GSM</th>
<th>UMTS</th>
<th>LTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postupak modulacija</td>
<td>MSK, GMSK</td>
<td>QPSK, DQPSK</td>
<td>QPSK, 64QAM</td>
</tr>
<tr>
<td>Prekapčanje</td>
<td>Meko</td>
<td>Meko</td>
<td>Tvrdo</td>
</tr>
<tr>
<td>Shema višestrukog pristupa</td>
<td>TDMA</td>
<td>CDMA, WCDMA</td>
<td>OFDM</td>
</tr>
</tbody>
</table>

2.2 Sustavi prve generacije

2.3 Sustavi druge generacije

Sustavi druge generacije razvijaju se tijekom 80-ih i ranih 90-ih godina dvadesetog stoljeća Baziraju je na digitalnom prijenosu informacije. Sustav GSM je prvi takav sustav visoke kvalitete s mogućnosti zaštite prenošenih informacija te autentifikaciju korisnika koji je razvijen pod pokroviteljstvom međunarodnog tijela za standardizaciju u telekomunikacijama. Omogućava prijenos podatkovnog prometa i mnoge druge usluge kao što su sustavi glasovne pošte te slanje kratkih poruka, SMS-a (eng. Short Message Service) Jedna od najvećih prednosti je internacionalni roaming koji omogućava uporabu GSM mreža diljem svijeta, tj. izvan granica matične zemlje. 2.5G (HSCSD, EDGE, GPRS) su napredne varijante druge generacije koje omogućavaju veće brzine te kvalitetniji način prijenosa. Za multipleksiranje koristi TDMA (eng. Time Division Multiple Access)

\[\text{Slika 3. Prikaz prelaska iz jedne ćelije u drugu, Izvor: [3]}\]

2.4 Sustavi treće generacije

Temeljna ideja je integrirati žične i bežične sustave, uključujući i satelitske mreže u univerzalni širokopojasni mobilni sustav. Javlja se potreba za većim kapacitetom, brzinama i mogućnosti korištenja većega broja aplikacija. U Europi je nazvan UMTS (eng. Universal
Terrestrial Mobile System) dok je CDMA2000 ime za američku varijantu 3G sustava. Temelji se na WCDMA (eng. Wideband Code Division Multiple Access) pristupu. Ova platforma nudi brojne usluge temeljene na Internetu, videopozive, te je temeljena na IP-u. Velika prednost je temeljena na TCP/IP skupu protokola što omogućava usluge sa znatno nižim cijenama. 3.5 generacija je napredna vrsta tehnologije s brzinama prijenosa do 44 Mbit/s.

2.5 Sustavi četvrte generacije

2.6 Arhitektura mobilne mreže

SIM (eng. Subscriber Identity Module) kartica
BS ili BTS (eng. Base Transceiver Station) – bazna stanica kojom se ostvaruje radijski pristup do MS. BTS uključuje opremu koja se odnosi na radio i transmisijosučelja potrebna u jednoj ćeliji ili na jednoj lokaciji. Svaki BTS radi najmanje sa jednim parom frekvencija (uplink-downlink).
BSC (eng. Base Station Controller) – upravljač bazne stanice (kontrolier) za nekoliko grupiranih baznih stanica, prisutan u GSM-u, a kod ostalih ćelijskih standarda funkciije BSC-a ugrađene su u MSC. BSC se smatra centralnom točkom sustava bazne stanice (BSS, Base Station System). BSC upravlja radio mrežom i izvodi sljedeće funkcije: upravljanje pozivima i prekapčanjima, upravljanje radio mrežom, transkodiranje i prilagodavanje brzina, koncentracija prometa, upravljanje transmisijom za bazne stanice te daljinsko upravljanje baznim stanicama.
MSC (eng. Mobile Switching Centre) – komutacijsko čvorište ćelijske mreže obavlja osnovne komutacijske funkcije i specijalizirane funkcije vezane uz pokretnu mrežu. MSC je odgovoran za uspostavu, usmjeravanje, upravljanje i nadzor poziva od i prema mobilnim korisnicima. Uz svaki MSC, dolaze i baze s podacima o vlastitim pretplatnicima i pretplatnicima drugih mreža. [23]

- HLR (eng. Home Location Register) Domaći lokacijski registar,
- VLR (eng. Visitor Location Register) Gostujući lokacijski registar,
- AUC (eng. Authentication Centre) Centar za provjeru autentičnosti,
- EIR (eng. Equipment Identification Register) Registar identifikacije opreme - provjera vlasnika pokretne stanice.
3 Lokacijske tehnologije i metode

3.1 Metode lociranja

Metode lociranja koristeći matematičkih i geometrijskih radnji računaju poziciju. Koriste poznate vrijednosti i u odnosu na njih izračunavaju lokaciju.

3.1.1 Triangulacija

Triangulacijom se određuje položaj koristeći geometrijska načela trokuta i kutova. Mjeri se kut dolaska signala prema mobilnoj stanici te se uz pomoć trigonometrijskih funkcija određuju koordinate.

Slika 5. Određivanje položaja postupkom triangulacije, Izvor: [5]

3.1.2 Lateracija

Lateracija je postupak koji se primjenjuje kada su linije položaja u obliku kružnica ili hiperbola, odnosno kada su poznate udaljenosti ili razlike udaljenosti između mobilne stanice i bar tri bazne stanice. U oba slučaja dobiva se sistem od n nelinearnih jednadžbi, gdje je n broj baznih stanica. Javlja se u dva oblika:

- Kružna lateracija: kada su poznate udaljenosti između mobilne stanice i baznih stanica i
- Hiperbolična lateracija. Kada su poznate razlike u udaljenostima između mobilne stanice i baznih stanica.
Kružna lateracija koristi najmanje tri prijemnika. Takva vrsta lateracije ujedno se naziva i trilateracija. Na temelju podataka o udaljenosti praćenog objekta i svakog od prijemnika izračunale kružnice. Sjecište te tri kružnice određuje lokaciju praćenog objekta.

Traženje lokacije izvora pomoću sjecišta hiperbola naziva se hiperbolična lateracija. Koristi tri ili veći broj prijemnika da bi se temeljem razlike vremena dolaska signala odredila pozicija izvora. Iz razlike vremena dolaska signala izračunavaju se parametri hiperbola s fokusom u prijemnicima, dok sjecište izračunatih hiperbola određuje poziciju praćenog objekta. Parametri hiperbola su izrazito osjetljivi na preciznost mjerene razlike vremena dolaska signala pa samim time i preciznost ove metode ovisi o udaljenosti između prijemnika, frekvenciji uzorkovanja signala i kvaliteti algoritma za izračun razlike vremena dolaska signala.
3.1.3 Računsko pozicioniranje

Dread reckoning u navigaciji je proces računanja trenutačne pozicije koristeći prethodnu već određenu. Koristi podatke o brzini, proteklom vremenu te smjeru kretanja. Ova metoda ima mnogo nedostataka te ovisi o mnogo faktora i rijetko se koristi.

3.2 Lokacijske tehnologije

Lokacijske tehnologije su zadužene da primjenom prethodno navedenih metoda točno odrede lokaciju korisničkih mobilnih uređaja. Postoje dvije vrste rješenja:

- Rješenja temeljena na mobilnoj mreži i
- Rješenja temeljena na mobilnoj mreži i korisničkom uređaju.
3.2.1 Rješenja temeljena na mobilnoj mreži

U ovu skupinu pripadaju sve metode u kojima se prilikom određivanja lokacije koristi isključivo mobilna mreža. U ovom slučaju se smatra da će mobilna mreža sama odrediti lokaciju korisnika bez pomoći satelitskih sustava. Bazne stanice obavljaju mjerenja i podatke šalju u MSC gdje se onda obavlja izračun lokacije korisnika.

3.2.1.1 ID ćelije

ID ćelije (eng. Cell ID) se koristi u mobilnim mrežama kao što su GSM, UMTS i LTE i ujedno je i najjednostavnija tehnologija. Mreža identificira baznu stanicu s kojom komunicira te pripadajuću lokaciju bazne stanice. Na temelju toga lokacijski server koji podržava ID cell tehnologiju identificira lokaciju mobilne stanice kao lokaciju bazne stanice te ju proslijeduje aplikaciji lokalnog servera. Novija verzija unaprijeđena je novim parametrom TA, odnosno timing advance. Taj se parametar odnosi na povratno vrijeme propagacije signala poslanog od bazne stanice prema mobilnoj te je proporcionalan dvostrukoj udaljenosti između bazne i mobilne stanice.

![Diagram ID ćelije](image)

Slika 8. Određivanje lokacije tehnologijom ID ćelije, Izvor: [8]

Kako se mobilni uređaj može nalaziti bilo gdje u ćeliji, točnost ovisi o veličini ćelije i može biti prilično mala. Primjenom TA ili RTT parametara (eng. Time Advance) u proračunu
dolazi do povećanja točnosti određivanja lokacije mobilnog uređaja. Cell ID tehnologija predstavlja jeftin pristup, no ne daje precizne informacije o lokaciji.

3.2.1.2 AOA

Angle of arrival metoda se često naziva i DOA. Metoda služi procjeni lokacije mobilnog uređaja određivanjem kuta dolaska signala. [1]

![Diagram AOA](image)

Prednosti:
- Potrebne su samo dvije poznate veličine (bazne stanice) za 2D pozicioniranje, odnosno 3 za 3D,
- Nije potrebna sinkronizacija između baznih stanica.

Nedostaci:
- Potrebna je optička vidljivost jer se točnost smanjuje ukoliko dođe do refleksija, tako da nije pogodno u zatvorenom prostoru i u urbanim sredinama s mnogo visokih građevina,
- Potreban velik i kompleksan hardver,
- S povećanjem udaljenosti mobilne stanice od baznih stanica se smanjuje i točnost.

3.2.1.3 TOA

U GSM-u se TOA koristi u obliku TA parametra, a u UMTS-u pomoću RTT (eng. *Round Trip Time*) parametra. U GSM-u, TA parametar je proporcionalan udaljenosti bazne
stanice i mobilnog uređaja te se koristi za povećanje točnosti Cell ID metode. U UMTS-u se zbog veće širine pojasa koristi RTT parametar, koji također može koristiti kako bi se povećala točnost Cell-ID metodi. [19]

3.2.1.4 E-OTD

E-OTD je metoda koja se koristi GSM sustavima. Temelji se na mjerenjima vremena u downlinku, odnosno od bazne stanice prema mobilnom uređaju. U slučaju kružne lateracije, mobilni uređaj mjeri vrijeme (TOA), dok u slučaju hiperbolične lateracije mjeri vremenske razlike signala (TDOA) od baznih stanica u blizini, što znači da za komunikaciju zahtjeva najmanje 3 bazne stanice. Kružna lateracija zahtjeva sinkronizaciju između mobilne stanice i baznih stanica koje sudjeluju u postupku lateracije, a hiperbolična lateracija zahtjeva sinkronizaciju samo između baznih stanica međusobno.

Kako je vrijeme kritičan faktor pri mjerenju položaja mobilnog uređaja, E-OTD zahtjeva preciznije informacije o njemu. U GSM-u ne postoje sinkronizacije te je potrebno koristiti dodatnu komponentu u pristupnoj mreži koja se naziva LMU (eng. Location Measurement Unit). Kako bi podržali ovu tehnologiju, potreban je i poseban softver za mobilni uređaj. [13]

![Diagram E-OTD](image)

Slika 10. Određivanje lokacije E-OTD tehnologijom, Izvor: [10]

Može se realizirati i kao mobile-based i kao mobile-assisted rješenje. Točnost određivanja lokacije procjenjuju se od 50m do 500m, s kašnjjenjem od 10s. Ne zahtjeva da
svaka bazna stanica ima instaliranu LMU čime dolazi do znatne uštede troškova. E-OTD zahtjeva razmjenu mnogo poruka kojima se šalju podaci za izračun lokacije s tim da se te informacije moraju konstantno osvježavati.

3.2.1.5 U-TDOA

Temelji se na mjerenju vremena i primjenjuje se princip hiperbolične lateracije, kao i E-OTD. U-TDOA je rješenje temeljeno na mreži. Mjeri se vrijeme dolaska (TOA) poznatog signala sa mobilne stanice do 3 ili više LMU jedinica. Od izmjerenih vrijednosti SMLC računa TDOA, a zatim primjenjuje hiperboličnu trilateraciju u cilju dobivanja nepoznatih koordinata mobilne stanice. Mobilna stanica mora biti u dedicated modu kako bi mogla LMU mogla mjeriti neophodna vremena. U slučaju kada je mobilna stanica u idle modu, a javi se zahtjev za određivanjem lokacije, mreža mora stimulirati emisiju signala sa mobilne stanice kako bi se obavila mjerenja. Bitan uvjet za rad je dovoljan broj LMU jedinica u blizini mobilnog uređaja. Bolja točnost određivanja lokacije ovom metodom je u ruralnim sredinama te uvelike ovisi o broju LMU jedinica, čijim se povećanjem povećava i točnost. Nedostatak je znatno veća cijena od E-OTD zbog potrebe za instalacijom većeg broja LMU jedinica. Ova metoda se koristi i u UMTS i GSM sustavima.[2]

3.2.1.6 OTDOA

Metoda se koristi za određivanje lokacije u UMTS mrežama i predstavlja ekvivalent E-OTD u GSM mrežama. To znači da su princip rada i uvjeti koje ova metoda zahtjeva su isti kao i u E-OTD, a to su kružna i hiperbolična lateracija, dostupnost i u dedicated i u idle načinu rada. Ključna razlika proizlazi iz mjerenja vremena, što je posljedica drugačijeg radijskog sučelja u UMTS mrežama. Za mjerenje vremena koje će se koristiti u svrhe određivanja lokacije, zahtjeva se sinkronizacija između mobilne i bazne stanice, ili baznih stanica međusobno. Ako ovaj zahtjev nije ispunjen, mora se ostvariti posteriori sinkronizacija primjenom dodatne komponente u sustavu, LMU jedinice. LMU jedinice vrše neophodna mjerenja vremena dolaska signala sa referentne i susjednih baznih stanica, samo što se mjerenja u ovom slučaju vrše na pilot signalima, CPICH (eng. Common Pilot Channel).

Slika 12. Određivanje lokacije OTDOA tehnologijom, Izvor: [12]

Nedostaci metode OTDOA su nepostojanje priori sinkronizacije baznih stanica u UTRAN-FDD načinu, osjetljivost na geometrijski raspored baznih stanica u prostoru, smanjenje kapaciteta i neophodne modifikacije mobilnog uređaja. Kako je UMTS baziran na
CDMA tehnologiji javlja se problem čujnosti (eng. Hearability). Dolazi do blokiranja signala ukoliko se mobilni uređaj nalazi blizu pristupne bazne stanice koja u tom slučaju blokira signale s ostalih baznih stanica koje rade na istoj frekvenciji. Kako bi se izbjegao ovaj problem, svaka bazna stanica mora u nekom kratkom vremenskom periodu prekinuti svoj prijenos kako bi mobilna stanica opet mogla primiti pilot signale sa susjednih baznih stanica i izvršiti neophodna mjerenja. [2]

3.2.2 Rješenja temeljena na mobilnoj mreži i korisničkom uređaju

- Svemirskog, kojeg tvore sateliti koji odašilju signale,
- Kontrolnog, koji upravlja cijelim sustavom i
- Korisničkog, koji uključuje različite tipove prijemnika.
3.2.2.1 A-GPS

![Diagram Assisted GPS](image.png)

3.2.2.2 Hibridne tehnologije

4 Lokacijske usluge i terminalni uređaji

Napretkom tehnologije bilježi se znatan rast mobilnih terminalnih uređaja, kako u privatne tako i u poslovne svrhe. Jedna od važnijih stavki modernih terminalnih uređaja je pozicioniranje u prostoru. Ne samo radi određivanja lokacije samog uređaja već i zbog mnogobrojnih aplikacija, privatnih ili poslovnih, koje zahtijevaju praćenje uređaja. Na tržištu se trenutno nalaze različite vrste terminalnih uređaja i proizvođača koje podržavaju LBS usluge:

- Pametni telefoni/tableti (Samsung, Apple, Microsoft, Huawei, LG);
- Osobna računala (Apple, Acer, Asus, HP);
- Pametni satovi (Microsoft, Apple, Gnomio, Suunto);
- Kamere (Canon, Nixon, Sony);
- Uređaji za praćenje (Garmin, Pocket Finder, Teltonika);

Svaki uređaj se sastoji od hardvera i softvera
Hardverski dio čine materijalni dijelovi koji se dijele funkcije jednice i komunikacijsku sklopovsku podršku. Softverski dio čine operativni sustavi i aplikacije o koji će biti detaljno razrađeni u sljedećem poglavlju.

4.1 Funkcijske jedinice

Funkcijske jedinice:

- Centralna procesorska jedinica upravlja izvođenjem operacija.
 - Aritmetičko-logička jedinica;
 - Upravljačka jedinica;
 - Skup registara;
 - Grafički procesor;
- Memorijska koristi za pohranu podataka i programa.
 - Radna memorijska;
 - Priručna memorijska;
4.2 Komunikacijska sklopovska podrška

4.2.1 IrDA

IrDA (eng. Infrared Data Association) koja je za bežično povezivanje koristi infracrveno zračenje čija je valna duljina veća od vidljivog svjetla a manja od mikrovalova. Koristi se na malim udaljenostima. Uređaji moraju biti usmjereni i maksimalne brzine su do 1 Gbit/s (GigaIR). [4]

4.2.2 Bluetooth

Bluetooth je bežična tehnologija za komunikacije na kraćim udaljenostima. Domet Bluetooth signala ovisi o klasi (3 klase sa dometom od 0.5m do 100m). Radi na frekvenciji od 2.4 GHz do 2.48 GHz. Za određivanje lokacije potrebno je pronaći i prepoznati odabrane uređaje. Svaki pojedini senzor može prepoznati i do 200 uređaja. Ima malu izlaznu snagu te tako izbjegava interferenciju s ostalim uređajima, s tim da mala snaga ograničava radijus na 10 m. [4]

4.2.3 WiFi

WiFi (eng. Wireless Fidelity) je bežična tehnologija koja omogućuje spajanje na mrežu. Bazirana je na IEEE 802.11 standardima. Koristi tehniku kodiranja OFDM na frekvenciji od 5 GHz (eng. Orthogonal Frequency-Division Multiplexing) i CCK modulaciju na frekvenciji od 2.4GHz (eng. Complementary Code Keying) kako bi se postigle veće brzine i izbjegla interferencija. WiFi tehnologija se koristi za pristup Internetu, VoIP-u te povezivanju uređaja kao što su televizor ili DVD uređaj. Za razliku od Bluetooth-a i IrDA

Tablica 2. Usporedba komunikacijskih tehnologija

<table>
<thead>
<tr>
<th>Tehnologija</th>
<th>IrDA</th>
<th>Bluetooth</th>
<th>WiFi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domet</td>
<td>0 do 2 m</td>
<td>10 m do 100 m</td>
<td>20 m do 100 m</td>
</tr>
<tr>
<td>Broj povezanih uređaja</td>
<td>2 uređaja</td>
<td>2 do 8 uređaja</td>
<td>Više uređaja</td>
</tr>
<tr>
<td>Potrebna optička vidljivost</td>
<td>Da</td>
<td>Ne</td>
<td>Ne</td>
</tr>
<tr>
<td>Brzina prijenosa</td>
<td>16 Mbit/s</td>
<td>3 Mbit/s</td>
<td>54 Mbit/s</td>
</tr>
<tr>
<td>Potrošnja baterije</td>
<td>Vrlo mala</td>
<td>Mala</td>
<td>Velika</td>
</tr>
<tr>
<td>Tolerancija na interferencije</td>
<td>Odlična</td>
<td>Dobra</td>
<td>Loša</td>
</tr>
<tr>
<td>Autentifikacija, autorizacija i enkripcija</td>
<td>Ne</td>
<td>Da</td>
<td>da</td>
</tr>
</tbody>
</table>

4.3 Pametni satovi

Pametni satovi su izuzetno korisni uređaji za korisnike koji se sportskim aktivnostima.

Mogućnosti koje nude su isključivo u tu svrhu:

- Brojač koraka;
- Brzina i prijedena udaljenost (biciklizam);
- Barometar, mjeri promjene u visini (penjanje stepenicama, planinarenje);
- Mjerenje otkucaja srca;
- Brojač utrošenih kalorija;
- E-mail preglednik;
- Slanje tekstualnih i glasovnih poruka;

Microsoft Band je naziv za pametni sat tvrtke Microsoft. Mnogo je jeftiniji od Apple Watcha i ima user friendly sučelje. Ima ugrađen GPS prijemnik te ne mora koristiti smartphone za određivanje lokacije. WiFi tehnologija nije implementirana te za povezivanje s ostalim uređajima koristi isključivo Bluetooth. Microsoftov sat je kompatibilan i sa raznim aplikacijama drugih proizvođača. Veliki nedostatak mu je memorijska kapaciteta za pohranu podataka od samo 64MB.

Apple Watch je boljeg dizajna i dolazi u muškom i ženskom izdanju. Koristi WiFi i GPS prijemnik implementiran u iPhone-u za pozicioniranje. Mnogo je složeniji te nije kompatibilan s ostalim proizvođačima (korisnik Androida ne može koristiti Apple Watch). Kapacitet za pohranu podataka je 8GB te ima mogućnost bežičnog punjenja.[18]
4.4 Mobilni telefoni

U modernom dobu život gotovo svi imaju pametne telefone te je život gotovo nezamisliv bez njih. Prema istraživanjima iz 2013. godine 91% punoljetnih državljana SAD-a posjeduje mobilni telefon. [16]

Njihova multifunkcionalnost se koristi u mnogo svrha, od slanja govornih i tekstualnih poruka, pristupa Internetu, igranja igara, slušanja glazbe pa do pronalaska uputa i preporuka u navigaciji.

Prema tim istraživanjima 49% korisnika mobilnih telefona koristi ih za upute i preporuke u navigaciji, dok 8% koristi za dijeljenje lokacije na društvenim mrežama. 2014. godine broj mobilnih telefona je nadmašio ukupnu svjetsku populaciju. 74% punoljetnih korisnika pametnih telefona koristi svoje uređaje da za navigaciju na temelju određene trenutne lokacije. [16]

Slika 16. Prikaz statistike najpopularnijih pametnih telefona, Izvor: [16]
5 Lokacijske usluge i operacijski sustavi

Operativni sustavi se dijele na Non – proprietary OS (operativni sustav koji je razvijen za izvršavanje na raznim hardware platformama) i Proprietary OS (određena vrsta operativnog sustava zadužena za izravno upravljanje hardware-om i osnovnim sistemskim operacijama).

5.1 Android

5.2 iOS

5.3 Windows Phone

Windows Phone pripada u skupinu proprietary operativnih sistema razvijen od strane Microsofta. Vrlo je sličan sustavu za osobna računala, ali je prilagođen za korištenje na mobilnim uređajima.

Windows OS djeluje na više vrsta uređaja:
- PocketPC je uređaj za koji je operativni sustav prvotno osmišljen,
- Smartphone se razlikuje od gore navedenoga PocketPC-ja po tome što u počecima nije bio osmišljen za zaslone osjetljive na dodir i zato ima manju rezoluciju zaslona,
- Portable Media Centar su uređaji koje služe za spremanje i preslušavanje videa i glazbe,
- uređajima za praćenje. [6]

5.4 Symbian

Symbian je sustav osmišljen isključivo za rad na mobilnim uređajima. Kako je postalo nepraktično koristiti proprietary OS-ove, veći proizvođači kao Motorola, Nokia, Ericsson i Psion udružili su se i zajedno stvorili Symbian. Cilj im je bio načiniti standardni operacijski sustav za pametne telefone i PDA (eng. Personal Digital Assistant) uređaje sustavom koji se bazira na Psionovom EPOC OS-u. 1999. godine pušten je u rad, inačica EPOC 5 počinje s komercijalnom upotrebom te je radila samo na uređajima s rezolucijom zaslona 640x240. To
6 Lokacijski bazirane aplikacije

U skupinu lokacijski baziranih aplikacija pripadaju sve aplikacije koje koriste informacije o trenutnoj lokaciji uređaja. Koristi se u raznim djelatnostima današnjice kao što su promet, medicina, marketing, komunalne usluge. LBS aplikacije se dijele na dvije skupine:

- **Person-oriented** LBS su aplikacije koje se odnose na korisnika. Korisniku pružaju različite informacije vezane za njegov položaj te on sam kontrolira uslugu.
- **Device-oriented** LBS su aplikacije koje se odnose na objekte. Pružaju korisniku lokaciju objekta i uglavnom se koriste prilikom krađa mobilnih uređaja, automobila i ostalih objekata.

Najveću primjenu lokacijski bazirane aplikacije imaju upravo u prometu. U 20. stoljeću prilikom navigacije ljudi su koristili papirnate autokarte koje su danas rijetka pojava te su ih gotovo u potpunosti zamijenile LBS aplikacije. One nude informaciju o čitavom putu od polazišta do odredišta.

Starije aplikacije koje su se koristile u navigaciji služile su isključivo za prometne svrhe. Nove aplikacije za navigaciju su blisko povezale prometnu i turističku djelatnost. Osim zadaće navigiranja, sadrže i informacije o popularnim događajima, restoranima, hotelima te ostalim ugostiteljskim objektima i aktivnostima. Također postoje aplikacije koje na temelju brzine vozila onemogućavaju korisniku da prilikom vožnje koristi mobilni uređaj.

HAK-ova usluga za pametne telefone je dostupna na platformama iOS, Android i Windows Phone te nudi niz mogućnosti:

- Interaktivna karta Hrvatske;
- „mParking“ usluga koju omogućuje brzo i jednostavno plaćanje parkiranja SMS-om. Na temelju lokacije nudi detekciju grada po GPS lokaciji te detekciju parkirne zone u gradu Zagrebu;
- Popis najbližih benzinских postaja sedam naftnih kompanija u hrvatskoj. Na njemu se nalazi popis od 677 benzinских postaja diljem Hrvatske te je omogućen uvid u aktualne cijene goriva na pojedinim postajama;
- Nudi lokacije o različitim događajima, odmorištima ili znamenitostima;
- Pregled zauzeća javnih garaža i parkirališta;
- Pregled cestarina na autocestama;
- Olakšano traženje usluge pomoći na cestama. Na temelju GPS-a lokacija korisnika se odmah prikazuje na karti te se preuzimaju podaci o korisniku;
- Informacije o stanju na cestama, graničnim prijelazima i u trajektnom prometu.[20]
Hitni slučajevi
Medicina se u prošlosti susretala s mnogo poteškoća kada su u pitanju lokacijski bazirane usluge, jer su takve vrste usluga bile iznimno skupe. LBS usluge donose mogućnost praćenja medicinskog osoblja, pacijenata te opreme. Pacijentima teškog zdravstvenog stanja omogućeno je konstantno praćenje te u slučajevima pogoršanja, osoblje može brzo reagirati. Isto tako se lociranjem medicinskog osoblja može povećati efikasnost prilikom hitnih situacija. Osim hitnih slučajeva u zdravstvu, LBS usluge koriste i u vatrogasnoj i gorskoj službi spašavanja.

Praćenje
Usluge praćenja omogućuju roditeljima da korištenjem Interneta imaju stalan nadzor na kretanjem vlastite djece. Primjer takve aplikacije je catchme – if you can. Starijim osobama koji pate od demencije ili sličnih psihičkih bolesti određivanjem lokacije onemogućuje se da se izgube ili zalutaju. No, ovakve vrste aplikacija služe i u slučaju krađe ili gubitka uređaja te omogućavaju brz i efikasan pronalazak.
Društvene mreže

Društvene mreže, koje su danas hit, također koriste lokacijske usluge. Facebook, koji je danas najpopularniji, nudi objavljivanje lokacije uz sve moguće radnje. Društvene mreže kao što su FourSquare i Gowalla nude stalno pozicioniranje i dijelne vašu lokaciju s prijateljima. Sustav funkcionira da se korisnici prijavljuju na lokaciji sa gdje se trenutno nalaze te u slučaju da lokacija ne postoji nudi mogućnost da ju unesu sami. Također, LBS usluge podržavaju i razne aplikacije koje se koriste za pronalaženje partnera. Jedna od takvih usluga je Badoo, koji na temelju lokacije u blizini nudi moguće partnere.

Upravljanje mrežom

Točan nadzor kretanja mobilnih uređaja u mreži omogućuje jednostavnije upravljanje i pomaže u daljnjem planiranju.

Zabava

Implementacijom LBS usluge u većinu mobilnih uređaja, nastaju i mnoge igre koje se temelje na istom. Pokemon Go aplikacija, koja je postala pravi hit u mnogobrojnim zemljama diljem svijeta i tako bez premca postala najpopularnijom LBS aplikacijom. Samo 3 tjedna nakon pojavljivanja na tržištu zabilježeno je preko 100 milijuna instalacija. Kao i u popularnom crtanom filmu nudi mogućnost skupljanja džepnih čudovišta te je tako ispunila san mnogih da jednog dana postanu pokemon treneri. Koristi Google maps te se prilikom igranja lokacija stalno ažurira i pruža virtualnu stvarnost. Prilikom kretanja stvarnim svijetom, na karti u aplikaciji prikazuju se pokemoni koji se hvataju bacanjem pokemon lopti. Još boljim prikazom pokemona u stvarnom svijetu postiže se uključivanjem kamere koja je kompatibilna s aplikacijom. Tako se pokemoni pojavljuju na zaslonu u slici koju projicira kamera te se stječe dojam kao da su u stvarnom svijetu.

Zombies, Run! je još jedna od popularnijih aplikacija u kojoj se na karti pojavljuju mrtva tijela i tjeraju korisnike da bježe od njih. Ovakve vrste aplikacija pružaju korisnicima da se zabave, a ujedno i održavaju tjelesnu kondiciju. No, s druge strane postoji opasnost, jer prilikom korištenja u prometu korisnici često zanemaruju sigurnost.
Slika 18. Prikaz interaktivne mape i kamere u aplikaciji Pokemon Go, Izvor: [18]

- Naplaćivanje usluga
 Određivanjem trenutne lokacije korisnika, omogućava pružateljima usluga naplaćivanje
 ovisno o lokaciji korisnika prilikom njenog korištenja.

- Marketing
 Lokacijske usluge se usko vezane uz djelatnost marketinga i promidžbe. No zbog velikog
 broja aplikacija na tržištu teško se probijaju do korisnika. Tim vrstama LBS usluga imaju
 korist i kupci i prodavači. Jedna od takvih usluga koji traži lokaciju korisnika je shopkick.
 Shopkick aplikacija kupcima pruža razne nagrade i sniženja, za sam ulazak u trgovinu, za
 skeniranje proizvoda ili za pozivanje prijatelja na instalaciju aplikacije.

- Podsjetnik
 Korisnici u podsjetnik ubace podatke što bi trebali napraviti na određenim lokacijama. Npr.
 prilikom dolaska ili odlaska s određene lokacije korisnik unosi u podsjetnik da treba obaviti
 određenu aktivnost, npr. prilikom dolaska na posao nazvati šefa. LBS podsjetnici prilikom
 dolaska na tu lokaciju zvučnim signalom podsjećaju korisnika da treba napraviti aktivnost
 koja je unesena u podsjetnik.
7 Zaštita i sigurnost

Informacijska sigurnost se ponekad povezuje sa informacijskim operacijama koje štite i brane informacijski sustav kako bi osigurale njegovu raspoloživost, integritet, autentifikaciju, povjerljivost (tajnost) i neporećivost. Informacijska sigurnost također uključuje oporavak informacijskih sustava kroz uključene sposobnosti za zaštitu, detekciju i reakciju. Sigurnost informacijskih sustava obuhvaća primjenu mjera za zaštitu podataka koji su u obradi, ili su pohranjeni, ili je u tijeku njihov prijenos, od gubitka povjerljivosti, cjelovitosti i raspoloživosti te radi sprječavanja gubitaka cjelovitosti ili raspoloživosti samih sustava. Kako bi se formulirale sigurnosne potrebe prvo je potrebno definirati sudionike, poticaje i ciljeve za lokacijske usluge i sigurnosne potrebe.

Ciljevi sigurnosti informacijskog sustava su:

- Povjerljivost (eng. Confidentiality);
- Cjelovitost (eng. Integrity);
- Raspoloživost (eng. Availability).

Sudionici koji čine sustav lokacijskih usluga su pružatelji lokacije, korisnik usluge i pružatelji lokacijski baziranih usluga. Lokacijske usluge su izgrađene na samim pružateljima lokacijskih usluga. Pružatelji lokacije su u direktnoj komunikaciji s korisnikom, kako bi mu se odredila lokacija. Nakon određene lokacije, dolazi do komunikacije između pružatelja lokacijske usluge s korisnikom i pruža se lokacijska usluga koju je korisnik zatražio.

Za određivanje sigurnosnih potreba, potrebno je razumjeti poticaje i ciljeve sudionika za korištenje i pružanje lokacijskih usluga. Pružatelji lokacije mogu biti komercijalni (privatni) ili vladini (javna usluga). Cilj komercijalnih pružatelja usluge je naplata i ostvarenje profita na uslugama koje pružaju, dok javni pružatelji usluge nemaju cilj. Korisnici danas sve više koriste lokacijske usluge radi lakšeg orijentiranja, praćenje vremena, pronalazak otvorenih restorana u blizini, gustoća prometa, itd. Poznavanje same lokacije korisnika nije dovoljna, potrebna je i usluga koja pruža informacije vezano za lokaciju korisnika. Zato je cilj i poticaj lokacijski baziranih usluga profit, koji može biti direktan (koji se odmah naplaćuje) ili indirektan, gdje je usluga besplatna, ali ispituje tržište, prikupljanjem podataka o kretanji korisnika i profilira korisnike i tako pruža informacije recimo poduzećima za reklamiranje, gdje je najbolje postaviti reklamu.
Na redu su sigurnosne potrebe i prvi su na redu pružatelji lokacije (komercijalni i vladini). Za obje kategorije vrijedi da moraju posjedovat minimalnu razinu kvalitete usluge. To uključuje određenu razinu cjelovitosti i dostupnosti usluge, kako bi se osigurao dobit usluge.
S korisničke strane, sigurnosne potrebe na prvom mjestu je efektivno korištenje lokacijski baziranih usluga. To podrazumijeva dostupnost, očuvanje integritet i točnost pružene usluge. U slučaju da postoji sustav naplate tih usluga, korisnički zahtjevi su da proces naplate bude zaštićen u suglasnosti sa njegovom upotrebom.
Kako bi pružatelji LBS usluga ostvarili profit potrebna je zaštita poslovnog modela. U to ulazi zahtjevi kao što su sigurnost vodenja sustava za naplatu, sustavi za zaštitu od krađe usluge te sustav za zaštitu krađe povjerljivih podataka. Često dolaze od izravnih konkurenata na tržištu. Kao primjer može poslužiti primjer korisnika usluge koja traži taxi vozila na određenom području. Takve usluge i korisnikova lokacija trebaju ostati tajne radi konkurentnih taxi kompanija.
Kao i u sustavu za određivanje sigurnosnih potreba, prijetnje se odnose na sve sudionike koji čine LBS sustav. Prijetnje uglavnom dolaze od korisnika koji su izvan sustava, ali ponekad prijetnje izazivaju i sudionici. Prijetnje se mogu podijeliti prema načinu na koji koriste sadržaj LBS informacije. Glavni razlozi, odnosno vrste prijetnji su:

- Pregledavanje informacija;
- Ubacivanje neželjenih informacija;
- Mijenjanje informacija;
- Zaustavljanje, odnosno blokiranje informacija.

Što se tiče pružatelja lokacija, glavna prijetnja je određivanje pogrešne lokacije. Tim postupkom korisnik prima krivu informaciju te mu pruža pogrešno navođenje. Pogrešno određena lokacija korisnika nerijetko dovodi u opasnost. Korisnik, često izazivanje prijetnje kako bi dobivenu uslugu platio što manje. Npr. smanjivanje troškova usluge prijevoza varanjem službe za naplatu cestarina, pritom maskirajući trenutnu lokaciju dok koriste uslugu. Kao i kod korisnika, Pružatelj LBS može izazvati prijetnju smanjivanjem troškova ili povećavanjem dobiti. Prilikom održavanja baze podataka, točne informacije su skupe te se na način pružanja netočnih informacija dolazi do ušteda. Što se tiče povećavanja dobiti, LBS
usluge mogu pružati netočne informacije. Npr. trgovački lanci umjesto da korisnike navode prema najbližim centrima, šalju ih prema najskupljjim s čime ostvaruju povećan dobitak.[9]

8 Zaključak

Mobilne mreže su mreže koje za slanje informacija s izvorišta na odredište koriste elektromagnetske valove. LBS usluge su usluge koje prilikom rada koriste informacije o trenutnoj lokaciji. LBS usluge koriste se u navigaciji, turizmu, marketingu, praćenju i za zabavu. Mobilne mreže se razlikuju po kvaliteti pružene usluge i o metodama koje koriste da bi odredile lokaciju.

Napretkom tehnologije dolazi do znatnog porasta terminalnih uređaja, a isto tako i porasta uređaja i aplikacija koji podržavaju sustav za pozicioniranje. Uređaji su postali pristupačni širokoj populaciji te svake godine svjedočimo napretku.

Kao i ostali sustavi, sustav za pozicioniranje treba imati adekvatnu zaštitu kako bi se preventivno ili naknadno otklonile prijetnje. Osim prijetnji izvan sustava postoje i prijetnje unutar koje polaze od sudionikovih želja za smanjenjem troškova, odnosno povećanjem dobiti.
LITERATURA

[1] Štefanac, I. Sustavi za pozicioniranje i veza s mobilnim uređajima, FOI, Varaždin 2006;
[10] Hadjina, N.; Zaštita i sigurnost informacijskih sustava, Sveučilište u Zagrebu, Zagreb

LITERATURNI IZVORI SLIKA, TABLICA I GRAFOVA

[13] http://1.bp.blogspot.com/-3T5D5BQq-Fc/UXIEWnMq9I/AAAAAAAANU/03oL3ZKIaVs/s1600/a_gps.png
[18] https://i.guim.co.uk/img/media/3c11ae30e360eef807906a09be39da7559868804/9_1500_900/1500.jpg?w=460&q=55&auto=format&usm=12&fit=max&s=19ea97f9f43068c929e8d58c7e02ef61
POPIS SLIKA

Slika 1. Blok Shema odašiljača ... 3
Slika 2. Blok Shema prijemnika ... 3
Slika 3. Prikaz prelaska iz jedne ćelije u drugu ... 5
Slika 4. Arhitektura mobilne mreže .. 6
Slika 5. Određivanje položaja postupkom triangulacije .. 8
Slika 6. Određivanje položaja postupkom kružne lateracije ... 9
Slika 7. Prikaz Hiperbolične lateracije .. 10
Slika 8. Određivanje lokacije tehnologijom ID ćelije ... 11
Slika 9. Određivanje lokacije AOA tehnologijom .. 12
Slika 10. Određivanje lokacije E-OTD tehnologijom ... 13
Slika 11. Određivanje lokacije U-TDOA tehnologijom ... 14
Slika 12. Određivanje lokacije OTDOA tehnologijom ... 15
Slika 13. Prikaz rada Assisted GPS sustava .. 17
Slika 14. Statistika prodanih pametnih satova u 2014. godini ... 21
Slika 15. Prikaz Microsoft Band-a i Apple Watch-a ... 22
Slika 16. Prikaz statistike najpopularnijih pametnih telefona ... 23
Slika 17 Prikaz HAK-ove aplikacije .. 29
Slika 18. Prikaz interaktivne mape i kamere u aplikaciji Pokemon Go 31
POPIS TABLICA I GRAFOVA

Tablica 1. Prikaz značajki mobilnih mrežnih tehnologija.. 4
Tablica 2. Usporedba komunikacijskih tehnologija.. 20
Graf 1. Zastupljenost operativnih sustava na mobilnim uređajima, 2013. godina..................... 24
POPIS KRATICA

1G (eng. First-generation wireless telephone technology) – prva generacija mobilnih mreža
2G (eng. Second-generation wireless telephone technology) – druga generacija mobilnih mreža
3G (eng. Third-generation wireless telephone technology) – treća generacija mobilnih mreža
4G (eng. Fourth-generation wireless telephone technology) – četvrta generacija mobilnih mreža

ADSL (eng. Asymmetric Digital Subscriber Line)

AM (eng. Amplitude Modulation) – Amplitudna modulacija

ASK (eng. Amplitude Shift Keying)

AUC (eng. Authentication Centre) Centar za provjeru autentičnosti

A-GPS (eng. Assisted GPS)

BS ili BTS (eng. Base Transceiver Station) – bazna stanica kojom se ostvaruje radijski pristup

BSC (eng. Base Station Controller) – upravljač bazne stanice

CCK (eng. Complementary code keying)

CDMA (eng. Code Division Multiple access)

CPICH (eng. Common Pilot Channel)

E-OTD (eng. Enhanced-Observed Time Difference)

EIR (eng. Equipment Identification Register) – Registar identifikacije opreme

FDD (eng. Frequency Division Duplex) – frekvencijski podijeljen dupleks

FDMA (eng. Frequency Division Multiple access)

FM (eng. Frequency Modulation) – modulacija frekvencije

FSK (eng. Frequency Shift Keying)

GMSK (eng. GSM Minimum Shift Keying)

GNSS (eng. global navigation satellite system) – globalni navigacijski satelitski sustavi

GSM (eng. Global System for Mobile communication) – globalni sustav mobilne komunikacije, druga generacija

HLR (eng. Home Location Register) – Domaći lokacijski registar

HSPA (eng. High Speed Packet Access) – 3.5 generacija mobilnih mreža

IEEE (eng. Institute of Electrical and Electronics Engineers)

IRDA (eng. Infrared Data Association) – infracrveno zračenje

LBS (eng. Location Based Services) – lokacijski bazirane aplikacije
LMU (eng. Location Measurement Unit) – dodatne komponente za pristup mreži
LPS (eng. Location Positioning Systems)
LTE (eng. Long Term Evolution) – četvrta generacija mobilnih sustava
MOS (eng. Mobile Operating System) – mobilni operacijski sustav
MSC (eng. Mobile Switching Centre) – komutacijsko čvorište ćelijske mreže
MSK (eng. Minimum Shift Keying)
NMT (eng. Nordic Mobile Telephone) – prva generacija mobilnih sustava
NNSS (eng. Navy Navigation Satellite System)
OCS (eng. Operational Control System) – Kontrolni segment
OFDM (eng. orthogonal frequency-division multiplexing) – kako bi se postigle veće brzine i izbjegla interferencija.
OS (eng. Operating System) – operacijski sustav
OTDOA (eng. Time Difference of Arrival)
P2P (eng. Peer to Peer)
PDA (eng. Personal Digital Assistant) – Osobno računalo
PM (eng. Pulse Modulation) – modulacija faze
PSK (eng. Pulse Shift Keying)
RTT (eng. Round trip time)
SDK (eng. Software Development Kit)
SIM (eng. Subscriber Identity Module) Idenifikacijska kartica
SMS (eng. Short Message Service) – kratka poruka
TA (eng. Timing Advance)
TCP/IP (eng. Transfer Control Protocol / Internet Protocol)
TACS (eng. Total Access Communication System) – komunikacijski sustav sa slobodnim pristupom
UMTS (eng. Universal Terrestrial Mobile System) – dodavanje uslugama druge generacije multimedijske usluge
UTRAN (eng. UMTS Terrestrial Radio Access Network)
U-TDOA (eng. Uplink-Time Difference of Arrival)
VLR (eng. Visitor Location Register) – Gostujući lokacijski registar
WCDMA (eng. Wideband Code Division Multiple Access)
WiFi (eng. Wireless Fidelity)