
Increasing Motorway Operational Capacity by
Dynamic Adaptation of Variable Speed Limit Zones
Based on Cooperative Learning Agents

Kušić, Krešimir

Doctoral thesis / Doktorski rad

2023

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Zagreb, Faculty of Transport and Traffic Sciences / Sveučilište u Zagrebu, Fakultet 
prometnih znanosti

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:119:495083

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-19

Repository / Repozitorij:

Faculty of Transport and Traffic Sciences - 
Institutional Repository

https://urn.nsk.hr/urn:nbn:hr:119:495083
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fpz.unizg.hr
https://repozitorij.fpz.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fpz:3193
https://dabar.srce.hr/islandora/object/fpz:3193


University of Zagreb

FACULTY OF TRANSPORT AND TRAFFIC SCIENCES

Krešimir Kušić
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Znanosti Sveučilišta u Zagrebu.



About the second mentor:

Edouard Ivanjko is a Professor at the Department for Intelligent Transport Systems, Faculty of

Transport Sciences, University of Zagreb. He teaches courses related to computer science, elec-

trical engineering, artificial intelligence, virtual reality and traffic control. He holds membership

in the Center of Excellence for Computer Vision and the Scientific Center of Excellence for Data

Science and Advanced Cooperative Systems, Research Unit: Data Science. He is a member of

the Committee for Quality Management, the Committee for Science and Projects, and the Com-

mittee for Rewarding Employees and Students of the Faculty of Transport Sciences, University

of Zagreb. His research interests include intelligent transport systems, modeling and simula-

tion of road networks, application of artificial intelligence and computer vision in road traffic

control, estimation and prediction of traffic parameters and inclusion of connected autonomous

vehicles in the control loop. He serves on the editorial boards of the following scientific jour-

nals: Journal of Traffic and Transportation Engineering and International Journal of Intelligent

Transportation Systems Research. He is a member of IEEE (Institute of Electrical and Elec-

tronics Engineers), IEEE Intelligent Transportation Systems Society, ITS Croatia professional

associations, and the company PTV scientific network. He is also an associated member of the

Croatian Academy of Engineering (HATZ). He was awarded the Josip Lončar Bronze Plaque
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Abstract

Continuously increasing demand for mobility, especially in road transport, and new transport

policies that prioritize optimizing the capacity of existing roads over building new ones, pose

major challenges in the field of traffic control towards a competitive and resource-efficient trans-

port system. This thesis is primarily concerned with urban motorways and their characteristic

problems, the presence of bottlenecks. Variable speed limit (VSL) as an effective traffic control

strategy is used to optimize traffic on motorways. Due to the stochastic nature of traffic con-

gestion, static VSL zones, i.e., the VSL application area remains unchanged, may not always

respond accurately to spatiotemporal spreading congestion. Accordingly, a model for dynamic

spatiotemporal adaptation of VSL zones that complements the prevailing VSL with static zones

is proposed. To address the control problem for the proposed dynamic VSL zones, a novel dis-

tributed multi-agent reinforcement learning VSL (DWL-ST-VSL) controller, capable of dynam-

ically adapting the length and position of VSL zones during VSL operation, is suggested. To

ensure rigorous evaluation of the controller, a novel paradigm in motorway traffic modeling is

proposed and demonstrated by using the continuously synchronized digital twin (DT) model of

the Geneva motorway (DT-GM). Thus, DWL-ST-VSL applicability is verified through a virtual

field test, which uses DT-GM microscopic simulation of actual traffic received in real-time from

the Geneva motorway. Such functional integration presents a novelty in evaluating learning-

based traffic controllers using traffic scenarios that more closely reflect the uncertainty in real

traffic. Accordingly, DT-GM advances technological capabilities of traffic simulations to a more

sophisticated and accurate level by enabling simulation-based control optimization during sys-

tem run-time. Furthermore, DWL-ST-VSL outperforms all baseline control approaches with

static VSL zones. Different VSL zones configurations per traffic scenarios are, thus, learned

without requiring a manual setup. This is of practical relevance as it can guide traffic engineers

in optimizing VSL zones design in complex motorway environments. Thus, demonstrated func-

tional integration of the DWL-ST-VSL with the DT technology provides the basis for further

development of predictive real-time analytics of complex autonomous control processes as a

step toward safety-critical decision-making in a nonstationary traffic setting and provides an

experimental environment for developing control system prototypes in the context of emerging

connected vehicles technologies.

Keywords: traffic control; adaptive speed limit zones; cooperative multi-agent systems; rein-

forcement learning; smart motorways; digital twins; microscopic simulations



Prošireni sažetak

Povećanje operativnoga kapaciteta autocesta dinamičkom prilagodbom
zona promjenjivoga ograničenja brzine zasnovanom na kooperativnim

učećim agentima

Uvod

Stalno rastuća potražnja za mobilnošću, posebno u cestovnom prometu, i nove prometne poli-

tike koje daju prednost optimizaciji kapaciteta postojećih cesta u odnosu na izgradnju novih,

predstavljaju veliki izazov u području upravljanja prometnim tokovima prema konkurentnom

i resursno učinkovitom prometnom sustavu. Ovaj doktorski rad prvenstveno se bavi gradskim

autocestama i njihovim karakterističnim problemima. Najistaknutiji problem je pojava uskih

grla koja uzrokuju prekid prometa. Stoga je glavni cilj aktivnog upravljanja prometom spri-

ječiti takve dogad̄aje, odnosno spriječiti aktiviranje uskog grla ako je moguće. Upotrebom

promjenjivog ograničenja brzine (eng. Variable Speed Limit, VSL) glavni tok prometa može

biti podvrgnut nižim ograničenjima brzine, i na taj način se protok iz područja obuhvaćenog

VSL djelovanjem može privremeno ili čak trajno ograničiti. Dakle, postavljanjem odgovara-

jućih ograničenja brzine volumen prometnog toka koji se kreće u smjeru uskog grla može se

prilagoditi tako da ostane unutar vrijednosti ograničenog (narušenog) kapaciteta uskog grla. Na

taj način se sprječava preopterećenje uskog grla.

Motivacija

Med̄utim, postoji nekoliko zahtjeva za dizajn VSL-a koji se moraju odgovarajuće riješiti kako bi

se osiguralo učinkovito upravljanje prometnim tokom na autocesti. Na primjer, mora se odabrati

odgovarajuća strategija upravljanja na osnovu koje će se izračunavati ograničenja brzine ovisno

o stanju prometa. Osim toga, važno je odrediti odgovarajuće lokacije za postavljanje znakova

s promjenjivim porukama (eng. Variable Message Signs, VMS) putem kojih se informiraju

vozači o ograničenjima brzine. Oni bi trebali biti strateški postavljeni kako bi se postigao žel-

jeni učinak upravljanja prometnim tokom na odred̄enim segmentima autoceste, uzimajući u

obzir ograničenja kao što su sigurnost, učinkovitost, troškovi itd. Dizajneru VSL sustava je na

ta pitanja teško odgovoriti budući da efiksnost sustava ovisi o mnogim vanjskim i unutarnjim

varijablama. Na primjer, poznato je da učinkovitost VSL-a ovisi o duljini područja primjene

VSL-a i njegovoj udaljenosti od područja uskog grla.

Kako bi se opravdala potreba za razvojem modela dinamičkom prilagodbom zona promjen-



jivoga ograničenja brzine, u ovom doktorskom radu iznosi se nova pretpostavka o tome zašto

je pristup VSL-a s promjenjivim zonama vrijedan daljnjeg istraživanja. Konkretno, koriste se

teorijske spoznaje iz teorije prometnog toka iz kojih slijedi da se kapacitet autoceste mijenja u

ovisnosti o položaju i vremenu. Prvo, na njega utječe geometrija prometnice. Drugo, na njega

utječu latentne varijable kao što su vremenski uvjeti ili ponašanje samih vozača, itd. Potonje

dovodi do nesigurnosti u kapacitetu definiranom kao funkcija vjerojatnosti nastanka prekida u

normalnom odvijanju prometa čija vjerojatnost nastanka raste s povećanjem volumena prometa.

Stoga se ne može pretpostaviti da je kapacitet (i pad kapaciteta) uskog grla konstantna varijabla,

kao ni kapacitet prometnice prije mjesta zagušenja.

To znači da dodatno akumuliranje vozila (manifestirano povećanjem gustoće prometa) koje

stvara VSL zona mora biti pažljivo postavljeno, uzimajući u obzir ograničeni kapacitet neposredno

prije područja uskog grla, kako se ne bi stvorio novi prekid prometa uzvodno od uskog grla zbog

samog djelovanja VSL-a. Iznesena činjenica implicira da VSL sa statičkom zonom možda neće

moći prihvatiti dodatni promet u odred̄enom vremenskom periodu kako bi se rasteretilo ili spri-

ječila aktivacija uskog grla. Štoviše, VSL sa statičkim zonama može stvoriti ili ubrzati stvaranje

dodatnih uskih grla uzvodno. Stoga ima smisla dinamički proširiti ili smanjiti, preraspodjeliti

ili aktivirati dodatne VSL zone kako bi se zadovoljile trenutne potrebe prostorno i vremen-

ski ograničenog kapaciteta kako bi se odgovarajuće odgovorilo na uska grla, a da se ne naruši

cjelokupna dinamika prometa.

Pregled disertacije

Kako bi se potvrdila gore navedena hipoteza, provodi se dubinska analiza koja uključuje temeljito

ispitivanje postojećih istraživanja na temu optimalnih lokacija za VSL zone. U drugoj fazi

provodi se analiza zasnovana na simulaciji s različitim unaprijed definiranim konfiguracijama

VSL zona u odnosu na lokaciju uskog grla kako bi se dobila indikacija korelacije izmed̄u dizajna

VSL zone i performansi prometa. Osim toga, provodi se višekriterijska analiza za odred̄ivanje

optimalne VSL zone uzimajući u obzir performanse uskog grla zajedno s performansama cijele

simulirane mreže autoceste kao kriterij. Na osnovu pruženih dokaza zasnovanih na simulaci-

jama o podoptimalnom radu VSL sustava s fiksnim VSL zonama u okruženju s promjenjivim

prometnim zagušenjem opravdava potrebu za razvojem VSL-a s dinamičkim zonama. Koristeći

rezultate i spoznaje drugih istraživača, verificirana je potreba za adaptivnim VSL zonama, te je

stoga predložen model dinamičke prostorno-vremenske prilagodbe VSL zona koji nadopunjuje

do sada prevladavajući VSL sa statičkim zonama.

Kako bi se riješio problem upravljanja za predloženu dinamičku prostorno-vremensku pri-

lagodbu VSL zona, predlaže se novi distribuirani prostorno-vremenski višeagentni VSL (DWL-

ST-VSL) regulator koji je sposoban uz prilagodbu ograničenja brzine dinamički prilagod̄avati



duljinu i položaj VSL zona tijekom rada VSL-a. Kako bi se nadopunila prilagodba ograničenja

brzine u trenutnim VSL upravljačkim sustavima, DWL-ST-VSL je modeliran kao algoritam dis-

tribuiranog W-učenja (DWL) koji je u osnovi algoritam strojnog učenja zvan potporno učenje

(eng. Reinforcement Learning, RL). Stoga DWL kao tehnika strojnog učenja za samoopti-

mizaciju zasnovana na suradničkim učećim agentima omogućuje učenje tj. optimiranje sustava

primjenom višestrukih nehomogenih upravljačkih politika. Uz svoje lokalne politike, kroz kon-

cept udaljenih politika predloženih u DWL algoritmu, agenti takod̄er uče kako njihovi postupci

(odabir akcija) utječu na neposredne susjedne agente i koja politika ili radnja se preferiraju u

odred̄enoj situaciji. Med̄utim, prije bilo kakve implementacije sustava upravljanja prometom

(posebice onog koji se zasniva na učenju, a ima sposobnost prilagoditi svoje ponašanje tijekom

vremena rada na ne nužno predvid̄ajući način), potrebno je osigurati njegovu rigoroznu evalu-

aciju. Stoga je potrebno razviti odgovarajući model fizičkog sustava (procesa) koji omogućuje

logičku manipulaciju kako bi se odgovorilo na pitanja kako se ponaša sustav upravljanja i kako

se sam proces ponaša pod sustavom upravljanja, tj. istražiti med̄usobni utjecaj jednog na dru-

gog.

U prometnom inženjerstvu model procesa prometnog sustava često se odgovarajuće nadom-

ješta pomoću simulacijskih modela. Pojava široko rasprostranjene informacijske tehnologije,

posebice dostupnost podataka o prometu u stvarnom vremenu, daje temelj za dopunu prevla-

davajućih (izvanmrežnih) pristupa mikroskopskoj simulaciji stvarnim podatcima kako bi se

stvorio detaljan digitalni prikaz fizičkog prometa u stvarnom vremenu. Med̄utim, upotreba

stvarnih prometnih podataka u analizi autocesta u stvarnom vremenu još nije istražena. Razlog

je to što ne postoje prateći modeli za primjenjivost podataka u stvarnom vremenu u kontekstu

mikroskopskih simulacija te primjena takvih simulacijkih modela nije još razmatrana i prepoz-

nata u kontekstu simulacija prometa na autocestama. Stoga je u ovom doktorskom radu fokus na

mikroskopskoj simulaciji autoceste s integracijom prometnih podataka u stvarnom vremenu ti-

jekom rada sustava. Kao rezultat toga, predložena je i demonstrirana nova paradigma u modeli-

ranju prometa na autocesti korištenjem kontinuirano sinkroniziranog digitalnog blizanca mod-

ela ženevske autoceste (DT-GM). Analizirana je primjena mikroskopskog simulatora SUMO u

modeliranju, simulaciji i umjeravanju u hodu sinkroniziranih digitalnih replika stvarnog prometa

korištenjem tokova detaljnih stvarnih podataka o prometu s brojača prometa na autocestama

kao ulaznih podataka za DT-GM. Na taj način se stvarni podatci o prometu izravno integriraju

u DT-GM koji se kontinuirano izvodi tj. kontinuirano se umjerava kako se fizički pandan mi-

jenja. Uz minutnu rezoluciju simulirani promet se vrlo približava stvarnoj distribuciji prometa

na analiziranom segmentu autoceste. S kontinuiranim ažuriranjem novim dostupnim podatcima

o prometu i kontinuiranim procesom umjeravanja, DT-GM stvara umjerene simulacijske okvire

(gotovo točne replike stvarnog prometa) u stvarnom vremenu tijekom životnog ciklusa simu-

lacije. U skladu s tim, DT-GM se koristi za procjenu ponašanja i performansi DWL-ST-VSL u



fazama dizajna, učenja i evaluacije.

Dakle, primjenjivost DWL-ST-VSL provjerena je na (virtualnom) terenskom testu korištenjem

24-satne DT-GM simulacije stvarnog prometa generiranog u stvarnom vremenu na ženevskoj

autocesti u Švicarskoj. Time ovaj pristup predstavlja novost u procjeni regulatora zasnovanih

na RL-u korištenjem scenarija koji mnogo bliže odražavaju neizvjesnost u stvarnom prometu

u usporedbi s konvencijlnim (offline) simulacijama. Dakle, DT-GM se može precizno umjeriti

u stvarnom vremenu korištenjem stvarnih podataka o prometu s osjetila autoceste. Sukladno

tome, DT-GM podiže tehnološku dimenziju u mikroskopskoj simulaciji prometa na autocesti

na sljedeću razinu omogućavajući simulacijski zasnovanu optimizaciju upravljanja prometom

tijekom rada fizičkog sustava koja je prije bila neizvediva. Drugo, pokazalo se da predloženi

model dinamičkih prilagodljivih VSL zona nadmašuje sve testirane pristupe upravljanja VSL-

om sa statičkim VSL zonama u simulacijskim eksperimentima na sintetičkim modelima te na

realističnom scenarijiu prometa generiranim pomoću DT-GM.

Zaključak

Zaključno, provedeni eksperimenti daju uvid u novi koncept upravljanja VSL-a. Konkretno,

primjena DT tehnologija u mikrosimulacijama bi mogla biti okidač za daljnja istraživanja o

korištenju naprednih digitalnih tehnologija zasnovanih na učenju za razvoj nove generacije

prilagodljivih sustava upravljanja prometom koji ispunjavaju zahtjeve rada u nestacionarnom

okruženju u kontekstu nadolazećih novih tehnologija i tehnologija povezanih vozila općenito.

Prikazani rezultati su stoga od praktične važnosti jer mogu poslužiti kao vodilja inženjerima

prilikom dizajniranja autocesta te nadležnim tijelima kao nit vodilja u implementaciji i opre-

manju autocesta naprednim upravljačkim sustavima. Integracija regulatora prometa zasnovanih

na učećim algoritmima u stvarnom vremenu s tehnologijama digitalnih blizanaca čini temelj za

evoluciju i mogućnost prediktivne analitike složenih upravljačkih procesa u stvarnom vremenu

kao korak prema sigurnijem donošenju odluka kritičnih za sigurnost prometa u upravljanju

prometom općenito.

Ključne riječi: upravljanje prometom; prilagodljive zone ograničenja brzine; kooperativni

višeagentni sustavi; potporno učenje; pametne autoceste; digitalni blizanci; mikroskopske sim-

ulacije
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Chapter 1

Introduction

Daily commuting in densely populated urban areas is accompanied by repeated traffic conges-

tion, which significantly affects the quality of life in cities and towns. The traditional approach

to solving the congestion problem is to expand the capacity of the existing transportation net-

work by building new lanes or even new roads. Especially in metropolitan areas, this can also

be done by building urban motorways. The main objective of these motorways is to connect

different districts of large built-up areas (megacities) and provide a high level of service (LoS)

to travelers. However, as an integral part of the urban road network, motorways are also prone

to daily congestion. In addition, the new green and sustainable transport policy no longer pro-

motes the construction of new capacity, but rather a shift to other modes of transport and the

optimization of existing capacity with new methods of traffic flow control. Therefore, traffic

control approaches from the domain of intelligent transportation systems (ITS) are now being

applied to the existing infrastructure to increase the operational capacity of such urban motor-

ways.

The applied traffic control approaches include ramp metering (RM), variable speed limit (VSL),

and lane change (LC) control. This thesis focuses on VSL as an efficient traffic control strategy

to improve urban motorways’ LoS. VSL controls the speed limit in real-time by displaying an

appropriate speed limit on variable message signs (VMS) placed across the motorway. Since

VSL is a (traffic and weather)-responsive control system, the value of the speed limit is adjusted

according to, for example, the current traffic state (traffic load), environmental conditions such

as weather, speed regulation in work zones on motorways and other [1]. The main objective

of VSL is to improve traffic safety and throughput on motorways through the concept of traffic

flow harmonization [2]. In addition, VSL is used for mainstream traffic flow control (MTFC) [3]

in case of recurrent bottlenecks which are typical of motorways’ merge areas. For example,

increased traffic volume at the on-ramp (motorway entrance) can disrupt the mainstream flow

and cause congestion. Thus, MTFC applied upstream of the bottleneck can suppress bottleneck
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1. Introduction

activation or its expansion. To summarize, VSL, thus, has a dual effect on traffic flow: it

harmonizes it and increases throughput by reducing the risk of capacity breakdown in areas of

potential bottlenecks.

However, despite the fact that VSL has been extensively researched and is being used on motor-

ways [4, 5] (for more examples see [6]), questions remain about its optimal design. Needless to

say, speed limit values and their duration are crucial factors for VSL performance. Therefore,

over the years, various VSL approaches for computing speed limits have been suggested based

on different control system configurations and methodologies, such as rule-based VSL activated

by predefined threshold values (e.g., flow, speed or density) [7, 8], the usage of metaheuristics

to optimize VSL [9], optimal control [10], machine learning based approaches [11], and model-

predictive control [12]. The most prominent VSL design (among classical controllers) uses

feedback control [3, 13], where the speed limit is calculated based on current measurements of

traffic states, such as traffic volume, density, and traffic flow speed. However, such technologies

are typically non-adaptive and, thus, may have limitations while controlling stochastic traffic on

urban motorways.

Apparently, in recent years there has been a growing interest in advancing VSL design by incor-

porating new available technologies with an emphasis on the application of machine learning

techniques, especially reinforcement learning (RL). An overview of the existing literature can

be found in [11]. RL has a proven track record of solving various complex control problems,

including transportation and related control optimization problems with considerable improve-

ments in transportation management efficiency [14, 15, 16, 17]. In particular, RL enables the

resolution of complex Markov decision processes (MDPs) and the discovery of a near-optimal

solution for discrete-event stochastic systems without requiring an analytical model of the sys-

tem to be controlled [18]. In addition, RL-based control systems can continuously improve

their performance over time by adapting control policies to newly recognized states of the envi-

ronment. RL, consequently, provides a model-free, adaptive control alternative for controlling

complex systems, making it a suitable technique for optimizing traffic control processes on

motorways.

The results of the pioneers in developing a single agent-based RL controller for VSL (RL-VSL)

prove the potential of this technology in controlling traffic flow on motorways. In the available

research, an agent is designed to minimize or maximize the objective function [19, 20] or to

pursue multiple objectives [21, 22, 23] regarding the traffic parameters by learning the optimal

control policy. However, in the case of large-scale traffic control, the control optimization often

seeks to optimize conflicting objectives which are heterogeneous in time and space scales, e.g.,

simultaneous optimization of RM and VSL on motorways [24], or different levels of priorities in

objectives, e.g., giving more weight to safety contrary to throughput [25] or favoring throughput
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contrary to traveling speeds [26], etc. In practice, VSL is usually applied on a longer motorway

segment. For this reason, the VSL application area should be divided into several consecutive

VSL sections. In this way, VSL ensures a smooth (gradual) spatial adjustment of vehicle speeds

in traffic flow. However, a single-agent RL approach often encounters an exponential increase

in computational cost as the scope of the controlled process is expanded.

In [24], a multi-agent RL (MARL) technique is used to control VSL and RM simultaneously

in order to solve motorway congestion. The most sophisticated MARL technique used in re-

search [24] was the maximax MARL approach. Due to the nature of this algorithm, it is likely

that the extended applicability containing more agents might be limited due to two-way com-

munication in which the state-action space of each agent increases by a factor equal to the

number of actions available to its neighbor. In [25], a multi-agent VSL was tested with two

goals. Traffic safety policy reduces the speed difference between adjacent controlled motor-

way sections, while mobility control policy increases throughput in the bottleneck. Although

the authors highlight two conflicting objectives in their analysis, the optimization process was

based on the separate use of individual policies i.e., each of them was learned independently

(not simultaneously) by a distributed Q-learning algorithm. According to the given objective,

three agents for VSL must learn an optimal joint policy. In the used algorithm, the control

state is fully observed which is considered more accurate than a partial observation algorithm.

On the other hand, it consumes more computational resources. As a result, it does not require

additional communication between agents, but it seems ideal for medium-scale control tasks.

Nonetheless, MARL generally has been proven as a technique that makes it possible to use a

powerful RL capability for solving complex large-scale control tasks, while still being simple

to implement [27]. Thus, it delivers a promising way to further extend RL application to track

more complex problems on motorways. However, the potential of MARL in the motorway do-

main has not yet been realized. In general, there is very little research on the use of MARL

technology in VSL control and literally no research on the use of cooperative agent-based tech-

niques. This raises a few practical questions. (i) Is it and to what extent possible to benefit from

cooperative MARL techniques in VSL in an uncertain dynamic environment on the motorway?

(ii) What kind of control design does such a system allow? For example, does it allow for het-

erogeneity in agents’ policies to address multiple, possibly conflicting objectives with different

spatial and temporal scopes simultaneously? (iii) Is it possible to obtain multiple outputs from

such a control system at the same time (e.g., speed limit value and VSL zone configuration)?

There are also other factors that need to be considered in the design phase of the VSL system.

Research conducted in [28, 29] have analyzed the impact of VSL zone location (VSL applica-

tion area) on VSL performance regarding bottleneck optimization. An in-depth analysis of their

findings will be provided in chapter 2, but it is clear from the results that the efficiency of VSL
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depends on the spatial design of VSL zones. Particularly, two practical questions arise: how

long should the VSL application area be and where should it be placed? In other words, where

should the VSL zone start and how far should the end of the VSL zone be from the bottleneck

to achieve good performance of the VSL system? In general, it can be concluded that different

lengths and positions of VSL application areas, applied speed limits, and spatial location of

congestion creation significantly affect VSL performance. Unfortunately, current studies do not

provide a general methodology for selecting or designing a suitable VSL zone. Furthermore,

they are partially inconsistent which will be addressed in chapters 2 and 4.

Thus, the designer of a system must choose a VSL zone configuration well suited for the situa-

tion at hand, which raises two questions. (i) Can the process of VSL zone setup be automated?

(ii) Is it a disadvantage that the prevailing VSL systems use only static VSL zones, and if so,

how much benefits can VSL gain from dynamically adapting the length and position of VSL

zones (particularly when congestion characteristics and motorway capacity vary widely over

space and time) along with speed limits during VSL operation?

In general, when developing and designing new traffic control systems, their simulation-based

evaluation is important before they are used to control a real process [28]. It is important to

utilize a simulation model that accurately reflects the behavior of the real system. To accom-

plish this, a precise traffic simulation model must be modeled, which is capable of accurately

simulating various traffic scenarios that may occur in the real system. Particularly, each RL

optimization process heavily relies on simulations. Therefore, it is important, for RL-VSL (or

MARL-VSL in general) to ensure a wide spectrum of training examples so that, controllers once

deployed in a real system, can ensure good behavior, namely generalization across all feasible

traffic states. Traditional (offline) simulation approaches, however, use historical aggregated

traffic data (or artificially created) for generating simulation scenarios representing only a few

selected situations that depend primarily on the input parameters of the simulation [30]. In gen-

eral, such models are inadequate to reflect unexpected events that are likely to occur in reality

and cannot be captured by offline simulated results due to their inherent characteristics.

This leads to the following questions. (i) Is it possible to connect microscopic traffic simulation

with actual fine-grained traffic data streams received directly from traffic detectors on real urban

motorways and, so to speak, make the simulation rely more on actual data and less on domain

knowledge in terms of simulation parameters? (ii) Is there a way to calibrate such a simulation

dynamically to reflect real-time traffic changes? (iii) Can such a virtual instance (continuously

synchronized with the corresponding real urban motorway) be used to adequately capture, pre-

dict, and analyze real-time traffic behavior through simulations? (iv) If so, what advantages can

such a digital twin (DT) simulation have in VSL design and motorway traffic engineering in

general over predominant conventional offline simulations?
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In addition to the previously mentioned findings, this thesis presents three main hypotheses that

can address the gap in current research and provide answers to the aforementioned questions in

both the development and simulation verification of VSL:

• By adjusting the settings of the microscopic road traffic simulation based on the current

measurements of traffic variables, it is possible to calibrate the simulation model in real

time during its execution;

• Dynamic adaptation of speed limit zones can improve traffic flow control on motorways;

• By applying a cooperative multi-agent machine learning approach, it is possible to si-

multaneously learn the control law for variable speed limits and for the spatiotemporal

allocation of variable speed limit zones.

Therefore, this thesis focuses on the application of DT technology in microscopic traffic simu-

lations and ways in which such a model, calibrated in real time with actual traffic data, can be

used for learning and testing learning-based traffic control systems. Next, the focus is on de-

veloping a model for dynamic spatiotemporal adaptation of variable speed limit zones. Finally,

to control dynamic spatiotemporal adaptation of VSL zones, a cooperative multi-agent learn-

ing control system based on distributed reinforcement learning will be developed. Therefore, a

research perspective mainly from the fields of traffic simulation (emphasizing DT technology),

traffic control, and artificial intelligence is adopted.

The advent of widespread information technology, particularly the availability of real-time traf-

fic data, provides the foundation for supplementing predominated (offline) microscopic simula-

tion approaches with actual data to create a detailed real-time digital representation of physical

traffic. However, the use of actual traffic data in real-time motorway analysis has not yet been

explored and the applicability of real-time data in the context of microscopic simulations has yet

to be recognized. Thus, this thesis focuses on microscopic motorway simulation with real-time

data integration during system run-time. As a result, a novel paradigm in motorway traffic mod-

eling is proposed and demonstrated by using the continuously synchronized DT microscopic

simulation model of the Geneva motorway (DT-GM). The application of the microscopic sim-

ulator Simulation of Urban MObility (SUMO) [31] in modeling and simulating dynamically

synchronized digital replicas of real traffic by leveraging fine-grained actual traffic data streams

from motorway traffic counters as input to DT-GM is analyzed. Thus, the detailed methodolog-

ical process of developing DT-GM is presented, highlighting the calibration features of SUMO

that enable (dynamic) continuous calibration of running simulation scenarios. By doing so, the

actual traffic data are directly fused into the running DT-GM every minute so that DT-GM is

continuously calibrated as the physical counterpart changes.

Also, to overcome the aforementioned issues in VSL with static VSL zones, the adaptive design
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of VSL zones is desirable, especially in traffic scenarios where congestion characteristics vary

widely in space and time. Thus, even if VSL zones are determined optimally, under changing

traffic conditions VSL systems with static VSL zones may perform suboptimally. Therefore,

in this thesis, an adaptive design of VSL zones that complements the prevailing VSL systems

used so far with static zones is proposed. To confirm this hypothesis, an in-depth analysis that

includes a thorough examination of existing research on the topic of optimal locations for VSL

zones is conducted. In the second phase, an optimization process using a standard feedback

VSL controller and various predefined configurations of VSL zones to obtain an indication of

the correlation between VSL zone design and traffic performance is conducted. In addition, a

multi-criteria analysis for an optimal VSL zone that includes a finer range of VSL zone config-

urations and considers the performance of both the bottleneck and the entire network as criteria

is performed. Finally, based on the results, a model for dynamic spatiotemporal adaptation

of VSL zones is proposed. Additionally, to justify the need for adaptive VSL zones (proven

by simulation), a new conjecture as to why such an approach is worth further investigation is

theorized. In particular, the theoretical continuum assumptions about traffic flow which state

that the traffic flow property varies continuously and smoothly in space and time across the

motorway [32] are applied. Consequently, motorway capacity is assumed to be constrained as

a function of position and time. Moreover, the concept of probabilistic capacity [33] is also

discussed in this context. This implies that VSL with a static VSL zone may not be able to ac-

commodate additional traffic from time to time to relieve the bottleneck. Moreover, it can create

or speed up additional bottlenecks upstream. Therefore, it makes sense to dynamically expand

or shrink, rearrange or activate additional VSL zones to meet the current needs of spatially and

temporally constrained motorway capacity in order to adequately respond to uncertainties in

bottleneck capacity.

To address the control problem for the proposed dynamic spatiotemporal adaptation of VSL

zones, a novel distributed spatial-temporal multi-agent VSL (DWL-ST-VSL) approach capa-

ble of dynamically adapting (during the system run-time) the length and position of active VSL

zones to complement the adjustment of speed limits in current VSL control systems is proposed.

To set up multiple adjustable VSL zones and simultaneously adjust the speed limit values, the

DWL-ST-VSL controller uses a distributed W-learning (DWL) algorithm [27]. DWL has the

property of collaborative agent-based self-optimization towards the simultaneous deployment

of multiple heterogeneous policies. Each agent uses the RL technique to learn local policies,

thereby maximizing travel speed and, if necessary, eliminating congestion. In addition to local

policies, through the concept of remote policies (originally proposed in [27]), agents learn how

their actions affect their immediate neighbors and which policy or action is preferred in a given

situation. Thereby, the use of remote policies enables cooperation between agents and can be

viewed as a link between them that allows an agent to help its neighbors implement their poli-
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cies. Thus, DWL relies only on local learning and interactions. Consequently, no information

about the joint state-action space is shared between agents, which means that the complexity of

the model does not increase exponentially with the number of agents.

Therefore, this thesis has the following scientific contributions:

• It proposes a method for motorway digital twin creation with the possibility of its cali-

bration in real time for learning and testing of traffic control systems;

• Proposes a model for dynamic spatiotemporal adaptation of variable speed limit zones for

increasing operational capacity of motorways;

• Proposes a cooperative multi-agent learning control system for spatiotemporal adaptation

of variable speed limit zones based on distributed reinforcement learning.

Generally, it can be hypothesized that the cooperative learning agents may contribute to the

ability to dynamically configure VSL zones. The fact that agents can collaborate using remote

policies may result in a better response to moving congestion because they can collectively as-

semble a larger number of feasible VSL application areas. A certain number of configurations

can more appropriately respond to the current formation and expansion of the downstream bot-

tleneck. Thus, it can be anticipated that a DWL-ST-VSL system with more agents could use

its additional adaptive feature to adjust VSL zones to resolve congestion as much as possible

without suppressing the upstream traffic itself. As a result, a further reduction in the over-

all travel time of the system, and a smoother speed transition by spatially deploying multiple

VSL agents can be expected. This aligns closely with the objectives of VSL implementation,

which are to achieve harmonized traffic flow. Using an adjustable VSL application area sup-

ported by multiple dynamically configurable VSL zones reduces the need for a severe decrease

in speed limit values. Agents in upstream zones can prepare vehicles for conditions in down-

stream VSL zones by slightly decreasing speed limits. This is necessary since speed limits in

downstream zones may be lower due to the proximity of the bottleneck. Therefore, this can

help to harmonize traffic flow in order to avoid undesirable effects, such as shockwaves caused

by sudden deceleration of vehicles. Particularly, this is possible due to the fact that DWL-ST-

VSL can implement heterogeneous action sets with a different granularity of speed limits on

the observed motorway section. DWL-ST-VSL, thus, enables automatic, systematic learning

in setting up the sufficiently accurate VSL zone configuration (selection is learned rather than

manually designed) for efficient VSL operation under a fluctuating traffic load and spatiotem-

poral distribution of congestion. From a technical perspective, the physical VMS may soon

be replaced (or enhanced) by advanced technologies related to connected vehicles. Therefore,

the proposed approach has the potential to enhance existing VSLs that encompass the current

infrastructure design by addressing VSL placement constraints. It can also give forward mo-
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1. Introduction

mentum in the transition to the use of newly available technologies in the automotive industry.

For example, vehicle-to-infrastructure communications, such as an intelligent speed assistance

(ISA) system [34] can be used instead of a physical VMS which assumes that vehicles receive

speed limit information directly on the driver dashboard [35]. Therefore, this research presumes

that the static placement of physical VMSs is no longer an obstacle to the dynamic adaptation

of VSL zone configurations in real motorway applications. However, nowadays, DWL-ST-VSL

still requires closely spaced VMSs to ensure a virtual VSL zone where controllers can config-

ure various active VSL subzones and, by doing so, allow for a dynamic adaptation of the VSL

application area.

To assess the impact of deploying additional agents in the control loop and different coopera-

tion levels of the control process, DWL-ST-VSL is evaluated in configurations with two, three,

and four agents. DWL also allows for heterogeneity in agents’ policies; cooperating agents in

DWL-ST-VSL implement two speed limit sets with different granularity. Thus, an experimen-

tal approach is used to verify suggested solutions using simulation experiments. The performed

experiment gives data-based evidence about the potential usefulness of DWL-ST-VSL control

with adaptive VSL zones when deployed on longer motorway segments, particularly on a real

part of the Geneva motorway. Results and analysis provide insights into the modeling of DWL-

ST-VSL and the impact of agents’ collaboration on system performance. This is a crucial aspect

for the development of adaptive controllers in particular, but also for research investigating re-

liable and more efficient MARL-based traffic controllers.

The exploration of DT technology in transportation focuses on the design and verification of

learning-based VSL controllers, as well as its application in real-time traffic management (TM)

more broadly. DT-GM can be accurately calibrated in real time using the actual traffic data from

the motorway sensors. It, thus, provides the foundation for the further development of real-time

predictive analytics to support safety-critical decision-making in TM. Additionally, DT-GM

raises the technology dimension in motorway traffic simulation to the next level by enabling

simulation-based control optimization during system run-time that was previously unfeasible.

Simulation results provide a solid basis for the future real-time analysis of learning-based traffic

controllers on an extended Swiss motorway network. Additionally, DWL-ST-VSL is trained and

evaluated through a real field test within a virtual safe environment using the proposed DT-GM

which reflects actual traffic on the simulated motorway in Switzerland in real time.

Finally, the results obtained by DWL-ST-VSL outperform all baselines: W-learning-based VSL

and negative feedback loop-based controllers that are using static VSL zones. Thus, performed

experiments yield insights into the new concept of VSL control based on cooperative learning

agents where no central component is needed. This could serve as a trigger for further research

into the use of advanced learning-based technologies to develop a new generation of adaptive
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traffic control systems that meet the requirements of operating in a nonstationary environment.

Particularly at the forefront of emerging vehicle-to-everything communication technologies,

where vehicles are generally considered to be mobile sensors and actuators themselves. As

such, DWL-ST-VSL is envisioned as a new approach to dynamically adjusting speed limits in

space and time, anticipating the practical aspect of vehicle speed control that may be found in

the leading edge of vehicle-to-everything communication and Connected Vehicles environment

in general. The results presented are, thus, of practical relevance as they can guide motorway

engineers and authorities in the implementation of advanced VSL control strategies as well as

in optimal VSL zone design. Finally, this study provides data-based evidence for the need for

adaptive VSL zones and, therefore, may stimulate and trigger further research to systemati-

cally evaluate the theoretical findings presented so far on the optimal placement of VSL zones.

Additionally, to justify the need for adaptive VSL zones, a new conjecture as to why such an

approach is worth further investigation is proposed. To further promote the use of the developed

VSL controller and DT-GM, and to serve as a basis for further investigation by the community,

the DT-GM model and source code are publicly available.*

The remainder of this thesis is organized as follows: Chapter II discusses in detail the concept

of VSL. Chapter III describes the need for good simulation approaches, including the newly

created method for producing a digital twin of a motorway. In Chapter IV, the concept of

dynamic spatiotemporal VSL zone placement is explained. Then, Chapter V elaborates on

applying RL to create a single-agent based VSL. The details of the DWL multi-agent based VSL

are discussed in Chapter VI. The description of the final simulation set up and simulation based

evaluation of the implemented VSL controllers using the created digital twin of the Geneva

motorway is given in Chapter VII. Chapter VIII concludes this thesis and comments on further

research on the topic.

*https://github.com/kkusic/Digital_Twins_Based_Traffic_Control
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2. Variable speed limit control on motorways

Chapter 2

Variable speed limit control on motorways

VSL as a traffic-responsive control strategy increases the LoS of motorways by adjusting the

speed limit on motorway sections according to the prevailing traffic conditions. The speed

limit is posted on the VMS located on a certain section of the motorway to inform drivers of

the permitted speed. Usually, additional information, for example, warnings about the cause

of a speed limit’s setting (congestion, slippery pavement, etc.) is also presented to improve

driver compliance with the posted speed limit. Accordingly, in this chapter, the motivation for

using VSL is provided. Secondly, the concept of mainstream traffic control through VSL is

explained, including the impact of VSL on traffic flow dynamics in the context of motorway

bottleneck optimization.

2.1 Motivation for VSL

In the following section, the basic relationships between traffic flow parameters and the phe-

nomena of creating congestion on motorways are explained to justify the need for VSL and to

better understand the working principle of VSL.

2.1.1 Relationships among fundamental traffic flow parameters

For better understanding and comprehensibility of the later topics, this section presents the ba-

sic traffic flow parameters and their relationships using the Highway Capacity Manual 2010

(HCM2010) [36]. Equation (2.1) represents the basic relationship between the three traffic flow

parameters, flow rate q [veh/h/lane], speed v [km/h], and density ρ [veh/km/lane], in uninter-

rupted traffic flow. Although the equation (2.1) algebraically allows a given flow rate to occur

in an infinite number of combinations of speed and density, there are additional relationships
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2.1. Motivation for VSL

that limit the variety of traffic flow conditions that can occur at a location.

q = v ·ρ (2.1)

Figure 2.1 shows a generalized, theoretical representation of these relationships that form the

basis for capacity analysis of uninterrupted traffic flow, such as on motorways. The idealized

parabola in Figure 2.1 c) representing the flow-density function is placed directly below the

speed-density relationship Figure 2.1 a) due to their common horizontal axis, and the speed-

flow function in Figure 2.1 b) is adjacent to the speed-density relationship due to their common

vertical axis [36]. The shape of these functions is influenced by the prevailing traffic and road-

way conditions, as well as by the length of the section under study. Although the diagrams in

Figure 2.1 show continuous curves, it is unlikely that the full range of functions will occur at a

given location. Real-world data usually exhibit discontinuities, i.e., portions of the curves are

not present. The curves in Figure 2.1 illustrate several important points. A zero flow rate occurs

under two different conditions. The first is when there are no vehicles on the section - the den-

sity is zero and the flow rate is zero. The speed in this case is theoretical and would be chosen

by the first driver (presumably with a high value). This speed is represented in the diagrams by

the free-flow speed Vf . The other limiting case refers to congestion characterized by the max-

imum number of vehicles per observed motorway section (traffic density ρ jam), where speed

and traffic flow approach zero due to pronounced congestion, i.e., traffic comes to a standstill.

Between these two extreme points, the dynamics of the traffic flow cause a maximization effect.

When the traffic flow increases from zero, the density also increases because there are more

vehicles on the road. In this case, the speed decreases due to the interaction of vehicles. When

density and traffic flow rate are low and medium, the decrease is negligible. When density

increases, the generalized curves indicate that speed decreases significantly before capacity is

reached. Capacity is reached when the product of density and speed gives the maximum flow

rate. This condition is represented by the speed at capacity Vcap (often called critical speed Vcr),

the density at capacity ρcap (sometimes referred to as critical density ρcr), and the maximum

flow rate qmax. Based on Equation (2.1), the slope of any ray originating from the speed-flow

curve represents the reciprocal of the density. Similarly, a ray in the flow-density curve rep-

resents speed. Figure 2.1 shows example of the average speed at free flow and at capacity, as

well as the optimum and the congestion density. If one of the relationships shown in Figure 2.1

is known, the other two are uniquely defined. Figure 2.1 shows that any deviation of flow rate

from capacity can occur under two conditions: low density and high speed, and high density and

low speed. The side of the curves with high density and low speed represents an oversaturated

or congested traffic flow. In such conditions, sudden changes in traffic, i.e., in speed, density,

and traffic flow rate may occur. In contrast, the undersaturated traffic is characterized by the
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2. Variable speed limit control on motorways

low density and high speed part of the curves [36].

Figure 2.1: Fundamental diagrams of functional dependencies between flow rate, traffic
density, and speed [36]

2.1.2 Traffic flow and motorway capacity

According to HCM2010 [36], the capacity of a motorway segment is the maximum sustainable

hourly flow rate at which vehicles can be expected to pass through a point or uniform section of

a road or lane during a specified period of time under a prevailing road, environmental, traffic,

and control conditions. This means that there is no interference from downstream traffic, such

as congestion backing up to the analysis point. Any change in prevailing conditions will alter

the capacity of a motorway section. A reasonable expectation is the basis for defining capacity.

That is, the stated capacity for a given motorway segment is a flow rate that can be achieved

repeatedly during peak periods of sufficient demand. Therefore, capacity is not the absolute

maximum flow rate observed on such a motorway section. The absolute maximum flow rate

may vary depending on the day and place.

An important characteristic of the flow capacity on motorways is its spatiotemporal variation

(see [37]). Flow capacities should not be considered only as infrastructure-dependent, constant

values. Instead, flow capacities on motorways can vary depending on prevailing environmen-

tal conditions such as visibility, lighting, pavement conditions, and driver and/or vehicle type
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2.1. Motivation for VSL

characteristics, e.g., drivers who are familiar with the motorway system in the area and those

less familiar, the proportion of heavy vehicles and passenger cars in traffic stream, etc. How-

ever, even under similar environmental conditions, the traffic flow value at which the first traffic

breakdown (transition from uncongested to congested state) occurs can vary up to 10% from

day to day, as found in [33]. It has been shown that breakdown does not necessarily occur at

maximum flow but it can occur at a flow lower or higher than that which is traditionally as-

sumed as capacity. The same study proposed the so-called probabilistic capacity model, which

states that traffic breakdown is not a deterministic event, but that its probability increases along

with the flow volume. Thus, the breakdown is defined not only by the numerical value of the

flow rate but also by the probability of the motorway traffic to break down at that specific value.

Accordingly, motorway capacity has nondeterministic properties.

For the purposes of this thesis, the term operational capacity is introduced to emphasize that

the capacity on the motorway section where VSL is used is determined not only by the above-

mentioned factors but also directly by VSL operation. Further on in this context, the text will

elaborate on how the operational capacity can be improved under various traffic conditions.

This will be achieved by selecting appropriate speed limits and the strategic placement of VSL

zones, utilizing the proposed DWL-ST-VSL concept.

2.1.3 Creation of congestion on motorways

Bottlenecks emerge on motorway sections that have present changes in geometry, such as on-

ramps, off-ramps, lane drops, grades, curvatures, tunnels, etc. Bottlenecks can also be caused by

regulatory measures such as fixed speed limits or unpredictable events such as traffic accidents.

As shown in [38], a bottleneck is a location on the motorway where the flow capacity qup
cap

upstream is higher than the flow capacity qdown
cap downstream (see Figure 2.2). The nominal

bottleneck capacity qdown
cap is the maximum traffic flow rate that can be maintained if the traffic

flow qin arriving from upstream happens to be equal to (or controlled by) qdown
cap . On the other

hand, if the traffic flow qin is higher than qdown
cap , the bottleneck is activated and traffic breakdown

(congestion) occurs. The congestion head is located at the bottleneck, while the congestion tail

is moving upstream, as long as the incoming upstream traffic flow qin is higher than qdown
cap [38].
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2. Variable speed limit control on motorways

Figure 2.2: VSL concept for mainstream traffic control on motorway [37]

The congestion forming at an active bottleneck has damaging effects on the motorway capac-

ity and throughput. Bottleneck activation leads to speed reduction upstream of the bottleneck

location. As a consequence, vehicles need to accelerate (after leaving the congested area) down-

stream of the bottleneck. This is deemed to lead to a capacity drop phenomenon [39] measured

at the congestion head (Figure 2.2). An active bottleneck outflow can be, thus, reduced up to

20% compared to the nominal downstream capacity qdown
cap [38]. This is illustrated in the empir-

ical flow-density fundamental diagram in Figure 2.3, where two different flows can be observed

for the same so-called critical density (ρcr). The maximum value (horizontal line) represents

the capacity flow, while the reduced flow represents the capacity drop.

Figure 2.3: Flow-density fundamental diagram with capacity drop at critical density ρcr [40]

If the increasing congestion spreads upstream and affects, for example, an off-ramp (see Fig-

ure 2.2), vehicles trying to exit the motorway before the bottleneck will also face delays. This

is known as the blocking of off-ramps effect [38]. Of course, if an upstream on-ramp is af-

fected instead of the off-ramp, the limited nominal storage capacity of an on-ramp will cause a

spillback effect onto the local road network.
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2.2. Effect of VSL on motorway traffic flow

2.1.4 Concept of mainstream traffic flow control

The task of MTFC at a selected location (usually upstream of the bottleneck) is to adopt the

speed limit values specified by an appropriate control strategy to ensure optimal traffic condi-

tions in terms of maximum sustainable throughput (capacity flow) for any traffic demand that

occurs. A local aspect of this idea is described in [38] and shown in Figure 2.4. The bottleneck

of Figure 2.4 would not be activated (no need for MTFC) as long as qin < qdown
cap , in which case

qout ≈ qin. When qin becomes larger than the capacity of the bottleneck qdown
cap , the bottleneck

would be activated without control, as in Figure 2.2, and qout would be reduced due to the

capacity drop. On the other hand, MTFC can implement a controlled outflow qc equal to the ca-

pacity of the bottleneck (or correspondingly less if the bottleneck is due to a merging on-ramp).

Clearly, the mainstream congestion cannot be avoided by MTFC because qin > qdown
cap , but it can

be diminished. Otherwise, if qin < qdown
cap , MTFC is not needed.

Figure 2.4: VSL concept for mainstream traffic control on motorway [37]

The congestion outflow is higher in the MTFC case than in the no-control case because the

capacity drop is avoided. For the same reason (higher outflow with MTFC), the resulting con-

gestion in the MTFC case has a higher internal speed and is shorter in space and time than in the

no-control case. Thus, MTFC results in less blockage of upstream traffic, potentially mitigating

the negative impact on upstream infrastructure capacity.

2.2 Effect of VSL on motorway traffic flow

VSL is one of the ITS traffic control services that can be used to increase motorway efficiency

and LoS in areas with frequently recurring bottlenecks [28]. The effects of VSL on traffic flow

were studied in [4, 6, 41]. VSL control measures were first used to improve motorway traffic

safety by harmonizing traffic [2, 42, 43]. Additionally, VSL was also examined in the context

of improving motorway throughput.
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2.2.1 Speed harmonization effect and traffic safety

The use of the VSL strategy to harmonize traffic flow is based on the assumption that lower

speed limits reduce spatial variations in speed differences between vehicles and differences in

average speed between lanes (homogenization of speed) [4]. Accordingly, in such a traffic

flow, vehicles travel more uniformly, i.e., there is less variation in distance and speed between

them. The temporal distance (known as headway) is generally shorter, which means higher

throughput. Therefore, the speed limits are set around the critical speed Vcr, which provides

ideal conditions for traffic flow regarding throughput, where the maximum sustainable through-

put, equal to the motorway section’s capacity, is guaranteed for given prevailing conditions.

As shown in [44], the speed limit is among multiple dependent factors that impact the level of

vehicle crash risk on motorways. Mainly, reduced traffic flow speed variance solves both the

road safety level and the risk of capacity drop [2].

2.2.2 Impact of VSL on exhaust emissions and energy consumption

Reducing the speed limit by applying VSL has the effect of decreasing the average speed of

vehicles in traffic flow and, consequently, decreasing the resistance to the movement of the ve-

hicles (the most important is air resistance, which is proportional to the square of the speed).

This reduces the fuel consumption (energy in general) required to overcome the resistance of

the vehicle’s motion, and, thus, reduces harmful exhaust emissions [45]. For example, in pa-

per [46], analyzes have shown that it is possible to reduce emissions by 5−7% by applying

VSL. If the potential impact of preventing traffic congestion through the application of VSL

and, thus, avoiding stop-and-go actions is taken into account, the savings could be much higher.

For example, it is shown in [47] that by the use of VSL, more stable traffic speeds during con-

gested periods can be achieved (avoiding stop-and-go oscillations), thus, significant emission

and fuel consumption reductions could be achieved, noting that the reduction potential per ve-

hicle kilometer during congested periods is at least 40% higher than in free-flow traffic.

2.2.3 Impact on motorway throughput

The second useful effect of the VSL application is seen in the possibility of regulating the flow

rate by the use of VSL. Thus, the goal of VSL is to reduce the inflow into the downstream

bottleneck to eliminate or prevent bottleneck activation, thereby eliminating the determinantal

capacity drop effect.
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2.2. Effect of VSL on motorway traffic flow

Impact on undersaturated flow

As shown in [4] and originally justified in [48], VSL application in case of traffic characterized

as free-flow (undercritical density ρ < ρcr), mainly serves the same flow at lower speed and

higher density. However, some countries have good experience with lowering the speed limit to

stabilize (harmonize) traffic flow. By doing so, the capacity can increase up to 10% if the speed

limit is reduced from free-flow speed to approximately 80 [km/h]. In Germany and England, for

example, speed is reduced by about 20 [km/h] at a saturation value of 0.7 to harmonize traffic

flow before traffic density increases too much [2]. When VSL is applied to free-flow traffic

(characteristics of traffic far from saturation), vehicles take more time to travel a given distance

at a lower speed, thus, travel time is generally increased. Nevertheless, something interesting

happens with the traffic flow rate. VSL temporarily decreases the mainstream flow measured at

the end of the VSL application area. The temporary decrease in traffic flow (see Figure 2.5c) is

due to the fact that the traffic density under the VSL application is higher than in the original no-

VSL case (Figure 2.5a). Therefore, the traffic flow is temporarily reduced during the transition

to reach the higher traffic density of the VSL condition. Once the higher density is reached, the

effect of the temporary reduction in traffic flow disappears (Figure 2.5d). To clarify slightly, the

traffic density in Figure 2.5 is represented by dots, where one dot represents one vehicle.
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Figure 2.5: Temporary reduction of traffic flow due to the transition of density (from a low
value to a higher one) in the VSL application area

Impact on oversaturated flow

When the traffic flow density reaches values above the critical density (overcritical density

ρ > ρcr), the traffic flow becomes unstable (the right side of the fundamental diagram, Fig-

ure 2.3). In the case of unstable traffic flow, the interactions between vehicles are more pro-

nounced. The resulting disruption of the traffic flow (e.g., due to the braking of one vehicle in
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a queue) quickly spreads to other vehicles nearby (moving traffic congestion known as a shock

wave [49]), triggering a chain reaction that can lead to a complete traffic breakdown on the

motorway. Complementing the previous findings, more detailed studies on the effects of VSL

control systems on unstable traffic flow are summarized in the works [4, 50].

In the simplified triangular version of the fundamental diagram (Figure 2.6), the speed limits are

associated with the slope of the line starting from the origin. For a given slope corresponding

to the speed limit (tan(θ) = v), the point of intersection of the line with the triangle is defined.

This point represents the theoretical flow rate expected at a given speed limit. From [51] it

appears that the critical density threshold ρcr in the fundamental diagram shifts to a higher

value (ρcr → ρ2) under the effect of the new speed limit v2, where v2 < vcr.

Figure 2.6: Impact of a new imposed speed limit v2 on simplified flow-density triangular
fundamental diagram [28]

By shifting the critical density point, it is possible to accommodate more vehicles on the same

length of the motorway section without causing the traffic flow to become unstable. This effect

has been confirmed in research [4] and is attributed to the aforementioned effect of homoge-

nization of speed. Accordingly, the new flow rate q2 is set lower than the capacity flow rate qcap.

It is expected that vehicles entering the VSL application area will also encounter the prevailing

VSL operating conditions, i.e., they will adjust their speed to heavier traffic, resulting in slight

changes in traffic flow known as traffic waves. Such a wave propagates upstream at speed w

relative to the road (this is the reason for the negative sign in front of w) and has a magnitude

equal to the slope tan(φ).

Regarding the capacity increase of the motorway section, the research results are insufficient, as

the capacity is slightly increased at certain locations of European motorways. At other locations,

no capacity increase was observed, regardless of the set amount of VSL.

But whether capacity is slightly increased or not, it has been shown that sufficiently low values

of the speed limit lead to a reduction in capacity in the fundamental diagram (Figure 2.6). Thus,

if the traffic volume upstream of the VSL qin (incoming traffic flow in the VSL application area)
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is greater than the capacity created by the VSL (operating area of the VSL), then the VSL area

becomes an active controllable bottleneck whose outflow qV SL is defined by the amount of the

VSL, i.e., the capacity of the artificially created bottleneck. Accordingly, different speed limits

lead to different reductions in traffic flow. The effects of speed limits on traffic flow are shown

in Figure 2.7, where the speed limit value b is given as the ratio between the speed limit and the

nominal speed.

Figure 2.7: Fundamental diagram for different VSL rates [38]

Thus, the incoming flow qin, whose volume is larger than the capacity created by VSL, can be

permanently reduced to qV SL. Such a reduced flow remains permanent even after the transition

period illustrated in Figure 2.5. An artificially created controllable bottleneck on the motorway

section upstream of the actual bottleneck (congestion) enables the preventive effect of VSL

regulation by limiting the flow rate into the congested area to the approximate value of the bot-

tleneck’s capacity (qV SL ≈ qdown
cap ). In this way, an attempt is made to relieve the overloaded

region and, thus, prevent an additional capacity drop at the bottleneck area. With such a main-

stream flow control, maximum throughput at the bottleneck is achieved given the current traffic

condition (Figure 2.8). The control logic of the VSL controller for bottleneck optimization uti-

lizes this fact, and research related to the application of different strategies to control the traffic

exiting the VSL application area (qV SL) aligns with this objective, with the goal of achieving the

highest possible operational throughput on critical motorway sections. It is also worth noting

that vehicles leaving the VSL application area at relatively high speeds (e.g., when the speed

limit cannot fall below 60 km/h) may accelerate and exceed vcr if the distance between the

end of VSL application area and the bottleneck is too long. Therefore, to allow efficient traffic

flow through the bottleneck, it is also advisable to set an appropriate speed limit on VMS3 for

vehicles entering the acceleration area (see Figure 2.8). More on this can be found, for exam-

ple, in [38]. On the other hand, one must ensure the appropriate distance between the end of

the VSL application area and the bottleneck so that vehicles can enter the bottleneck at vcr to

ensure maximum throughput throughout the bottleneck.
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Figure 2.8: Application of VSL to increase throughput in areas with bottlenecks

In general, the previously described effects of VSL on free flow (temporary reduction of vehicle

flow) or congested traffic flow (permanent reduction of vehicle flow) cannot be related to a spe-

cific value of the speed limit, since the occurrence of the mentioned effects is also influenced by

the amount of traffic flow (qin) entering the controllable motorway area. A temporary reduction

in traffic flow is specific to higher speed limits and lower traffic loads, and the occurrence of a

permanent reduction in traffic flow is specific to lower speed limits with higher traffic loads [38].

2.3 VSL control strategies

To ensure an efficient MTFC, a traffic-responsive control logic for computing speed limit values

must be defined. Over the years, various VSL control approaches have been proposed based on

different system configurations and methodologies, e.g., optimal control, model predictive con-

trol, feedback control, shock wave theory [28, 52], and researchers have recently focused on the

development of learning-based VSL controllers [11]. Therefore, classical control approaches

based on control theory are further reviewed and recent work on the application of intelligent

learning-based agents, focusing on RL techniques, is presented.

2.3.1 Classical VSL controllers

The most prominent VSL design (among classical controllers) uses a negative feedback loop.

Feedback-based VSL controllers base their speed limit changes as reactive responses (correc-

tive behavior) to the deviation of the controlled process variable (e.g., traffic density) from

the reference (e.g., predefined desired density value in the bottleneck) [38] (see Figure 2.9).

Feedback-based VSL can be extended by model predictive control and can work in a coordi-

nated fashion in the case of multiple consecutive VSL application zones to address the shortage

of delayed responses. However, model predictive control generally does not guarantee the sta-

bility of the control loop and is much more computationally intensive [13] since it requires an
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accurate model (e.g., either in the form of equations or simulation) of the controlled process.
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Figure 2.9: Feedback VSL control scheme

A local feedback-based VSL controller (FB-VSL) is, thus, a simple yet efficient MTFC strat-

egy that is directly suitable for possible implementation in practice [38]. Because it is traffic-

responsive, it is robust to changes in actual traffic conditions. However, such controllers are

linearized and tuned to a specific operating range, and, thus, are not adaptive. Due to the non-

linearity of the system, e.g., if traffic patterns and traffic load change significantly, the state of

the system may exceed the operating state space of FB-VSL, and, consequently, the controller

may not be able to achieve the desired system state in a timely manner. Therefore, VSL could

operate suboptimally [20]. However, this can be partially overcome by linearizing the model

around several operating points. A linear controller can be developed for each of these operat-

ing points, and control gains can be tuned from one region to the next (an approach known as

gain scheduling) [13, 28].

2.3.2 Learning-based VSL controllers

Over the last few years, there has been a renewed interest in improving VSL optimization

through control concepts based on RL [19, 20, 21, 24, 53]. In [20], it is shown that RL-VSL

can yield better results when applied to system travel time optimization in the case of recurrent

motorway congestion as compared to a two-loop feedback cascade VSL control structure. The

results reported that the feedback-based VSL controller could lead to a delayed response to the

fluctuating traffic load when controlling the bottleneck density. On the contrary, the RL-VSL

can learn traffic patterns that trigger the activation of a bottleneck through the learning process.

Hence, in some cases, RL-VSL can anticipate bottleneck activation and respond proactively.

In [21], the control policy of RL-VSL was further improved by enriching the agent’s state

variables with predictive information about the expected traffic state by forecasting the speed

and density of the controlled simulated motorway segment with the help of running parallel
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simulations. RL can be integrated with function approximation techniques (linear or nonlin-

ear). Approximations address the large dimensionality problem of storing state-action values

in the computer’s memory [18] and enable the computer to work with continuous state/action

variables, which, in the end, plagues many real systems with a large solution space, such as

RL-VSL [24, 53]. Nonlinear function approximation techniques may improve control if the un-

derlying controlled process is nonlinear and nonstationary, as is the case with motorway traffic

flow control [21, 54].

In [25], a multi-agent VSL with two objectives was tested. Flow control policy aims to increase

throughput in the bottleneck, while traffic safety policy aims to reduce the speed difference

between adjacent controlled motorway segments. Each policy was learned and evaluated sep-

arately. According to the defined objective, VSL agents have to learn an optimal joint strategy

(policy) using distributed Q-learning. The results indicated an improvement in vehicle stops

and total travel time compared to the no-control case. Similarly, in [22], a Q-learning based

coordinated hard shoulder control strategy and VSL were introduced.

Accordingly, in chapter 6 of this thesis, the RL-VSL approach introduced in chapter 5 is ex-

tended in a multi-agent structure. Using the W-learning (WL) algorithm [55], two RL-VSL

agents learn to jointly control two motorway segments in front of a congestion area. WL gave

better results in tested traffic scenarios, including dynamic and static traffic loads, and proved

suitable as a multi-policy optimization technique in VSL when used for noncooperating agents.

Several manually configured WL-VSL configurations were also analyzed, including different

VSL zone lengths and their distances relative to the bottleneck area. The results confirmed that

changes in VSL zone configurations affect the traffic flow control process differently. These

results are consistent with the findings of other researchers regarding the optimal location and

length of the VSL application area [28, 29].

Thereby, one can hypothesize whether VSL performance under such conditions could be im-

proved by having the VSL controller dynamically adjust the length and location of the VSL

zone (adjustable VSL application area, similar to the concept of the dynamic control cycle in

VSL suggested in [56]) in response to changing congestion rather than using static VSL zones.

In chapters 6 and 7, this hypothesis is confirmed experimentally for a two, three, and four-agent

system configuration using realistic microscopic traffic simulations generated by DT-GM. Es-

pecially for spatially and temporally varying traffic congestion, dynamic VSL zone allocation

proved to be advantageous over static VSL zones (fixed length and location). The appropriate

adaptive VSL zone configurations were learned using DWL-ST-VSL without the need for a

manual setup. Furthermore, the results demonstrate the necessity of a collaborative multi-agent

approach in VSL systems that can implement heterogeneous policies and action spaces, which

enables the implementation of the concept of adaptive VSL zones on a long motorway segment.
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2. Variable speed limit control on motorways

2.4 Aspects of VLS design

The value of the speed limit and the proper placement of the VMS prior to the occurrence of

congestion, i.e., the location of the VSL zone, are key factors in VSL performance. Therefore,

continuing with this theme, an overview of the current findings on the design of VSL zones is

provided.

2.4.1 Spatial aspects of VSL design

Theoretical aspect of VSL zone positioning

Pioneers in defining important theoretical assumptions regarding VSL zone setup are the fol-

lowing works [37, 57]. These researchers introduced the concept of VSL application area and

vehicle acceleration area. The former, of course, refers to the area where a speed limit is im-

posed, while the acceleration area is defined as the distance between the end of the VSL appli-

cation area and the bottleneck. This results in two kinds of degrees of freedom with respect to

the placement of the VSL zone. In principle, the use of an acceleration zone makes sense when

MTFC is used as a control measure to reduce traffic flow, which means lower speed limits of up

to 40 [km/h] or even less. Thus, after VSL is applied, it makes sense to provide additional space

for vehicles to accelerate back to vcr before entering the bottleneck for which capacity flow is

reached [38].

Recent research [28, 29, 58] has reignited the question of the VSL zone’s optimal location.

In [28], a simulation approach is used to determine the optimal location and length of the VSL

application area with respect to its distance from the bottleneck. The stepwise variation of the

length of the VSL application area and the acceleration area is used to show the dependence

between the lengths and the system travel time, measured in total time spent (TTS). TTS is

the number of vehicle hours, representing the amount of time vehicles spend on the observed

motorway [21]. The analysis shows the existence of a mostly linear correlation in the varia-

tion of VSL application area, while a non-linear correlation is present in the variation of the

acceleration area and measured TTS (see Figure 2.10).

Despite the fact that optimal points were found for both distances, they are determined sepa-

rately. It is more likely that, for example, a multi-criteria analysis involving both parameters

simultaneously could be useful to find the joint sweet point.
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Figure 2.10: Variation of TTS with the length of (a) application and (b) acceleration areas [28]

In [58], the effect of MTFC locations (through the use of green-red light signals) is proposed

to achieve efficient merging of vehicles entering the work zone bottleneck (lane reduction). In

particular, the study [58] quantifies travel time savings (by avoiding the capacity drop) as a

function of the MTFC location. The key findings state that traffic lights located too close to

the bottleneck do not allow vehicles to accelerate sufficiently and, consequently, travel delay

increases. Therefore, traffic lights should be placed far upstream of the work zone to allow

vehicles to accelerate and pass through the merge area at higher speeds. It is also shown that,

for a given range of distances, there is no advantage to moving the proposed MTFC further

upstream from the bottleneck. Thus, the presented results are similar to the results published

in [28], which indicates the need for an acceleration area.

The recent results of [29] provide new insights into the optimal placement of the VSL appli-

cation area compared to previous findings and are confirmed analytically. It is shown that the

general assumption that the lower the speed limits, the larger the distance between the VSL

application area and the bottleneck (to enable vehicles to reach vcr before entering a bottleneck)

is not always the case. Instead, the results indicate that at a higher value of the speed limit, the

distance between the VSL zone and the bottleneck should be larger. Although the analytical

study presented is quite comprehensive and complete, it was conducted using the Lighthill-

Whitham-Richards (LWR) traffic model with bounded acceleration (BA-LWR) and, therefore,
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may lack accurate modeling of specific traffic phenomena due to LWR inherent characteris-

tics. The LWR model is based on the first-order fluid approximation of traffic flow dynamics

proposed by Lighthill and Whitham [32] and Richards [59]. LWR in general provides a rough

description of traffic behavior for a single one-way road using three variables that vary in time

and space: flow, density, and speed. Other shortcomings of the LWR theory are that it does not

properly describe platoon diffusion, a phenomenon that occurs over long distances in case of

low traffic volume. Conversely, it cannot explain the instability of heavy traffic, which exhibits

oscillatory phenomena observable at the minute resolution scale. Moreover, since the theory

behind it is based on fluid and gas theory, LWR does not account for the anisotropic property

of vehicles [60]. In fluid mechanics, for example, a particle (or molecule) feels all the forces

acting on it equally, regardless of their direction (the pressure exerted by neighboring particles).

On the other hand, in road traffic, drivers mostly take into account the traffic in front of them

(less lateral traffic and traffic behind them). Accordingly, the physical property of vehicle dy-

namics has different values, i.e. it senses front, lateral and rear traffic differently, which LWR

does not take into account. For numerical verification, the authors also used traffic data at a lane

drop bottleneck on a Toronto motorway from 1988. These data appear to be quite old, as the

dynamics of today’s vehicles can vary widely compared to those from the 80s, which can affect

flow characteristics near the bottleneck, where deceleration and acceleration rates are critical

variables in the used BA-LWR model. Therefore, some conclusions described in [29] may in-

volve the incomplete effect of VSL on traffic behavior, and it would therefore be appropriate to

investigate the presented finding in more detail using the microscopic traffic models with a bet-

ter representation of vehicle flow dynamics to strengthen the levels of confidence in the results

and conclusions.

Practical implication in modeling spatial VSL

In [61], the authors point out the problem of the optimal VSL zone design for the optimization

of the bottleneck. Therefore, they propose three VSL zones: the critical VSL zone for regulating

the discharge section flow to match the bottleneck’s capacity, the VSL zone for the potentially

congested area (mainstream storage in case congestion propagates upstream), and the VSL zone

upstream of the congestion tail. The analysis performed in [62] suggested a VSL control model

that is able to determine whether the specific location on the motorway section is congested or

not based on predefined thresholds (density, speed, and acceleration), and using this information

the starting point of VSL zone is determined. In [63], the bilevel programming model is used

to find the most appropriate speed limits and corresponding locations of VMSs in VSL control.

The first objective of the bilevel programming model was to optimize the number of VMSs and

speed limits by creating a model to minimize the overall accident rate in areas of the motorway

work zone. The second objective was modeled to optimize VMSs locations by solving the
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improved maximum information benefit model. The results presented confirm that appropriate

speed limits and proper VMSs placement can reduce the average queue length, total delay, and

total frequency of vehicle stops in motorway work zones which ultimately reduces the vehicle

crash risk.

Although the results of the above-mentioned analyses point to a possible direction for address-

ing optimal VSL zone placement, in general, the results and findings indicate that there is no

absolute guideline for where the VSL zone should be placed for optimal performance. Instead,

it appears that the near-optimal placement of VSL zones depends on the location and intensity

of congestion and the speed limit values range used for MTFC.

Given that the congestion characteristic varies in time and space due to stochastic traffic be-

havior, one can try to experimentally confirm the usefulness of the DWL-ST-VSL concept of

dynamic VSL zone allocation for speed limit control. It is also worth demonstrating that the

DWL-ST-VSL agents and the motorway system could benefit from their cooperation in select-

ing appropriate actions, not only for their own policies but also for the policies of the surround-

ing agents they affect.

Therefore, in chapters 6 and 7, a simulation proof is provided of the extended concept of DWL-

ST-VSL and its applicability to speed limit control on a longer motorway segment along with

adaptive VSL zones, which is more in line with what is required in the real world in order

to achieve harmonized traffic flow control. The analysis gives detailed insight into the steps

of modeling DWL-ST-VSL and provides some interesting information on the pros and cons

of the proposed learning-based multi-agent VSL controller. These are the primary research

motivators for implementing the DWL-ST-VSL strategy that learns appropriate speed limits

and spatiotemporal VSL zone adaptation in an automated manner using the DWL algorithm.

The proposed DWL-ST-VSL is trained and evaluated on the synthetic simulation model as well

as on the proposed DT-GM that is discussed in more detail in chapter 3.

2.4.2 Temporal aspect of VSL design

In addition to appropriate speed limits, it is important to ensure the timely application of speed

limits in response to a change in traffic conditions to achieve MTFC or traffic harmonization.

This is ensured by the timely detection of traffic changes, or even their anticipation, and appro-

priate VSL control responses. However, most VSL control approaches use fixed (best found)

control cycles for computing decisions. Considering that the duration of traffic congestion may

vary, such an approach may not be the best.

Accordingly, a dynamic control cycle was proposed in [56] to calculate the optimal duration

of control cycles in VSL. It has been shown that the dynamic control cycles perform better
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than the fixed cycles. With the proposed strategy, the duration of each control cycle can be

adjusted considering the current traffic condition and speed limits, so that the VSL can respond

appropriately to time-varying traffic conditions, which makes the performance of the VSL more

robust in a nonstationary environment such as motorways.

2.4.3 Additional information on VMS

Even in the case of a perfect VSL design, its efficiency is affected by the compliance rate of

drivers. To ensure a higher compliance rate, it is worthwhile to give additional information next

to the speed limits displayed on VMS, in particular, a brief explanation of why a certain speed

limit is applied. Otherwise, drivers may not take the speed limits seriously. Research in [64]

suggests that understanding time is low when there are fewer units of information on a VMS.

However, too little information may be unclear or ambiguous, while too much information may

be difficult to understand and cause further driver slowdown. Moreover, it has been shown that

drivers easily understand and therefore comply with VSL recommended speed limits in bad

weather, but it is more difficult to understand speed limits when they are used solely to increase

throughput. For example, in Croatia, when VSL is active in sunny weather without incidents,

most drivers think that the VSL system is malfunctioning [65], and, thus, drivers do not obey

the recommended speed limits.

Based on [66], one of the main variables affecting the probability of speed compliance at a given

speed limit is the driver’s understanding of the VSL system, with education being the second

factor that has a positive effect on speed compliance. Driving schools need to provide quality

driver education that also takes into account all traffic situations and conditions on motorways

where VSL is used, as well as the need to comply with recommended speed limits to ensure

a more efficient VSL system. Thus, education is also connected with the ability to understand

how VSL work. For example, if road operators were to invest in testing and marketing VSL

systems, it could have a statistically significant impact on speed limit compliance, and, thus,

VSL performance.

2.5 Concluding remarks

Due to the non-linear nature of the traffic flow, this chapter summarizes some important findings

which draw several questions that will be connected with the research described in chapter 4.

First, the basic concept of the VSL application is to homogenize vehicle speeds in traffic flow,

thereby VSL:

• increases road safety operation level;
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• reduces the risk of capacity drop (particularly in the bottleneck);

• can increase the operational capacity when the speed limit is reduced from free-flow speed

(nominal speed limit) in uncongested traffic (saturation value ≈ 0.7).

Second, in optimizing the bottlenecks, VSL aims to eliminate or prevent bottleneck activation,

thereby eliminating the negative capacity drop effect, thus, ensuring a higher throughput (up to

20 %). This is achieved through a fundamental principle of VSL to reduce the flow rate from

the VSL application in order to relieve the bottleneck. Basically, two kinds of flow reduction

can be achieved by VSL:

• a temporary reduction in traffic flow is specific to higher speed limits and lower traffic

loads;

• a permanent reduction in traffic flow is specific to lower speed limits deployed in higher

traffic loads.

To ensure adequate traffic-responsive MTFC, a VSL controller is needed. It turns out that

among the controller logic, some other parameters are also important for adequate VSL system

design and driver compliance rate:

• the traffic-responsive VSL controller logic;

• the duration of the control cycle and the speed limit values;

• the lengths of both the VSL application area and the acceleration area in relation to the

bottleneck’s location;

• optional: speed limit for acceleration area;

• the additional units of information on VMS.

Finally, an important fact regarding motorway operation is the uncertain flow capacity, which

states that traffic breakdown is not a deterministic event, but that its probability increases along

with the flow rate (i.e., the flow capacity is defined by the numerical value of the flow rate but

also by the probability of traffic breakdown). Thus, capacity is a function of several variables:

• geometry of the motorway;

• environmental variables like visibility, weather conditions, etc.;

• driver’s behavior characteristics and vehicle attributes;

• as a function of traffic load itself.

Additional questions might be of interest for VSL design comprising traffic flow and motorway

capacity characteristics:
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• Is there a relationship between the optimal deployment of VSL zones that comprises both,

the probabilistic spatiotemporal constraint on motorway capacity qcap(x, t) upstream of

the bottleneck, and also the bottleneck capacity qdown
cap (t) (assuming fixed bottleneck loca-

tion)?

• Is it possible to prolong the effect of temporary flow reduction in undersaturated flow

conditions, e.g., by dynamically reallocating VSL zones?

To the best of the author’s knowledge, for example, the probabilistic spatiotemporal constraint

on motorway capacity has not been considered so far in the context of optimal VSL zone place-

ment and may contribute to a better understanding of the current results as well as provide new

insight into the need for dynamic expansion (or contraction) and reallocation of VSL zones dur-

ing VSL operation for a more efficient VSL. Therefore, this and particularly the phenomenon

of temporary flow reduction, along with the fact that motorway capacity varies in position and

time, are further elaborated in chapter 4 in the context of deriving the dynamic adaptive VSL

zones model.
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Chapter 3

Digital twin technology on motorways

As pointed out in the first chapter, one of the goals of this thesis is to define a simulation frame-

work for learning traffic controllers that reproduces accurately actual traffic dynamics (in near

real time) for the controller’s training and evaluation process. For this reason, in this chapter,

the concept of digital twin technology for microscopic simulation modeling of motorway traffic

is proposed.

For complex stochastic systems, the corresponding dynamic model may be overly challenging

to obtain in a closed form. In such cases, acquiring an exact mathematical model requires

simplified assumptions about the system and, therefore, results in an approximate closed-form

model. The simplifications often make them too simplistic for real-world usage. One way

to create useful models for large and complex systems is to utilize a computer program (a

simulation model) that mimics the behavior of the system. Such a model achieves its goal of

predicting and simulating system behavior by generating pseudo-random numbers (adequately

approximated random by distributions) for the governing random variables of the system [18].

The use of simulation models in traffic processes is various. Traffic simulations are often im-

plemented because conducting experiments on a real system is not feasible due to cost, safety

impossibility, or other constraints. This is especially the case when experiments on the real sys-

tem are dangerous or may result in significant degradation of system performance. Therefore,

when developing new traffic control systems, their simulation-based evaluation is important

before they are used to control a real process [28]. It is crucial to use a simulation model

that accurately reflects the behavior of the real system. Thus, it is an advantage if the simu-

lation model can be logically manipulated to answer questions about how the physical system

will behave under the use of control systems and what benefits it will provide. To accomplish

this, an accurate traffic simulation must be modeled that can precisely simulate various traffic

scenarios that may occur in the real system. Especially those that are meant to be managed
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by a controller. These scenarios, which can be associated with an operational domain of the

controller, are then used to train/tune and evaluate the control system. In traffic processes, sce-

narios of interest are, for example, those related to rush hours, when traffic volume exceeds

available road capacity and congestion occurs. In such a traffic regime, additional traffic control

strategies are required to maintain a stable traffic flow. However, for adaptive learning-based

controllers, other scenarios (one that might occur before and after rush hours) must also be pre-

sented during the training phase. Thus, it is important to provide a wide spectrum of training

examples so that learning controllers can ensure good generalization over the remaining traffic

states. Conventional (offline) simulation approaches, however, use historical aggregated traffic

data (or artificially created data) for creating simulation scenarios representing only a few se-

lected scenarios. In general, such models are inadequate to reflect unexpected events that are

likely to occur in reality and cannot be captured by offline simulated results due to their inherent

stochastic characteristics.

Therefore, the use of actual, fine-grained traffic data received directly from traffic detectors as

input to the running simulation enables the capture, prediction, and analysis of such micro-level

traffic events that can only be adequately captured with a fine-resolution sampling rate. This

is of utmost importance for real-time traffic control when learning-based traffic controllers are

meant to be used. Accordingly, a new approach to creating relevant DT-based microscopic sim-

ulation models synchronized in real-time with their physical motorway counterparts is needed

to evaluate adaptive control systems, which is elaborated in the following paragraphs.

3.1 Current approaches to traffic simulation

Created control strategies and their impact on traffic can be analyzed in various traffic sim-

ulators with numerous simulation models at the microscopic, mesoscopic, and macroscopic

levels [30]. Despite their widespread use, up to this day, traffic simulations have mainly been

used for (offline) verification, validation, and optimization of proposed traffic control solutions

and transport system design in the early planning phase. Such an approach enables traffic safety

analysis and control strategies design in their early planning phase. However, it is necessary

to gain confidence in the control system’s performance in unforeseen (unexpected) traffic situ-

ations as well. Having a control strategy that performs well in all relevant traffic states (gen-

eralization) is often more important than superior performance in some states. Especially in

the case of learning-based controllers. But in general, this is hard to achieve in a stochastic

dynamic system (like a motorway with its corresponding complex, non-linear traffic flow dy-

namics) in which the process state changes randomly. Traffic control systems must, therefore,

adapt to a traffic demand that varies significantly in time and space. Real-time tuning of such

systems becomes infeasible for a human operator, and prevailing offline simulation approaches
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appear to be inadequate, making new technological support, particularly in the domain of traffic

simulations, essential.

However, it has been demonstrated that microscopic simulation models provide a high level of

detail in terms of interactions between vehicles and network modeling, making them, however,

more computationally intensive [67]. Nevertheless, as such, they can be used for in-depth

analysis of smaller traffic networks or isolated sub-networks such as motorways [68], to analyze

advanced traffic control approaches [69, 70, 71], or to, for example, the energy consumption of

vehicles [72]. In addition, simulator frameworks can be used as a basis for testing new traffic

models, such as a lane-free traffic model for Connected Automated Vehicles (CAVs) built and

tested on the simulation infrastructure SUMO [73]. Or for a more general simulation analysis

of different CAVs penetration levels and their impact on the traffic [68]. Moreover, calibrated

microscopic simulation allows for very realistic traffic simulations that closely resemble reality.

This makes such models attractive because, given current traffic conditions and appropriate

simulation parameters, they can be used for traffic forecasting.

Therefore, the prevailing microscopic simulation models appear to be an effective tool that

can be used at any stage of transportation system design, planning, or testing of control so-

lutions [28, 74]. Consequently, offline simulation approaches (based on historical or artificial

data) are useful in transportation planning when analytical changes in traffic flow patterns are

related to long-term changes in infrastructure, travel demand, mode choice distribution, etc.

Although the prevailing offline microscopic simulations are widely used in all areas of traffic

engineering, they lack the ability to be used in real-time decision-making processes and real-

time analytics in TM because they do not account for actual traffic.

3.2 Digital twin technology in microscopic traffic simulations

In this section, an introduction to the current state of research on the application of DT tech-

nology in transportation is provided. In particular, using microscopic traffic simulations in this

context.

Related Work

In a microscopic traffic simulation model, actual vehicle and traffic dynamics can be simu-

lated and visualized in real-time. This feature makes it possible to introduce the concept of

DT into traffic modeling. DT represents a virtual instance of a physical system that is contin-

uously updated with performance, maintenance, and health status data throughout the lifecycle

of the physical system [75, 76]. In essence, Big Data, the floating car data, wireless sensor

networks, GPS tracking, traffic counters, etc., are rapidly evolving and offer a large potential

33



3. Digital twin technology on motorways

for the development and use of DT technology in the transportation sector [77]. However, the

time component of the data plays an important role in the creation of run-time DT, i.e., data

need to be available in near real time to be integrated in a timely fashion into the simulation

model. Thus, it is important to ensure real-time data transmission for run-time synchronization

of DT with real traffic.

Since real-time transmission of high resolution traffic data is still in its infancy, it is the bot-

tleneck in the development of continuously synchronized DTs and their wider use in traffic

analysis. However, several research studies have used microscopic traffic simulations to model

the accurate digital replicas of physical traffic systems with some delay (remarkable latency)

and low resolution of the traffic data used. Consequently, several articles [78, 79, 80] have used

DT terminology in the context of traffic simulation modeling using a more (traditional) offline

simulation approach. They emphasized the use of real, yet historical, traffic data regarding the

notable latency in modeling realistic traffic models. In this context, the aggregated historical

traffic data were down-scaled to finer data resolution (depending on the purpose of the analy-

sis) by using an estimated probability distribution of random traffic variables like flows, trips,

vehicle arrivals, speeds, etc.

However, the property of generality provided by offline simulations may lack the ability to ad-

equately represent events that may occur in daily traffic on a finer time scale, as some traffic

events may not be captured by aggregate traffic data that are often used in offline simulations.

Thus, using actual run-time traffic data in simulations allows for capturing and predicting unex-

pected traffic events in real-time. In addition, real-time traffic data combined with simulations

enable powerful mathematical simulation models to visualize, analyze, interpret, predict, and

optimize traffic. Such real-time predictive analytics is essential for real-time TM and proactive

decision-making. Therefore, it may be useful to continuously use fine-grained real-time traffic

data (if available) as input to the simulation so that the simulation model can evolve (calibrate

itself online) as motorway traffic evolves. In this way, the physical transport system with its cor-

responding traffic sensors can be used in combination with the real run-time simulation model

to provide a more accurate digital replica of real traffic and to see if it is possible to predict

traffic failures clearly enough in advance, so that preventive traffic control measures can be

taken. This gives the DT simulations a foundation as they can be used as additional support in

real-time TM while raising questions such as whether such data could improve the simulations

themselves, what benefits such live simulation models might have, and to what extent can they

be compared to conventional offline simulations.

Inherently, the integration of DT technologies and the real world motorway system offers the

ability to augment the existing motorway performance monitoring systems with the digital vir-

tual instance so that the created DT simulation can be updated in near real-time as the physical
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3.2. Digital twin technology in microscopic traffic simulations

motorway equivalents change. As such, DT could play an important role in TM by allowing the

virtual model to interact bidirectionally with the physical entity in real-time [76]. This is con-

ceptualized in section 3.3 using the example of DT application for monitoring and controlling

VSL on motorways.

From the perspective of a microscopic simulation-based DT traffic model (running in real time

and corresponding to real traffic), the evolution of spatial and temporal traffic characteristics can

be predicted from a respective moment forward, taking into account the current state of traffic.

Initializing from that particular traffic state, several parallel simulations from the running DT

simulation can provide a basis for traffic forecasts. Thus, each of these simulations can serve as

a test environment to evaluate different strategies and finally identify potential traffic problems

before they occur. In this way, failures can be avoided, and future actions can be planned while

reducing uncertainties about the system’s response [81]. However, neither the development of

the DT for motorway traffic nor the strategic advantage of the conceptual application of DT

with TM on motorways has yet been fully realized. The following paragraphs summarize the

findings of other researchers related to microscopic simulation modeling and concepts, pointing

to the definition of DT concepts in transportation in general.

In [78], an application of SUMO microscopic simulation was presented in the application of

ITS Austria West. Aggregated vehicle loop sensors and floating car data were used together

with an origin-destination (OD) matrix based on historical traffic data from the road network

of Upper Austria to generate routes that were used in a microscopic simulation to generate

traffic demand. The simulation model was used for five-minute traffic simulations (short-term

forecasts) to calculate the new traffic state from a given current state. The traffic condition at

the end of each period is integrated with the newly obtained traffic data. These integrated data

were used to create snapshots of the calculated LoS information used by the services from ITS.

Finally, the simulation scenario is adjusted using the aggregated real-time network sensor data

along with the route distribution based on the estimated OD. The updated scenario is then used

as the basis for the next short-term estimate of traffic conditions.

In view of the next generation of ITS, a concept for a virtual vehicle (VV) model was presented

in [82]. The goal of this concept is to use vehicle and traffic information via edge clouds and

specific analytics (deep machine learning algorithms) to predict driver intention. Information

about the driver is taken into account, such as driving preferences, which lane the driver or

automated vehicle is likely to choose, and route plans. The intent is then used by the VV to

compute interactions with other vehicles within the DT model, with the goal of finding the best

routing through the network to reduce congestion. Yet, this is a more conceptual approach at the

moment and will be more favorable in the vehicle-to-everything communication environment

in the future [83].
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The article [80] presents a proof-of-concept application of DT for Adaptive Traffic Signal Con-

trol (ATSC). The control algorithm aims to distribute the waiting time over a network of sig-

nalized intersections instead of loading a single intersection with increased traffic demand. Al-

though the use of real-time data was emphasized, the data itself were generated by the simula-

tion process and used as input to the ATSC. Thus, the simulation scenario itself does not use

external inputs from the physical roadway network to calculate the optimal traffic signals, and

the initial traffic demand was used during the simulation process (no online change in loading).

Online changes were only applied to the traffic signals during the simulation within the simu-

lated traffic scenario via the Traffic Control Interface (TraCI) with respect to the applied ATCS

algorithm.

In [84], the simulation process is extended by connecting the traffic simulator SUMO with

the game engine Unity, which provides virtual insights into the simulated scenario through 3D

virtualization. The synchronized platform enables SUMO to control legacy vehicles, while

Unity controls CAVs with the proposed algorithm to achieve optimal coordination of CAVs

in a mixed traffic flow of road vehicles. As the trends in the automotive industry are focused

on autonomous driving, a DT for security and safety validation of autonomous driving was

presented in [85]. A method is proposed to address a selection of exposed vulnerabilities using

virtualization through DT of complex systems. In [86], the integrated conceptual framework

of the Unity game engine and SUMO is presented for the virtualization of CAVs, and in [87],

it is used to demonstrate the mobility-DT framework for personalized adaptive cruise control

(P-ACC) in Connected Vehicles (CVs) environment. Combined with Artificial Intelligence

(AI) based data-driven cloud-edge computing in Amazon Web Services (AWS) IoT Core, the

conceptual framework consists of three building blocks in the physical world: human, vehicle,

and traffic, and the associated digital spaces of human DT with user management and driver

type classification, vehicle DT with cloud-based driver assistance systems, and traffic DT with

traffic monitoring and variable speed limit advisors. Finally, a case study is presented with

the application of Mobility-DT to P-ACC for vehicles. However, the approaches are quite

conceptual, at least in part, because they do not cover the integration of real world (run-time)

data and are, therefore, only partially a DT. In [88], the first field test of DT for cooperative

ramp metering is presented. Three vehicles were equipped with on-board devices that send data

to the cloud server where the DT of vehicle locations is created. Based on this, a cloud server

calculated the target speed for the vehicles in real time to perform the cooperative merging from

the on-ramp to the motorway.

The authors of the article [81] present a DT-Smart City for citizen feedback and urban plan-

ning. The structure of the DT model is based on different layers (including mobility) aiming to

provide an online urban planning view of skylines and green spaces in Dublin so that users can
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interact through the 3D virtual model and provide feedback on planned changes. In [79], a new

large-scale traffic microscopic simulation model for the Barcelona urban area was presented.

The 24-hour simulation scenario is based on fine-grained empirical Big Data that includes mo-

bility data from cell phone records with traditional annual mobility surveys. The objective of

this research was to develop an operational and effective approach to create a large-scale dig-

ital (microscopic simulation) replica of Barcelona traffic, based on empirical mobility data in

SUMO. Finally, hourly trips were generated using OD matrices and used to calibrate the simu-

lation model.

Identification of research gap

While reviewing related work (summary is given in Table 3.1), it was found that the results

presented in existing studies can be distinguished depending on the extent of virtualization,

the temporal resolution of DT, and the data source (real or artificial). Depending on the data

resolution, the quality of the collected data used as input to the simulation model may be over-

estimated, and these errors are reflected in the aggregate results. Thus, leaving the degree of

confidence in the results and conclusions incompletely known [89]. The lack of access to re-

liable, high-resolution, real-time traffic data during the DT lifecycle appears to be the most

limiting factor so far, ultimately determining the update frequency of the simulated DT model

and, thus, the system error. None of the above approaches were actually able to present a func-

tioning integration of actual run-time traffic data into a running microscopic simulation, and,

thus, the potential of implementing a DT for TM was a kind of open promise.

Moreover, there is virtually no research on the methodological development (and application)

of microscopic simulation-based DT of a motorway system. Therefore, the work presented in

this thesis extends the body of knowledge by proposing a run-time synchronized DT of the

Geneva motorway, along with a method for developing such DTs. Since there is access to real-

time sensor data streams from traffic counters on the Geneva motorway via Open Data Platform

Mobility Switzerland (ODPMS) [92], for the first time, the methodological steps necessary to

create a motorway DT can be proposed, thus, virtualizing the traffic dynamics of the selected

motorway in real-time. Unlike existing DT models in transportation in general, the DT model

presented in this thesis can be considered as a virtual, microscopic simulation-based instance

of the physical motorway system that is continuously updated as real traffic changes over time.

Such a run-time synchronized DT-GM model provides the foundation for a wealth of new ideas

and concepts in TM and opens up a previously unfeasible avenue for advanced mobility research

in general. Therefore, some of them are discussed in the context of safety-critical decision

processes on motorways.
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Table 3.1: DT IN THE TRANSPORT SYSTEMS AND URBAN MOBILITY

Ref./Year Physical model/Data source Virtual model/Calibration Contribution

[78] (2013) Traffic counters, floating car data,
historical OD matrix

Scenario generator module - pe-
riodic calibration every 5 [min]
(SUMO)

Visualization of the traffic situation

[90] (2016) Offline simulation of CVs and Big
Data

OMNET++, SUMO, Veins cou-
pled with Cassandra based Big
Data cluster, not calibrated

Identifying congestion and rerout-
ing vehicles accordingly

[82] (2018) TAPAS (computed mobility plans
for an area population)

Offline (SUMO) Concept of coordination of learn-
ing VVs in virtual transport net-
work

[80] (2021) Synthetic network and data Interaction with traffic signals in
SUMO via TraCI, not calibrated

DT concept to allocate signal phase
and timing of ATSC

[86] (2021) DT simulation of CAVs in inte-
grated Unity-SUMO

Conceptual framework, not cali-
brated

A case study of P-ACC

[88] (2021) Vehicle to Cloud communication
(V2C)

On-board devices send data to the
cloud (synchronized in real time)

DT advises CVs for cooperative
RM (real experiment with three ve-
hicles)

[84] (2021) Unity-SUMO Co-Simulation Synchronized SUMO-Unity plat-
form

Merging coordination of CAVs in
mixed traffic

[81] (2021) Dublinked (Open data store) 3D DT smart city with mobil-
ity layer of pedestrian simulation
(Unity)

Virtual feedback of citizens on ur-
ban planning and policy decision

[91] (2022) Real data (coarse granularity) from
IoT and static geo-data for building
OD matrices

An hourly OD flow estimation of
each mode of transportation

Simplified field test for a modal
split estimate within an interval of
two hours in a small district

[87] (2022) Adopted AWS IoT Core to design
AI based data-driven cloud-edge-
device framework for CVs

Mobility-DT framework with hu-
man DT, vehicle DT, and traffic DT

P-ACC

[79] (2022) Hourly scaled OD flows of cell
phone data based on yearly mobil-
ity surveys

Large-scale 24-hour simulation in
SUMO for the Barcelona urban
area

Effective approach to creating a
large-scale digital replica of traffic

This thesis (2023) Real-time data streams (minute
resolution) from sensors on the
Geneva motorway (via ODPMS)

Continuously calibrated simulation
with actual run-time traffic (syn-
chronized SUMO-ODMPS)

DT of physical Geneva motorway
and concept of DT-GM application
in real-time TM

3.3 Digital twin motorway concept

Motorway systems have become increasingly smart in recent decades. This evolution is mainly

based on the foundation of data collected by roadside sensors and the vehicles themselves, and

the application of advanced traffic control approaches. These data enable services like real-time

monitoring of the transportation system, and in general, the digitization of the transportation

system, providing many benefits to travelers and operations centers [93]. With this informa-

tion, operators (or autonomous road transportation support [94]) can deploy ITS services and

apply TM approaches (control strategies) to improve traffic flows [95]. However, the impact

of the control strategies on the motorway system is not apparent until they are deployed in

real-world motorway applications. Due to the high speeds on motorways, inappropriate TM

strategies placed wrongly in space and time can pose a serious threat to motorway safety and

operations [70].
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Meanwhile, the enormous potential of information technologies in road transportation enables

real-time fusion of the physical road system and the digital world (simulations) in traffic model-

ing and analysis [79, 80, 88]. In general, such integration is referred to as the DT concept, which

considers a fusion of the virtual (digital) and the physical world systems or processes [81].

As such, the applications of DT offer a promising way to address the growing complexity of

transportation systems through the concept of monitoring their entire life cycle. Continuously

synchronized DT model with its physical counterpart enables real-time bidirectional interaction

between the physical system and corresponding digital replica in the early stages of design,

construction, reconstruction, traffic planning or control, and various other analysis purposes.

Accordingly, DT technology has shown considerable application potential in several areas and

is attracting considerable interest from industry and academia [76].

However, the strategic advantage of this integration has yet to be exploited in the motorway

domain. Motivated by the aforementioned predominance of conventional (offline) simulation

approaches, it was decided to explore the possibilities of integrating the SUMO and newly

available real-time motorway traffic data from ODPMS, which allows one to pay attention to

the simulation application during motorway system run-time.

Thus, in this section, a run-time synchronized DT-GM is proposed. Compared to the existing

literature on DT in road traffic applications in general, the novelty of this approach is the use

of fine-grained traffic data streams coming directly (in real time) from motorway traffic coun-

ters. The traffic data are recorded by the traffic counters on the motorways and sent to the

Swiss Federal Roads Office (FEDRO) servers in real-time. These actual traffic data (in minute

resolution) are now available in real time via ODPMS, the customer information platform for

public transport and individual mobility in Switzerland. Thus, the number of passing vehicles,

their speed, and the vehicle category recorded by detectors are continuously fed into the run-

ning simulation via SUMO’s TraCI. TraCI provides access to a running road traffic simulation

and allows for retrieving values from simulated objects and manipulating their behavior dur-

ing simulation run-time [96]. To the best of the author’s knowledge, there is no research on

simulating dynamic motorway flows in SUMO using external flow inputs, so one can consider

this research a novelty in this field. In particular, the capabilities of SUMO calibrators objects

to make the traffic demand within the running simulation scenario adjustable (controllable) via

TraCI are leveraged, and the importance of these objects in creating the proposed synchronized

DT-GM is highlighted. In addition, based on calibrators, the Dynamic Flow Calibrator (DFC)

mechanism that continuously calibrates traffic flows and re-routes vehicles in the running sim-

ulation is proposed. By the use of DFC the proposed continuously synchronized microscopic

simulation-based motorway DT is updated (in a spatiotemporal manner) as the physical motor-

way traffic changes in the areas of installed traffic counters. This brings the created DT-GM

39



3. Digital twin technology on motorways

closer to the actual dynamics of the Geneva motorway, as it continuously adapts itself in real

time to the changes in the physical motorway dynamics. Fortunately, access to fine-grained

real-time traffic data allows DT-GM to sample three types of random variables (traffic volume,

speed, and vehicle classes) that govern traffic flow. With a sampling frequency of one minute,

DT-GM uses almost the instantaneous probability distributions of the traffic variables (the nat-

ural distributions, so to speak), rather than using estimated distributions, as is the case with

conventional offline simulations. By doing so, DT-GM creates the calibrated simulation frames

(nearly exact replicas of real traffic) along the live simulation path.

Since DT-GM is based on microscopic simulation, it allows the simulation of the entire motor-

way system’s traffic dynamics, including simulation of traffic control strategies. Moreover,

since it takes into account actual real-time traffic data, DT-GM can be integrated into the

decision-making process in TM on motorways. Thus, DT-GM can serve as additional real-time

feedback to TM, providing not only actual traffic but also traffic conditions predicted by sim-

ulations that can be useful in a safety-critical decision-making process. Consequently, a better

understanding of traffic behavior and the impact of different control strategies on the spatiotem-

poral evolution of traffic can be verified by DT-GM and predicted clearly enough in advance,

through the detailed microscopic run-time simulation analysis before the control strategies are

deployed in real system.

This implies assessing control strategies in an online yet safe manner. Thereby, the concept

of parallel Digital Twin Instances (DTI) is introduced. By DTI, simulations that are initialized

from the running DT-GM are assumed (see Figure 3.2). Once initialized, they can be run much

faster than real time (since simulation allows for that) and, therefore, can be used to anticipate

the behavior of the system under a specific control strategy. Such a concept (DTI-GM) may

encourage the integration of advanced (adaptive) control technologies like complex machine-

learning models [54, 94] in real-time TM, thus, pushing the new (black box machine learning)

algorithms closer to the real world traffic control application on motorways. In this way, DT-GM

provides a foundation for strategic TM [97], an approach to ensure overall system performance

by confidently selecting a good strategy among several competing strategies.

This fundamentally changes the paradigm of traffic simulations in general. Hence, it makes

preparation for the development of the continuously synchronized simulations providing a run-

time framework for real-time safety analysis, rather than the offline approach that has been

applied so far in predominated conventional simulation methods. Accordingly, in this chapter,

a conceptual application of DT-GM in real-time TM on motorways regarding the VSL deploy-

ment is presented. Additionally, the DT-GM model will be demonstrated in action and verified

by a virtual simulation field test in chapter 7 of this thesis.

To sum up, this chapter provides detailed methodological steps for the integration of different
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technologies in developing of DT-GM, particularly the open data platform ODPMS and simu-

lator SUMO, and presents the possible conceptual applications of DT-GM in motorway traffic

control. Additionally, the proposed DT-GM model differs from other introduced DT traffic

models in the sense that it is a run-time calibrated digital microscopic simulation model contin-

uously updated with actual high-resolution traffic data collected directly from motorway traffic

counters every minute. This makes it possible not only to visualize actual traffic in real time, but

also to simulate traffic during run-time and use simulation models for detailed traffic forecasts

and early detection of traffic anomalies. In addition, simulation enables the testing of control

strategies (e.g., variable speed limits on motorways). Thus, DT enables the run-time safe test-

ing of control strategies considering the current traffic situation in the most cost-effective way.

This allows for using traffic simulations for dynamic control optimization and instantaneous

traffic analytics during system run-time, thus, providing a framework for an early warning de-

tection of a system (or process) failure. This was not feasible in the past when simulations were

generally considered synonymous with offline validation and optimization using historical or

artificial data. As such, DT-GM raises the current simulations’ capability to the next level and

lays the foundation for further research on DT in the transport domain. Thus, developing a

simulation technology on motorways that can be fused together with real-time measurements

from motorways’ sensors or with the Internet of Things (IoT) in general.

Therefore, the contribution of this chapter includes [98]:

• novel paradigm in microscopic simulation traffic modeling, a virtual microscopic simula-

tion based DT instance of the physical Geneva motorway continuously calibrated as real

traffic changes over time;

• the importance of open, real-time mobility data in advancing and promoting DT in trans-

portation, emphasizing fine-grained actual traffic data streams from traffic counters pro-

vided by ODPMS;

• the detailed methodological process of the development of DT-GM, emphasizing the cal-

ibration features of SUMO, which allow (dynamic) continuous calibration of the running

simulation scenario via DFC;

• real-time simulation-based support in safety-critical decision-making in transportation

systems based on predictive analytics through the concept of parallel DT instances.

3.3.1 Physical twin - Geneva motorway

The section of the A1-motorway located in the Geneva region is used as a base for the DT-

GM microscopic simulation modeling. The approximate observed motorway length in both

directions is about 13,200 m. As shown in Figure 3.1, the motorway network topology consists
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of a major grade-separated interchange with junctions to the east (center of Geneva), south

(border with France), and north (toward Geneva airport). The main sections of the motorway

consist mainly of two or three lanes. Furthermore, the motorway contains four on-ramps and

two off-ramps (see Figure 3.1b). It is worth noting that the model contains slight simplifications.

For example, some minor on-ramps and off-ramps, for which ODPMS does not provide data,

were not included in the modeling in order to reduce the unknowns in the traffic flow model

(3.1). As a result, they are ignored in this model due to the small amount of traffic they generate.

(a) Traffic counters: East (E), North (N), South
(S) [99]

(b) Directed weighted network
model

Figure 3.1: Physical motorway (left) and abstract corresponding model (right)

Although the experiment in this chapter does not aim to solve existing problems on an observed

motorway section, the most striking feature is the occurrence of congestion once in the morning

(and in the afternoon) in the southern region between Switzerland and the French border due

to daily commuter traffic over the selected motorway network. This is the reason for choos-

ing this particular location. As such, it will later serve as a benchmark for research on traffic

optimization using DT-GM simulations and DWL-ST-VSL in chapter 7.

3.3.2 Digital twin of Geneva motorway

In Figure 3.2, the concept of run-time synchronized microscopic simulation-based DT motor-

way framework is presented. It consists of the physical world, in this thesis the selected part of

the Geneva motorway (Figure 3.1a), the information technology that ensures the communica-

tion between the local computer and the ODPMS platform in a continuous process of sending
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requests and receiving the new traffic data collected by the traffic counters on the motorway.

On the local computer, the running microscopic simulation is continuously calibrated as the

dynamics of traffic flows on the physical motorway change in real time. As an example of

the foundation of DT-GM, one can include the existing TM system in the proposed scheme,

which can use the DT model for the safety-critical decision-making process and can serve as

an accurate virtual traffic model for the training and evaluation phase of learning-based traffic

controllers. The proposed scheme provides a conceptual foundation for the bidirectional inter-

action of the virtual model with the physical motorway in real-time and is elaborated in more

detail in chapter 7.

TM center
(safety-critical real-time decision making)

Physical motorway

Measurement
station

Lane

sensors

Running Digital Twin

Real-time virtualization process

TraCI

Python
DFC

SUMO 
Calibrators

Scenario
calibration

Running DT-GM (t)

Microsimulation 
(SUMO)

Actions
e.g., variable 
speed limits

Flows, Speeds, 
Vehicle types

Best found control strategy

Real-time data streams

ODPMS

Measurement 
stations

DTI-GM (t, an)

DTI-GM (t+1, an)

DTI-GM (t+2, an)

DTI-GM (t+T, an)

DTI-GM (t, a1)

DTI-GM (t+1, a1)

DTI-GM (t+2, a1)

DTI-GM (t+T, a1)

Figure 3.2: Scheme of run-time synchronized DT-GM and concept of bidirectional interaction
between virtual and physical motorway using DTI-GM in real-time TM

3.3.3 Concept of parallel DTI-GM in TM

In any control optimization problem, the goal is to move the system along a desired path, that

is, to move it along a desired trajectory of states. In most states, one must choose among several

actions. The actions in each state essentially define the trajectory of states the system is likely

to follow [18]. By analogy, the optimization of VSL on motorways involves choosing the right
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actions (the desired speed limits) for particular traffic states [100]. For example, the objective

of VSL is to slow down and harmonize the incoming traffic in the congestion zone in order to

relieve the congested sections of the motorway and restore the traffic flow to a steady state if

possible.

Thus, DT-GM generally provides a basis for TM as additional support (real-time feedback)

for observing and predicting the system response in the safety-critical decision-making pro-

cess through the bidirectional interaction (action/reaction) between DT-GM and real motorway

traffic. In this way, DT-GM and DTI-GM (parallel instances of DT-GM) provide a basis for

investigating a motorway’s system performance issues during its run-time and developing po-

tential improvements, with the goal of generating valuable insights that can then be applied to

the real motorway in real-time. This process is depicted in Figures 3.2, and 3.3, where each

DTI-GM (running faster than real-time) enters the running scenario with a different action an

that is deployed from the current time t. By doing so, the boundaries can be extended (time

horizon t +T ) to examine what might happen in future steps, i.e., to evaluate/predict the im-

pact of a given traffic control action on traffic dynamics without the risk of negative effects on

physical motorways.

T

1

Time

Continuous DT 
calibration

Make control decision

4

3

5

Look ahead in the future using DTI 
simulation Evaluate control strategy & 

assess implementation risks

Real traffic
condition

t t+Tt-1

2

Digital world

Physical world

Figure 3.3: Predictive analytics with DTI

In this way, the best traffic control action among many can be selected based on certain objective

criteria (e.g., what speed limits are appropriate for the next few minutes on the main sections of

the motorway to increase throughput) and safely deployed in the real motorway environment.

In general, one can anticipate problems with DT-GM and parallel DTI-GM. If one can detect

problems early enough, there are more options (control strategies) to mitigate them and opti-

mize motorway performance. This has not been possible with conventional offline simulations

and is not discussed in this way in the existing literature. Thus, the proposed DT concept funda-

mentally changes the application of microscopic simulation tools in traffic analysis by enabling

real-time simulation-based control optimization and analysis of traffic during the motorway’s

run-time.
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3.4 Simulation synchronization with run-time motorway traf-

fic

In this section, the focus is on the capabilities of the SUMO microscopic simulator for dynamic

online calibration of traffic flow via TraCI. Therefore, it describes the methodological steps on

how SUMO’s calibrators are set up and can be used to dynamically generate the desired traf-

fic volume and continuously calibrate the simulated traffic scenario as corresponding physical

traffic changes in real-time at specific locations and, thus, become essential building blocks

for the proposed DT-GM. Calibrators’ locations in the simulation model represent sources that

emit the desired number of vehicles on the main section of a motorway and at on-ramps. Thus,

they enable the straightforward use of SUMO to create a microscopic DT of motorway systems

calibrated in real-time.

Therefore, in the following part, the properties of SUMO’s calibrators objects are introduced

and their use in conjunction with dynamic routing via TraCI by proposing the DFC mechanism

is highlighted. Thus, DFC is used to calibrate the running DT-GM model in order to approxi-

mate the real motorway dynamics at the locations of available measurements and over the other

observed motorway parts. It is also important to note that the technical details of the proposed

DT framework implementation are given in the paper [101], in which detailed technical descrip-

tions and steps on how to build a DT of motorway traffic are provided.

3.4.1 Dynamic simulation calibration using actual traffic data streams

What distinguishes the described analysis of the proposed DT approach from the existing lit-

erature is the use of available real-time data streams obtained directly from the traffic coun-

ters implemented on the motorways. For motorways and national networks, traffic demand is

measured in Switzerland by FEDRO.* Traffic counters are set up along major road sections

to measure all traffic movements by direction and time. They can count vehicles (per lane),

classify vehicles, and determine the speed of vehicles passing a particular location. The actual

traffic data are updated every minute and refer to the traffic movements in the last full minute.

The data records are, thus, aggregated over 1-minute intervals and recorded every minute on

FEDRO’s server, and can be accessed in real time through the ODPMS platform exclusively via

an available API.† Essentially, the number of vehicles and average speed are reported in two

categories: (i) light vehicles such as cars, motorcycles, buses, and small delivery trucks, and (ii)

heavy goods vehicles such as trucks and trucks with trailers. These capabilities are leveraged

by obtaining real-time traffic data from traffic counters on the motorway in the Geneva region

*https://www.astra.admin.ch/astra/en/home.html
†https://opentransportdata.swiss/en/rt-road-traffic-counters/
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to build the DT-GM. Circles in the region of interest (see Figure 3.1a) represent the locations of

installed traffic counters. A single (blue) dot represents multiple sensors (individual sensors per

direction and lane). Therefore, one can create a bounded linear model (3.1) for both directions

of travel that can estimate unknown traffic flow at the edges between the boundaries of E, N,

and S.

This allows to feed the proposed DT-GM model with raw traffic data in real-time taken from

the physical system. Moreover, with this fine granularity of data, the original traffic pattern

(distribution of traffic flows) is preserved, since the distribution of the real system in spatio-

temporal terms is directly contained in the fine-grained traffic data. In contrast to the current

state-of-the-art, where a longer aggregation period is used, and, thus, the simulation approach

requires an estimation of the distributions of the governing variables in order to simulate and

analyze the system at a finer scale. Namely, suppose the aggregation period is one hour, and

traffic is generated based on the estimated distribution. In that case, some intervening events (in

a finer time resolution) may not be adequately captured by the model, thus, increasing the error

in the simulation.

Moreover, in conventional simulation modeling, the internal calibrated features become domi-

nant for a particular scenario defined in the simulation. For example, the calibrated scenario for

a specific weekday may not accurately simulate traffic on other days of the week, non-working

days, or holidays, and vice versa. In other words, the samples generated by the simulator, and,

thus, the expectations of the random events, may vary widely. Thus, conventional simulation

models need to account for the different traffic characteristics of the weekday and holiday sce-

narios separately to overcome the problem. It is also true that if the model is calibrated based

on aggregated weekly traffic data, the accuracy of the simulated traffic events at daily resolution

(even worse at hourly or minute resolution) may contain significant errors.

As DT-GM is based on continuous, instantaneous sampling and calibration, it, therefore, re-

duces the sources of error in the model (the finer the granularity, the smaller the error). There-

fore, the DT-GM model can adapt online in the spatiotemporal domain and closely resemble

the underlying structures in the evolution of real traffic for each minute (regardless of the day

of the week) with high accuracy.

Run-Time Flow Estimation

In practice, it would be very costly to survey the traffic flows on all roads, as a large number

of traffic counters would have to be installed and maintained. Instead, if the traffic counters

are placed in a way that they capture most of the incoming and outgoing traffic, it is possible

to reconstruct the traffic flows in between. Thus, from partial data, one can define a system

of linear equations using the conservation law of traffic flow and calculate the unknown traffic
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flows in a road network. In the context of a motorway, the traffic situation can be simplified, as

it is safe to assume that the roads are one-way and that a vehicle entering the observed network

also leaves the network (no terminal states within the motorway network). In reality, however,

a vehicle may linger for a while at a gas station or a public facility such as a rest area, but this

can be neglected in the context of the proposed DT-GM modeling. The flow in the network is

balanced, i.e., the total flow entering the network is equal to the total flow leaving the network.

This is true for all branches in the observed network (Figure 3.1).
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(3.1)

The complete solution (3.1) of the flow balance in the flow model contains the particular solution

X⃗p (where q1, . . . ,q6 are measured flows by traffic counters) and the special solution X⃗n. For the

special solution, the free variables X⃗ f ree = [x6,x11,x12,x14,x15,x16]
T can be chosen arbitrarily.

However, from a practical point of view, all traffic flows must be non-negative. This implies

adding constraints (3.2) on the complete solution, thus, limiting X⃗ f ree.

X⃗ ≥ 0 (3.2)

Since six free variables are defined and need to be estimated in such a way that one must obtain

positive solutions, a linear program to search for feasible solutions using the Simplex algorithm

is defined. Thus, in order to find the solution to the given problem, two steps of the Simplex

algorithm are performed. In the first step, the inequalities from (3.2) are used as constraints,

47



3. Digital twin technology on motorways

while randomized cost coefficients of the objective function were used in each Simplex run. In

this way, the extreme points of the feasible region for free variables X⃗ f ree can be defined. Based

on the calculated bounds for each free variable, the positive interval is defined starting with the

minimum positive value and ending with the maximum value. Also, the interval is divided into

10 parts so that each free variable is defined with ten intensity levels. Once the feasible ranges

are known, the solution space is further restricted by defining the desired intensity vector of

the free variables X⃗ f ree−des. By doing so, the range of each free variable is further restricted

with respect to the desired intensity level. Such a newly constrained problem is again solved

by several Simplex runs. The best found solution for the free variables X⃗ f ree is determined

by calculating the minimum relative error using the equation (3.3) between the vector of the

desired intensity and the given set of feasible solution vectors.

∥X⃗ f easible − X⃗ f ree−des∥
∥X⃗ f ree−des∥

(3.3)

After all flow variables are computed, DFC calculates the routes’ distribution, which is used

to distribute the vehicles (flows) generated by calibrators throughout the network in order to

satisfy (3.2).

SUMO’s Calibrators Objects

In SUMO, calibrators (trigger-type objects) enable the modeling of location-dependent changes

in traffic flow dynamics and driving behavior. Once defined in the initial simulation scenario,

they allow for dynamic adjustment of traffic flows and speeds along with changes in vehicle

parameters by assigning different predefined vehicle types.

Calibrator Definition

Each calibrator is uniquely associated with a particular edge (part of a road in the created sim-

ulation model) or even by a particular lane on the edge on which it is placed in the simulation

model. In order to use the calibrator, it is necessary to define the interval (start, end), which

specifies the time during which the calibration takes place. Thus, the interval length defines the

aggregation period for comparison of the observed and desired flows. The calibration goal is to

ensure that the correct number of vehicles is deployed at the end of the respective time interval,

and also in that particular place. At the same time, the space-time structure of the existing traffic

should be preserved as much as possible [31]. Thus, a calibrator removes vehicles that exceed

the specified traffic volume and inserts new vehicles (of the specified type) when traffic demand

in a simulation does not reach the specified number of vehicles. Also, vehicles can be assigned

with the desired speed if adjustments are required. This means that the calibrator in its basic
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configuration works like a static object and modifies the traffic flow according to the predefined

attributes mentioned above: traffic flow [veh/h], speed [m/s] and vehicle types within certain

time intervals. Thus, different flows and speeds can be used for different time intervals during

the simulation.

Run-Time Calibration of Simulation via TraCI

Moreover, SUMO provides the ability to access the calibrator via the TraCI interface while the

simulation is running. This enables the activation of a specific calibrator and the adjustment

of flow rate, speed, and even vehicle type in the current time interval during the execution of

an actual simulation. In the performed experiment, intervals for calibrator adjustments are set

to match the frequency at which actual traffic data is received from the motorway sensors (one

minute).

The calibrators are placed in the created microscopic simulation model at the positions where

their corresponding traffic counters are implemented in the real motorway (see Figure 3.1).

These calibrators are, thus, used to continuously adjust the flows to match the current traffic

demand as it changes in the real motorway with a minute resolution. For more technical details

on the setup and technical implementation of the calibrator in DT-GM, one can refer to the

paper [101], as mentioned above.

Dynamical Rerouting of Vehicles

In this section, the routing mechanism in SUMO is explained in a rather abstract way, and in

the next part, details of the implementation are elaborated. The realism of traffic flow behind or

between calibrators depends on the correspondence between simulated and real routes. This cor-

respondence importance increases with the network’s size and complexity between calibrated

edges [31]. Rerouting along with calibrators allows for the desired traffic flow to be distributed

in a desired proportion across the network to satisfy other routes’ traffic demand (routes defined

by particular edges). Thus, once the calibrator starts inserting the desired traffic flow, it should

be distributed across the network by assigning routes to individual vehicles. Routes are assigned

to a vehicle by the routing device, which is an abstraction of the location (a particular edge in

the simulated motorway network) monitored by DFC during simulation run-time. Accordingly,

DFC assigns the desired route to the vehicle based on the calculated route distribution when the

vehicle drives onto that edge.

Principle of Dynamic Flow Calibrator Mechanism for DT-GM

Given the locations of the physical traffic counters (Figure 3.1a), the simulation model is de-

signed to use the available real-time traffic measurements as much as possible. Therefore, the
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boundary points of DT-GM are defined by the locations of the traffic counters. At these loca-

tions, the model is equipped with calibrators from which the desired traffic flow (measured by

traffic counters) is distributed using DFC to match the traffic flow on other observed motorway

segments (Figure 3.1b). Thus, DFC uses information about all possible routes from a given

point. Subsequently, the information about the traffic flow on the edges (calculated by (3.1)) is

used to compute the probability distribution of the traffic flow among all possible routes. Routes

and route distributions that are dynamically assigned to vehicles using TraCI are predefined in

conjunction with the calibrators. This forms the base for introducing the DFC mechanism to

reroute the traffic flows over the observed motorway segment. Accordingly, the number of ve-

hicles that need to continue their direction of travel or switch to other routes is calculated. This

process is illustrated in Figure 3.4. Given the initial traffic flow q0 with speed v0 arriving at the

model’s starting point, the calibrator adjusts the traffic flow and speed according to the real-time

measurements provided by the traffic counters on the real motorway. The modified traffic flow

(q1, v1) continues the trip according to the predefined initial route Route0. When the vehicles

reach the point where the routing device Router1 is installed, they are assigned (according to the

calculated probability) the new route corresponding to the desired traffic flows on the next parts

of the network (computed by (3.1)). For example, the probability Px1 that a vehicle is assigned

to traffic flow x1 (on Route1) is calculated as follows:

Px1 = 1−Px2 = 1− x2/q1, (3.4)

where Px1 and Px2 are calculated every minute and transmitted via TraCI to a particular edge

on which the routing is performed. The probabilities of assigning a vehicle to a particular

route among two possible routes are defined as an ordered pair (Px1,Px2) and, thus, can take

discrete values whose sum equals one (see [101]). Thus, the process of rerouting assumes that

the desired probability distributions have been predetermined. This rerouting solution follows

the same principle for the entire motorway model in areas with multiple possible directions of

travel.

d1 d2

...

Router1

...

...

Calibrator

Route1

Route2(q1, v1)

diRouteri

Routei+1

Routei...

Route0

Flow q0

Speed v0

Calibrated traffic flow

Motorway network

Traffic counter
(reference in)

Traffic counter (reference out)

Figure 3.4: Dynamic Flow Calibration principle in SUMO

An additional marker is added to each vehicle when it is inserted into the simulation. This
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contains the information about the routes assigned to it according to the calculation performed

by DFC for that time window. This prevents vehicles that have already been inserted from being

assigned the newly calculated routes. Specifically, the vehicles that arrive late in the router area

(which may be the case in traffic jams when the vehicles are stuck for a certain period of time)

are not assigned with the newly calculated route distribution, but they follow the original route

plan (encoded in marker) that was set when they were inserted in the simulation. In this way, the

traffic flow maintains a balance between the flow (in) and (out) in the DT-GM model, otherwise,

a mismatch could occur and the flow model (3.1) could not be satisfied.

The summary of the execution of the DT-GM microscopic simulation model is represented by

the Algorithm 3.1. Once the variables are initialized, the algorithm loads the simulation scenario

S⃗ with all necessary SUMO files. The simulation is started and controlled by TraCI. At each

simulation step, SUMO calibrates and updates the simulation scenario. For every multiple of

60th seconds of real-time, a new request for actual traffic data is sent to the FEDRO server via

ODPMS. The data (traffic flows q⃗, speeds v⃗, and vehicle type v⃗type) are received and forwarded

to the DFC mechanism. In this way, the calibrators C⃗ are entrusted with the task of generating

the desired traffic flows. Moreover, DFC computes all traffic flows X⃗ in the network and,

accordingly, the route distribution probabilities P⃗ to distribute the traffic flows generated by

the calibrators through the network such that X⃗ is satisfied for a given time window of one

minute. The process is repeated until the specified end, saving the status of DT-GM. Also, the

process can be reloaded by restoring the saved simulation state and running it from that point.

Additionally, when the real-time TM concept is enabled, new parallel simulation instances are

initialized and started by loading the states of the running DT-GM. Such parallel DTI-GM

simulations (running faster than real time) are associated with different control strategies from

T⃗ to test each one and predict their impact on motorway traffic during system run-time.
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Algorithm 3.1 DT-GM at each simulation step

// Set parameters and load sim. model
Init S⃗, T⃗ , C⃗, P⃗, q⃗, v⃗, v⃗type, X⃗ , X⃗ f ree, X⃗ f ree−des

for each simulation step
if simulation time % 60 [s] == 0 then

Get new actual traffic data via ODPMS: q⃗, v⃗, v⃗type
// DFC computations
For given X⃗ f ree−des and q⃗ calculate X⃗ f ree and X⃗ (see (3.2))
Update calibrators C⃗ and routes distributions P⃗ using X⃗
// Conceptual run-time analysis in real-time TM
if T Mactive == True then

Save current DT-GM simulation state
Initialize new sim. using the current state of running DT-GM
Run DTI-GM
Test different control strategies from T⃗
Return best strategy
Deploy the best found strategy on the physical motorway

end if
end if
Calibrate and update simulation scenario

end for
Save DT-GM simulation state and close simulation

3.4.2 Experimental setup

To validate the proposed DT approach, the created DT-GM is compared with a baseline—the

actual traffic measured by the installed traffic counters on the motorway in the Geneva region.

The simulation framework used in the DT-GM development and simulation experiments con-

sists of the microscopic simulator SUMO, Python programming environment, and the ODPMS

server accessed remotely every minute (Figure 3.2).

Simulation Model

To create a simulation model with the exact replica of the geometry of a real road network,

geometric elements with appropriate attributes of geographic data from the free geographic

database of the world OpenStreetMap (OSM) [102] must be converted into the simulation net-

work model. For this purpose, the NETEDIT module from SUMO is used to create a digital

motorway network. The network model consists of interconnected edges representing roads.

Within an edge, a lane is specified according to the real motorway topology. Connecting the

edges by nodes forms a complete SUMO motorway network. Since the OSM website limits

the size of the region to be extracted, additional steps are taken to obtain the final OSM file

from which the SUMO motorway network is generated. More technical details on extracting

the network from OSM can be found in the previously mentioned paper [101].
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Once the motorway network is defined, the traffic flow can be specified, e.g., as repeated emis-

sions of vehicles (flows) together with dynamic traffic flow generated by calibrator objects dur-

ing simulation run-time. Since the calibrator’s functions are essential building blocks in the

creation of DT-GM, this main component is therefore explained in detail in the following ex-

perimental settings. The additional definition of flows serves as initial traffic flow in the model

and their purpose in DT-GM is again explained in [101].

DT-GM Parameters

It is important to note that the purpose of the demonstrated real-time simulation experiment

is not to fine-tune internal simulation parameters, e.g. in terms of driver behavior or vehicle

parameters, but rather to investigate the extent to which the proposed DT-GM with the basic

simulation configuration (mainly considering default parameters) resembles real traffic by using

the underlying motorway system information through fine-grained real-time traffic data and

run-time calibration of traffic flow with DFC (Figures 3.2, and 3.4). Therefore, the observation

between real and simulated traffic should be considered mainly as a comparative measure of

how closely the model resembles reality, rather than an absolute measure of performance.

SUMO Simulation Parameters

Traffic flow data consists of cars and trucks, as these classes were distinguished by traffic coun-

ters. At the moment of creating DT-GM, the latest SUMO version was 1.13.0. The longi-

tudinal (speed choice) vehicle behavior uses the Enhanced Intelligent Driver Model (EIDM)

car-following model [103], while lateral (lane changing, overtaking, merging) behavior uses

the lane change model LC2013 [104]. Additionally, several parameters within the mentioned

models were modified. The parameter tau defines the time interval between the passage of suc-

cessive vehicles at the observed road point (time headway), measured in seconds. It is defined

by the lognormal distribution (with the shape parameter σ = 0.05 and the location parameter

µ = 0) [105, 106]. The headway distribution model is shown in Figure 3.5. In this way, stochas-

tic effects are introduced into the car-following model to better suit the behavior of real drivers.

Similarly, adjustments have been made for the lane change parameters (see [101]). The simu-

lation step used in the analysis is set to a quarter of a second, which means that four simulation

steps lead to one simulated second. Also, nominal maximum allowable speed limit values on

Swiss motorways (120 [km/h]) for main sections were assumed, as access to speed limit infor-

mation via ODPMS is under development. Finally, actual traffic collected on Thursday, March

24, 2022, and the results of the correspondent simulated traffic replica by run-time DT-GM are

summarized in the next section.
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Figure 3.5: Lognormal headway distribution model

Flow Model Parameters

As explained in section 3.4.1, the free variables in the flow model, x6, x11, x12, x14, x15 and x16

are defined by intensity levels rather than absolute values. Therefore, the defined intensity level

for these variables is approximated by observing the GPS traces on the OSM and Google Maps

traffic website as a function of time of day, and experimenting with run-time test simulations.

Therefore, they should not be considered as an exact representation of the actual traffic vol-

ume on the corresponding motorway sections (edges), but only as an approximation. Although

they are an approximation of the actual traffic volume, mathematically, they represent a sta-

ble, feasible solution that clearly satisfies the system (3.2). Therefore, eight different intervals

with respect to the time of day and corresponding desired intensity vectors X⃗ f ree−des for free

variables xi, i=6,11,12,14,15,16 are defined as follows:

• from 6 to 8 am with values 10,1,2,7,3,1, respectively;

• from 8 to 10 am with values 10,1,2,4,3,1, respectively;

• from 10 to 12 am with values 10,2,2,5,2,1, respectively;

• from 12 to 4 pm with values 6,1,1,10,1,1, respectively;

• from 4 to 6 pm with values 6,1,3,8,1,3, respectively;

• from 6 to 8 pm with values 7,2,2,8,1,2, respectively;

• from 8 to 10 pm with values 7,2,2,7,1,2, respectively;

• for the rest of the day with values 7,1,1,7,1,2, respectively.

Also, the Simplex algorithm is performed in two steps, as discussed above, when solving the

inequality to find a feasible solution for the system (3.2). In each step, it is executed and solved

300 times, each time with a random initialization of the coefficients of the objective function to

find the feasible bounds for x f ree (see section 3.4.1).
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3.4.3 Results and analysis

This section presents the overall joint analysis of results related to the methodology used in

the development of the DT-GM by testing the accuracy and timeliness of workday traffic sim-

ulated at run-time via DT-GM. Flow analysis is used to analyze the spatiotemporal behavior of

DT-GM adaptation with respect to measured real eastbound, northbound and southbound traffic

(flows-in and flows-out). Thus, graphs given in Figure 3.7 show the evolution of the flows for

the selected workday. Similarly, for traffic flow indicators, the corresponding GEH statistics are

shown. The GEH statistic is a formula used in traffic engineering, traffic forecasting, and traffic

modeling to compare measured (real) traffic volumes with model-generated traffic (simulation).

In addition, Figure 3.9 shows the spatiotemporal snapshot of the evolution of traffic flow speeds

of the actual run-time traffic on the physical motorway and flow speeds in the run-time simula-

tion performed by DT-GM. Thus, the focus is mainly on spatial and temporal correspondence

between the DT-GM model and real traffic.

Traffic Flow Analysis

The overall traffic demand in the observed motorway area for the analyzed workday has a

symmetric characteristic. Traffic generated by commuters from France has a major contribution

to the morning peak hours eastbound direction to Geneva (see Figures 3.6 and 3.7d).

Figure 3.6: Illustration of study motorway area

Additionally, the eastbound is partially loaded by commuters from the north, which use the

motorway as a bypass to avoid driving through the city center in order to reach the southern part

of Geneva, and by traffic entering the motorway at the on-ramp x15 (Figure 3.1b).
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Similarly, for traffic on northbound (Figure 3.7e), traffic generated by commuters partially from

southbound (flow-in) from France (Figure 3.7c), and eastbound (flow-in) from Geneva (Fig-

ure 3.7a) have a major contribution to morning peak hours northbound across the main sections.

However, traffic entering the motorway at the on-ramp x12 also contributes to the overall picture.

The peak hours in the afternoon have an opposite character, i.e., the commuters return, and the

peak hours are symmetrically reversed. The high traffic flow is mainly present in the southbound

motorway sections towards the Swiss-French border (Figure 3.7f), partly caused by commuters

from eastbound of Geneva and the main motorway traffic from the north.

Comparison between DT-GM and Real Traffic

As can be observed from the results (the graphs are created using the moving average over 20

measurements), there is no significant difference between the traffic generated by the run-time

DT-GM and the actual motorway traffic. In the one-day-long simulation on March 24, 2022,

both the morning and afternoon peak traffic and the stationary traffic between the peak hours

simulated by run-time DT-GM align with the actual traffic conditions at the granularity of one

minute.

The small temporal shifts between measured and simulated flows (outflow part) are collectively

attributed to the fact of the simplification in the model, where some local motorway on-ramps

for which ODPMS does not yet provide traffic data were omitted. Therefore, additional traffic

is generated on the included on-ramps (x11, x12, x15 and x16) to achieve the required overall

traffic flow balance on the observed motorway segment. In addition, the spatial displacement of

the calibrators (traffic emitters) on main sections in the east, north, and south compared to the

symmetric measurement points of flow-out may result in a small delay in the response time of

the flow model (3.1). Consequently, the time to reach the desired flow on the exit sides of the

motorway section may be slightly shifted to the right (Figures 3.7d, 3.7e, 3.7f), because vehicles

have to travel a longer distance to reach the desired points. Nevertheless, while a rightward shift

is expected, it’s important to note that this occurs on a very small time scale, as the run-time

adjustment of DT-GM is based on minute intervals. Thus, even though the obtained data can be

timely slightly shifted, the achieved result is still pretty accurate.

In addition, the time at which the output values first reach the steady state of desired traffic

volumes for a given simulation may be slightly delayed, especially during peak hours. Conse-

quently, additional delayed traffic in the network may show up as a slow increase (or decrease)

between the simulated traffic and the reference traffic measured by the traffic counters (Fig-

ure 3.7). However, the cumulative error is negligible since one is still at a fine-grained temporal

resolution.
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(a) Flow (in) east

(b) Flow (in) north

(c) Flow (in) south

(d) Flow (out) east

(e) Flow (out) north

(f) Flow (out) south

Figure 3.7: Comparison of actual and simulated daily flow with minute resolution

Furthermore, outliers can cause a significant bias in commonly used numerical measures such as

the average. Therefore, the Box-Whistler diagram (Figure 3.8) is presented for actual run-time

traffic and dynamically calibrated traffic. It gives a rough summary of the data distribution using

five numbers: the smallest traffic volume, the lower quartile Q1, the median, the upper quartile

Q3, and the largest traffic volume. Even though there are no recorded errors in received actual

run-time data, a data set contains measurements that differ markedly from the others in the set,

both east and south (in/out) actual traffic flow (upper fence for outliers: Q3+1.5(IQR), where

IQR = Q3−Q1). Without going into the nature of the outliers (observational errors or the fact
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that outliers themselves may contain important information about the traffic dynamics), those

similarities mostly reflect dynamically calibrated traffic flow. The most striking outliers are

found in the eastern and southern regions. The main reason could be unexpected traffic patterns

due to traffic lights in Geneva (east) urban areas and uncertain traffic dynamics in the south at the

border crossing, accompanied by high commuting between these regions. It is also noticeable

that in the east, for flow (in) (Figure 3.8a), the calibrators were not able to reproduce outliers at

all. The reason could be that the calibrators cannot completely generate higher sudden traffic

volume in a short interval due to their specific waiting properties explained in the discussion

part. Thus, this additional traffic is generated in subsequent intervals to compensate for the

previously incurred loss. In this way, all traffic is maintained, but with some delay. Additionally,

if traffic is congested in the lane, there may not be enough room to insert a vehicle safely

by the calibrator. Therefore, the calibrators may only insert a portion of the vehicles rather

than the required traffic volume. This ensures that invalid congestion is not passed through a

calibrator. Such behavior can be controlled in SUMO and should be further investigated, as

such congestion can occur on motorways and, thus, poses an issue for the current calibration

design and implementation.

However, the calibrators reflect the maximum traffic flow values (in) and (out) in the east and

south. In contrast, significant differences in maximum values are observed for traffic in the

north, explainable by the same arguments mentioned above. Since the medians are to the right

of the center of the box in all cases, the distributions are skewed to the left, i.e., there are

some small measurements of traffic volume caused by low traffic at night. Even so, there are

high traffic volumes due to peak hours, particularly in the northern region. Thus, all flows

are characterized by high variability. Nonetheless, these phenomena are generally quite well

reproduced by DT-GM at the granularity of one minute.
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Figure 3.8: Box-Whistler diagram for actual and calibrated traffic at minute resolution
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Finally, a numerical evaluation of the deviation between the graphs of actual run-time traffic

and traffic simulated (and calibrated) on-the-fly by DT-GM is presented in the next section.

Quantitative Workday Simulation Analysis

The traffic flows generated at the calibrator locations (flow in) match almost exactly the actual

traffic (see Figures 3.7d, 3.7e, and 3.7f). Therefore, the GEH statistics calculated by equation

(3.5) (Tables 3.2, 3.3, and 3.4) are presented only for the case of outflows to show the accuracy

of the model with respect to the proposed DFC mechanism used for distributing the traffic

generated by the calibrators over the simulated motorway network.

GEH =

√
2(m− c)2

m+ c
(3.5)

Thus, a comparison is made between the measured traffic flow leaving the network (flow out)

and the measurements recorded by the traffic counters. It can be seen that the GEH values

are within the acceptable range of 0 to 5 (a GEH value of less than 5.0 is considered a good

match between simulated dynamic m and observed actual run-time traffic volumes c). The

highest values are observed during peak hours when congestion events delay traffic in the middle

parts of the motorway network by increasing the travel time of vehicles. Even though the

running simulation is continuously fed (every minute) with new traffic data from the traffic

counters, the traffic simulation is well run-time calibrated. Thus, DT-GM allows the scenario

of running simulation to evolve as the conditions on the physical motorway in the areas of the

traffic counters.

Table 3.2: GEH STATISTIC FOR FLOW (OUT) EAST

Morning time (h) 0 1 2 3 4 5 6 7 8 9 10 11

GEH
√

veh/h 0.0 0.0 0.5 0.8 0.6 1.6 2.8 3.0 0.0 1.3 1.5 0.7

Afternoon time (h) 12 13 14 15 16 17 18 19 20 21 22 23

GEH
√

veh/h 0.9 3.5 0.4 0.7 1.1 0.9 0.9 0.2 2.3 2.1 1.8 0.7

Table 3.3: GEH STATISTIC FOR FLOW (OUT) NORTH

Morning time (h) 0 1 2 3 4 5 6 7 8 9 10 11

GEH
√

veh/h 1.3 0.1 0.6 0.0 1.8 1.6 2.4 1.9 0.4 0.8 0.6 0.2

Afternoon time (h) 12 13 14 15 16 17 18 19 20 21 22 23

GEH
√

veh/h 0.3 0.2 0.1 0.1 0.0 1.3 0.2 3.3 4.1 1.5 1.6 1.5
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Table 3.4: GEH STATISTIC FOR FLOW (OUT) SOUTH

Morning time (h) 0 1 2 3 4 5 6 7 8 9 10 11

GEH
√

veh/h 0.0 0.2 0.6 0.3 0.9 1.7 0.0 0.9 0.0 0.7 2.4 0.3

Afternoon time (h) 12 13 14 15 16 17 18 19 20 21 22 23

GEH
√

veh/h 0.7 1.0 1.5 0.2 0.1 2.2 0.2 0.4 3.5 3.8 1.4 0.1

Space-Time Analysis

In Figure 3.9, a space-time diagram of vehicle speeds in the motorway network is shown.

Speeds are color delineated, ranging from low speed (dark-red) to free flow speed (green). The

spatiotemporal color map is obtained from Google Maps‡ (Live traffic) on Wednesday, March

30, 2022, at 5.15 pm, while the colors in the run-time DT-GM model are defined as follows:

dark-red for slow traffic (speeds less than 50 % of free flow speed), red for 75 % of free flow

speed, orange for 90 % of free flow speed and green for free flow speed regarding the nomi-

nal speed limit of the edges. Despite the similarity, the comparison with the baseline (speed

presented by Google Maps (real traffic)) should be considered primarily as a playground for

comparison between the physical traffic dynamics and simulated traffic by DT-GM rather than

an absolute measure of performance since exact values for matching the colors with speeds are

not available. Particularly, the aggregation period and the length of a segment on which vehi-

cle speeds are aggregated in Google Maps are not available, and one can assume only nominal

speed limits on the main section. Such visualization reveals DT-GM potential for estimating

traffic dynamics on motorway segments for which direct measurements are not available. For

example, DT-GM can be used to identify and position traffic sensors to get a better overall es-

timation of network traffic or to account for and compensate for sensor failures. In addition, it

can estimate time-varying origin-destination matrices by observing the fraction of traffic flow

on the path with dynamic flow screening of flows. Such visualization can, thus, serve as a

mechanism to alert authorities to revise critical sensor locations in the network. It can also

serve as a benchmark for validating other approaches for estimating real-time traffic flow, e.g.,

estimation methods based on cellular network data. In addition to traffic flow under normal

conditions, DT-GM may also reflect traffic anomalies, such as the effects of accidents on traf-

fic flow. When such an anomaly occurs near the traffic counter, the travel speed of vehicles is

drastically slowed, which is reflected in the running simulation by a color change from green to

red. The reflection time depends on the distance between the location of the accident event and

the traffic counter. In addition, it is likely that changes in speed limits and, therefore, in traffic

flow dynamics can be reflected by DT-GM in the same way. However, this requires additional

systematic research and is beyond the scope of this thesis.

‡https://www.google.com/maps/@46.1680111,6.1025731,6847m/data=!3m1!1e3!5m1!1e1

60



3.4. Simulation synchronization with run-time motorway traffic

Nevertheless, one can observe a high variability of speeds in the motorway network near the

main sections, where two or more sections merge into one and vice versa, and in the areas of on-

ramps and some off-ramps, as well as at the Swiss-French border, caused by a lower capacity of

the border crossing infrastructure. These are accompanied by strong vehicle interactions when

traffic volumes are high (Figure 3.9). Such phenomena trigger congestion activation. Once the

congestion is triggered and the traffic volume is high, it usually spreads upstream to the main

sections. In the main sections, it has also been observed that delayed lane change maneuvers

disrupt traffic flow as vehicles urgently slow down and sometimes even stop and wait for a gap

in the right lane to perform a safety maneuver to change lanes (areas of merge sections or off-

ramps) and continue on the desired route. This requires further analysis as a partial cause of this

may be the inherent features of the car-following and lane change models and their parameters

used in the simulation experiments, but this is beyond the scope of this thesis.

(a) Actual traffic (b) Run-time DT-GM

Figure 3.9: Comparison of spatiotemporal speed distribution between actual traffic and
run-time DT-GM

3.4.4 Discussion

With a foundation of actual traffic data provided by ODPMS, this research presented and tested,

for the first time, a live motorway DT replica in the microscopic simulator SUMO. Moreover,

preliminary results have shown that the proposed DT-GM itself is able to accurately reflect real

traffic dynamics with a very fine temporal resolution during system run-time.
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Therefore, in this section, based on the overall joint analysis and the obtained results, the pos-

sible further directions for enhancing the proposed DT-GM model are highlighted. It is also

worth noting that the comparison with the baseline (real traffic on the studied motorway sec-

tion) should be considered primarily as a benchmark for comparison between real traffic and the

newly proposed DT-GM, allowing for critical review in terms of uncovering gaps and room for

possible improvements in design and further development of DT-GM, rather than as an absolute

measure of performance.

In general, it can be concluded that the run-time DT-GM model almost exactly replicates the

actual traffic in areas of traffic counters on the analyzed section of the Geneva motorway, which

supports the methodological approach used to create DT-GM. Furthermore, this confirms that

SUMO, which was mainly used for offline motorway simulations, is also suitable for run-time

(online real-time) simulations. Thus, DT-GM itself (and its underlying technologies) can be

used to map real traffic to a virtual microscopic simulation-based DT model during the run-

time of a motorway system.

Furthermore, results indicate further directions for DT-GM enhancement. Information about

vehicles’ instantaneous location and dynamics is imminent in the context of pervading CV and

CAV technology. The further granularity of traffic data (ideally, the event-based data) that

ODPMS could provide in the foreseeable future would form the basis for generating instan-

taneous traffic demand inputs in the running simulation. This would allow for the original

distribution of traffic flow on the motorway to be maintained during run-time, allowing DT-

GM to evolve as an exact replica of the physical correspondence. In addition, this information

will enable an online calculation of parameters, e.g., the distribution of the headway parame-

ter, which is a fundamental microscopic traffic parameter within the car-following model that

reflects driver behavior and traffic flow characteristics. Ultimately, headway is a dynamic pa-

rameter, i.e., depending on the traffic flow state and roadway characteristics [107]. Thus, further

analysis is required to define an adaptive headway over time and space rather than a single con-

stant value [106]. Additionally, the lane change model parameters that define lane change,

merging, and overtaking need to be further analyzed (e.g., the look-ahead parameter that allows

modeling the delay in driver reaction time [30], which is still experimental to some extent in

SUMO), as the current simulation setup mainly uses default parameters of the LC2013 lane

change model [104]. Additionally, an in-depth analysis of the parameters of the EIDM car-

following model [103] is recommended for future work.

In addition, speed limits need to be taken into account because they strongly influence vehicle

dynamics and, thus, traffic flow parameters (throughput, density, etc.) on a given motorway

section. Therefore, speed limits are of great importance when modeling traffic flow dynamics

on motorways. In the current model, the motorway’s real speed limit system could not be
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included in the created DT-GM and, therefore, could not be utilized. Instead, the predefined

(static) speed limits for Swiss motorways were used for the modeling. The lack of speed limit

information across the network could affect the traffic dynamics and, thus, represent a cause for

potential errors in the DT-GM if the speed limit changes significantly over time while nominal

speed limits are considered. This will be further investigated and also included in the model

once ODPMS provides speed limit data.

Moreover, conditions such as weather can affect traffic behavior on motorways. Thus, DT-GM

can take into account not only information from sensors about traffic flow on the motorway

(traffic counters), but also sensors from the environment, i.e., sensors that describe the condi-

tions under which traffic flow operates. All of these changes can, therefore, be captured by a

run-time DT in order for a model to accurately reflect traffic changes and provide better insight

into the monitored motorway system. Thus, an interesting future work direction would be to

investigate the possible integration of hidden, latent variables of environmental sensors, such as

weather conditions or daytime and nighttime visibility conditions on the motorway [108]. In

addition, the road maintenance component with information about lane closures or road surface

conditions should also be integrated into the microscopic DT model.

So far, it has often happened that calibrators wait until the end of the interval and then generate

a higher number of vehicles to meet the desired traffic volume on edge, which might form

vehicle platoons. This can be observed with short intervals (one minute long calibration period)

when the traffic volume that needs to be calibrated by the calibrator varies a lot. For example,

when the calibration interval is one minute, the dominance of platoons in moderate traffic is not

apparent. However, if the calibrators are demanded to generate a higher traffic volume, they

may create a platoon that affects the ongoing traffic in an unrealistic way. Thus, it would be a

good way to enable the calibrator to scan the few edges upstream to get an approximate insight

of the amount of traffic that will pass in the current calibration interval so that it can uniformly

(or using other distributions) generate the desired amount of vehicles during the calibration

interval. This is expected to change in the future with developments in SUMO.

Even when traffic counters on motorways provide accurate information about the traffic flow for

a given micro location, the current limitation is the sparse coverage of the motorway with traffic

counters. Especially where there are a larger number of on- and off-ramps that are not equipped

with traffic counters. A satisfactory DT model is subject to two conflicting requirements. It must

be sufficiently detailed to represent actual traffic with relative accuracy, and simultaneously, it

must be simple enough to make a real-time simulation analysis practical. In this manner, the

traffic flow models (3.1) and (3.2) for estimating traffic volumes on unknown routes can be

further simplified by integrating new traffic counters on the aforementioned ramps. This might

form the basis for a more stable solution (fewer unknowns) of the traffic flow model and, thus,
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increase the accuracy of DT-GM even more. This is critical to accurately reflect changes in

traffic dynamics across the motorway while reducing computations when the DT-GM model is

extended to a larger motorway network.

So far, the final solution of (3.1) is affected by the manually defined desired level of intensities

(X⃗ f ree−des) for free variables in the model (see section 3.4.2). Since different distributions of

flows can be observed over the weekdays, further development of defining the adaptive mech-

anism for X⃗ f ree−des is needed to match traffic intensity on inter-mediated network elements. In

particular, the bottleneck in DFC is the search of the space for feasible bounds on X⃗ f ree, which

is performed by the Simplex algorithm and relative error formula. So far, simplifications of the

model have been kept to a minimum in order to preserve most of the traffic dynamics (further

simplifications reduce the number of unknowns in the model but at the expense of the accuracy

of DT-GM). Thus, it has been found that the limiting number of free variables in DT-GM is 6,

for which DFC can still find the system’s feasible solution (3.2) in a reasonable time (≈ 1−2 [s]).

In addition, indications from the design phase and modeling of DT-GM imply that it would be

possible to make this mechanism dynamic, i.e., to adjust (reduce or increase) the number of

Simplex runs depending on the measured error between X⃗ f ree and X⃗ f ree−des and defined error

threshold. Also, results indicated that it is better to use the formula for the relative error (see

section 3.4.1) between a vector of the desired intensity and the vectors from the given set of

feasible solutions to search for the best X⃗ f ree. Comparing the mentioned vectors using the cosine

distance gives worse results during peak periods. The above shortcomings may pose a challenge

for large-scale DT simulation of a more complex road network. One possibility to improve

the scalability of DT-GM is to use the divide-and-conquer approach. It can parallelize the

simulation processes of each motorway region and use the (in/out) flow of a particular region as

the (out/in) flows for the simulation process of the neighboring regions and vice versa. However,

this raises the issue of synchronizing the execution of parallel simulations. Finally, a possible

extension of the used mathematical tool (Simplex algorithm) with, e.g., genetic algorithm or

advanced machine learning algorithms together with the fusion of traffic flow data with other

available data sources, such as mobility behavior through smartphone positioning data [89]

could be a promising direction for future work in enhancing the robustness of DFC and, thus,

DT-GM itself. IoT [91] and Big Data [90] in urban mobility raise the question of a synergy of

DT microscopic simulation and AI technology in the future.

3.5 Concluding remarks

This chapter presents a comprehensive methodological process for developing a motorway DT.

Comparing this approach with existing research on recent advances in the development of DT
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in transportation leads to several important findings. First, it fills a gap in the literature by pre-

senting DT-GM: a novel microscopic simulation-based digital twin of the Geneva motorway

implemented in the microscopic simulator SUMO. Secondly, the results show that the proposed

DFC mechanism exploits the full potential of SUMO to dynamically adapt the running traffic

flow scenario by leveraging the SUMO’s calibrators objects used to calibrate the traffic flow at

run-time via the TraCI interface. Thus, DT-GM itself continuously adjusts the run-time traf-

fic scenario as the spatiotemporal traffic changes on the real motorway. Finally, the proposed

and created DT-GM model uses the newly available fine-grained real-time traffic data received

every minute from the traffic counters on the Geneva motorway via ODPMS. This allows for

comparing the performance of the created DT with the actual motorway traffic at run-time. Ex-

perimental results confirm the reliability of DT-GM, as it reflects the actual traffic with high

accuracy. This means that DT-GM responds to the physical motorway with relatively low la-

tency, which is made possible by the current development of ODPMS.

As such, DT-GM provides the basis for a wealth of new concepts in TM that were not possible

before. DTI-GM parallelization provides a basis for the safe evaluation of control strategies dur-

ing the run-time of the physical system, i.e., before the control scheme is applied to the actual

physical system. Therefore, in chapter 7, the application of DT in optimizing VSL in a safety-

critical decision context using an advanced learning-based control algorithm is investigated.

This will provide data-based evidence of the performance of DWL-ST-VSL in the context of

real-world traffic and enable systematic evaluation of complex control processes involving traf-

fic uncertainties, which is particularly important for the development of adaptive traffic control

systems, in particular, those based on learning.
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Chapter 4

Dynamic spatiotemporal adaptation of
variable speed limit zones

The most effective way to explain the model and motivation for the dynamic adaptation of VSL

zones is to systematically review what has been learned so far and which simulation-based ex-

periments will be performed to confirm the hypothesis described in the Introduction. To do this

successfully, it is necessary to present the work in a logical and orderly manner, as suggested

by the following sequence of steps: (i) simulation-based optimization of VSL zone locations

has to be performed, (ii) to assess whether there is a trade-off between bottleneck optimization

and system performance, an additional multi-criteria analysis that includes different configu-

rations of VSL zones and speed limits is performed, (iii) according to synthesized results of

other researchers and results obtained in simulation experiments new conjecture about the in-

terpretability of the need for dynamic VSL zones adaptation through the concept of uncertainty

in traffic flow capacity is introduced, and, finally, (iv) the model for dynamic adaptation of

VSL zones that will be used in the needed simulation-based experiments in chapters 6 and 7 is

proposed.

4.1 Optimizing VSL zones allocation

Before implementing VSL in a real system, it is critical to determine the length and location of

VSL zones for optimal VSL performance. The length of the VSL zone and its distance from

the bottleneck directly affect traffic dynamics and thus bottleneck control [28]. Therefore, this

section analyzes the impact of different lengths and positions of VSL zones on traffic perfor-

mance in the context of bottleneck optimization using a feedback VSL control system based

on the simple proportional speed controller (SPSC-VSL). The different VSL zone configura-

tions and their impact on traffic flow control and vehicle emissions were evaluated in SUMO

66



4.1. Optimizing VSL zones allocation

on a high traffic demand scenario. The results support the observations of previous researchers

on the significant dependence of VSL zone configuration on VSL efficiency. In addition, this

analysis provides new simulation-based traffic and vehicle emissions data as evidence of the

performance of the SPSC-VSL design in terms of the best placement of successive VSL zones

for motorway congestion control.

4.1.1 Case with feedback VSL controller

Simple proportional speed limit controller

One of the desirable characteristics of VSL controllers is their stable behavior under fluctuat-

ing traffic conditions. At the same time, it is desirable to have a less complex controller so

that it can be implemented and tested in a simulation framework and easily adjusted for real-

world deployments. Therefore, the SPSC-VSL was proposed in [109]. SPSC-VSL is a simple

feedback-based VSL controller that can respond appropriately to changes in downstream den-

sity on controlled motorway sections. To release a disturbance in the downstream motorway

section N+1, N-controlled sections that are upstream of the section N+1 would be active and

respond to their downstream density changes using equation (4.1). For the case of the used sim-

ulation model section N+1 represents section L3 where the bottleneck occurs, see Figure 4.1.

Therefore, SPSC-VSL attempts to adjust the speed limit of the upstream flow to reduce the

inflow to the downstream motorway region to minimize the differences between the densities

measured from the previous control time step t − 1 and the currently measured density on the

controlled motorway segment. In equation (4.1), the difference of the sum of measured densi-

ties of all affected downstream sections from the previous control time step ρ j(t − 1) and the

sum of current densities ρ j(t) with respect to section i is added to the speed limit value from

the previous control time step Vi(t −1). The impact of density changes on the new speed limit

V i(t) can be set by the positive proportional gain Kv:

V i(t) =Vi(t −1)+Kv[
N+1

∑
j=i+1

ρ j(t −1)−
N+1

∑
j=i+1

ρ j(t)]. (4.1)

To achieve a smooth speed transition and avoid large fluctuations between two successive speed

limits, the new speed limit in section i is bounded by equation (4.2). The parameter Cv stands

for the maximum allowable speed limit change between two successive control time steps and

is set to 20 [km/h].
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Vi(t) =


Vi(t −1)−Cv, i f V i(t)≤Vi(t −1)−Cv

Vi(t −1)+Cv, i f V i(t)≥Vi(t −1)+Cv

V i(t),otherwise.

, (4.2)

The flaw of the SPSC-VSL controller is the frequent change in speed limits due to the nature

of equation (4.1). To further stabilize SPSC-VSL, an additional variable Ci [veh/km/lane] is

introduced to control the activation of the controller. If the density in the adjacent section (i+1)

at control time t is greater than the predefined activation threshold Ci, recalculation of the speed

limit in section i is required. Both the activation variable and the controller gain values were

selected from several simulation tests.

Nonetheless, SPSC-VSL is not subject to the curse of modeling (e.g., it does not require the

flow-speed fundamental model which might be difficult to estimate for traffic flow on a mo-

torway due to its time-varying nature). SPSC-VSL is also highly scalable; there is no limit

to the number of motorway segments that can be controlled. Accordingly, multiple adjacent

VSL zones upstream of the congestion area can achieve a smooth speed transition between the

downstream congestion and the free flow arriving at the bottleneck [45]. However, to further

optimize SPSC-VSL, an analysis of the appropriate length of the VSL zones and their positions

is required. Therefore, an analysis methodology for efficient spatial placement of VSL zones in

terms of their length and starting point from the bottleneck is presented in the next section.

Analysis methodology

As mentioned above, in this section, the methodology used in required experiments is described

in detail regarding the impact of different VSL and acceleration zone lengths on VSL efficiency.

The VSL zone is referred to as an area where the speed limit is controlled by a VSL controller. In

the simulation experiment, two VSL zones (L1 and L2) controlled by the SPSC-VSL controller

(Figure 4.1) are used. To ensure optimal bottleneck operation, vehicles must enter the bottleneck

with a speed close to Vcr. Due to the frequently oscillating location of the creation of the

bottleneck in the mainstream traffic flow within the merging area of the on-ramp r3, it is hard

to determine the exact location of the bottleneck activation. What was observed during the

simulations is that when a little activation of the bottleneck is created, it is likely that at the very

beginning, the formed disturbance (congestion) will propagate upstream at least 50− 100 [m].

As a result, the ending point of the acceleration area in the simulation model is set at the position

of 5.3 [km] (100 [m] before starting position of the on-ramp r3) so that vehicles are still able to

accelerate after leaving the VSL zone and can enter the bottleneck tail with Vcr as the results

from [28] suggested.

68



4.1. Optimizing VSL zones allocation

Figure 4.1: Set up of VSL zones for the feedback VSL controller

Thus, in the following experiment, three VSL zone configurations 100− 100, 300− 300, and

500−500 [m] were chosen. The first value refers to L1, while the second represents the length

of the L2 zone, as shown in Figure 4.1. Additionally, three acceleration areas are selected 100,

200, 300 [m] for the experiment. The two VSL zones are adjacent and spatially adjusted so that

the VSL2 zone is always close to its downstream acceleration area. Therefore, 9 different VSL

configurations are used in the performed simulation experiment. It will be referred to in the

following sections as follows. For example, the VSL configuration with two VSL application

zones with a length of 300 [m] and an acceleration area of 100 [m] will be abbreviated as 300−
300−100. The same principle applies to other configurations [110].

Motorway model and traffic data

The motorway model used to test selected scenarios is based on the simulation model used

in [71]. The total length of the motorway model is 8 [km]. The mainstream consists of two

lanes. It contains two on-ramps (r1 and r3) and one off-ramp r2. The total length of each ramp

is 0.5 [km]. The model contains three main sections used for SPSC-VSL controlling the VSL

zones (L1 and L2), and the congestion section L3. The VSL zones are equipped with a VMS

on which the new speed limits are displayed depending on the current traffic conditions. The

congestion is caused by the additional traffic demand on the mainstream and at r3, which leads

to the activation of the bottleneck in the merge area. The traffic flow used in the simulation

experiment was defined according to Figure 4.2. The additional traffic peak in the mainstream

flow (between 42-47 simulation minutes) and the highest demand at the on-ramp r3 lead to

pronounced congestion in the merging area. It is important to note that the calibration procedure

of the simulated traffic flow is not included, since a synthetic model with corresponding traffic

flow was used in this analysis. The objective of this experiment is to develop a methodology

to evaluate the impact of different configurations of VSL zones on traffic flow and vehicle

emissions, as well as their impact on the performance of SPSC-VSL. To test the effects of VSL

zone lengths on a given motorway section, appropriate traffic data must be collected and the

simulation model ought to be calibrated. Then, the methodology defined in this section can be

applied to a specific motorway in the same way as described here.
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Figure 4.2: Simulated traffic demand

Simulation results

The conducted experiments were evaluated using the corresponding Measures of Effectiveness

(MoEs) explained further on. The average vehicle speed and the average traffic density were

measured in the area of the bottleneck (section L3). The environmental parameters measured

during the simulation are CO, CO2, NOx, and PMx. Together with the macroscopic traffic

parameters (density and average speed), the mentioned MoEs represent an enrichment of the

information about the traffic situation since the sudden braking and acceleration of vehicles in

congested traffic causes additional fuel consumption and, consequently, a higher environmental

impact. The variant without VSL is used as a baseline to evaluate the obtained results.

Influence of VSL and acceleration area lengths on traffic parameters

Regarding Figures 4.3, 4.4, and 4.5, presented in this analysis, it should be noted that the mea-

surements have been connected by using lines for better illustration. However, the part of the

line that lies between the points does not correspond to any measurement.

Figure 4.3 shows the TTS measured on the entire motorway network for the simulated cases.

There are 3 cases with a lower T T S than in the case without VSL (notation No VSL). The

best result is obtained for the VSL configuration 300− 300− 100, where each VSL zone has

a length of 300 [m] and the acceleration area is 100 [m]. The obtained improvement is 1.38 %

compared to the case without VSL. A similar result is obtained in the case of the 500−500−100

VSL configuration. Thus, a shorter acceleration zone reduces the delay and leads to a better

congestion resolution.
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Figure 4.3: Variation of TTS with the lengths of VSL zones and acceleration zones

Figure 4.4: Variation of average speed in L3 with the lengths of VSL zones and acceleration
zones

Figure 4.5: Variation of traffic density in L3 with the lengths of VSL zones and acceleration
zones

Figure 4.4 shows the change in average speed in the bottleneck area as a function of VSL zone

length and acceleration area. The VSL zone configuration 500− 500 [m] with an acceleration

area of 100 [m] gives the best result (notation 500−500−100). Also, the VSL zone configura-

tion 300−300 [m] with an acceleration length of 300 [m] (notation 300−300−300) achieves

a good performance in terms of the measured average speed in the bottleneck area. For all ac-

celeration areas in the case of VSL zones with a length of 100−100 [m], the measured speed is
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equal to or slightly lower than the case without VSL.

Figure 4.5 shows the average density relative to the different VSL zone configurations. The

highest density of 30.87 [veh/km/lane] is obtained for the 300− 300− 200 scenario, which

corresponds to a deterioration of −5.65 % compared to the density of 29.22 [veh/km/lane] in

the case without VSL. The best case is achieved for the 500− 500− 100 configuration with a

density value of 28.10 [veh/km/lane]. Compared to the case without VSL, the average density

in L3 is decreased by 3.83 %. Also, the VSL configuration 300−300, where the length of the

acceleration zones is 100 and 300 [m], leads to favorable results in reducing the traffic density.

The most significant reduction in vehicle emissions is achieved with the VSL configuration

500− 500− 100. The positive impact of the controllers on CO2 emissions is up to 1.25 %,

on CO emissions up to 2.97 %, on NOx emissions up to 1.14 % and on PMx emissions up to

1.16 % per simulated traffic scenario. For a complete list of results of all cases analyzed, see

Tables 4.1, 4.2, and 4.3.

Table 4.1: OBTAINED MOES IN CASE OF VSL ZONES LENGTH 100-100, AND DIFFERENT

ACCELERATION ZONE LENGTHS

VSL zones lengths [m] No VSL 100 - 100

Acceleration zone length [m] 100 200 300

Obtained Improv. [%] Obtained Improv. [%] Obtained Improv. [%]

T T S [veh·h] 430.63 429.99 0.15 428.65 0.46 431.74 -0.26

Avg. speed in L3 [km/h] 79 75.95 -3.86 79.41 0.52 77.03 -2.49

Avg. density in L3 [veh/km/lane] 29.22 30.77 -5.3 28.33 1.33 30.55 -4.55

CO2 [kg] 9,473.84 9,465.31 0.09 9,427.56 0.49 9,530.76 -0.60

CO [kg] 120.31 119.99 0.27 119.63 0.57 120.61 -0.25

NOx [kg] 20 20 0 19.8 1 20.13 -0.65

PMx [kg] 452.33 452.07 0.06 449.2 0.69 454.4 -0.46

Table 4.2: OBTAINED MOES IN CASE OF VSL ZONES LENGTH 300-300, AND DIFFERENT

ACCELERATION ZONE LENGTHS

VSL zones lengths [m] No VSL 300 - 300

Acceleration zone length [m] 100 200 300

Obtained Improv. [%] Obtained Improv. [%] Obtained Improv. [%]

T T S [veh·h] 430.63 424.69 1.38 439.04 -1.95 430.85 -0.05

Avg. speed in L3 [km/h] 79 79.64 0.81 77.31 -2.14 80.65 2.09

Avg. density in L3 [veh/km/lane] 29.22 28.54 2.33 30.87 -5.65 28.26 3.29

CO2 [kg] 9,473.84 9,398.6 0.79 9,480.61 -0.07 9,429.61 0.47

CO [kg] 120.31 117.75 2.13 119.72 0.49 119.23 0.89

NOx [kg] 20 19.8 1 20.18 -0.88 19.84 0.79

PMx [kg] 452.33 447.1 1.16 454.79 -0.54 449.73 0.57
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Table 4.3: OBTAINED MOES IN CASE OF VSL ZONES LENGTH 500-500, AND DIFFERENT

ACCELERATION ZONE LENGTHS

VSL zones lengths [m] No VSL 500 - 500

Acceleration zone length [m] 100 200 300

Obtained Improv. [%] Obtained Improv. [%] Obtained Improv. [%]

T T S [veh·h] 430.63 427.7 0.68 428.7 0.45 433.7 -0.71

Avg. speed in L3 [km/h] 79 80.8 2.28 79.6 0.76 78.5 -0.63

Avg. density in L3 [veh/km/lane] 29.22 28.1 3.83 28.7 1.78 30.2 -3.35

CO2 [kg] 9,473.84 9,355.55 1.25 9,396.42 0.82 9,437.06 0.39

CO [kg] 120.31 116.73 2.97 117.9 2 118.66 1.37

NOx [kg] 20 19.77 1.14 19.93 0.37 20.01 -0.05

PMx [kg] 452.33 447.08 1.16 450.17 0.48 452.14 0.04

Spatiotemporal congestion analysis

Space-time diagrams allow visualization of traffic behavior over time and space (throughout

the observed motorway network). For example, the spatiotemporal distribution of congestion is

shown in Figure 4.6. Speeds in Figures 4.6a, 4.6c, 4.6e, and 4.6g are color-coded (from dark red

for 0 [km/h] to dark blue for vehicle speeds around the nominal maximum speed of 120 [km/h].

The x-axis represents the distance from the beginning of the motorway sections x = 0 to x =

8 [km], which corresponds to the length of the simulated motorway segment. The on-ramp r3

is located at x = 5.4 [km]. On the y-axis is the time and the simulation lasts 1.5 [h]. Figure

4.6a shows the vehicle speed for the base case without VSL (No VSL). The region with the

yellow and red patterns corresponds to a congested area where vehicles travel at lower speeds.

Due to changes in the intensity of inflow at the on-ramp, the location of the floating merge

point of vehicles at the on-ramp and vehicles in the mainstream may change over time [28].

Therefore, the bottleneck in this experiment forms in the merge area from x = 5.4 to 5.65 [km].

The congestion starts at t = 0.45 [h] with the activation of the bottleneck in the merge area

and propagates upstream to the position x = 4.5 [km]. After the traffic demand decreases, the

congestion decreases and finally dissipates at about t = 1.25 [h]. The best result is obtained with

the 300−300−100 configuration (diagram (e) in Figure 4.6), where the congested area is the

smallest compared to the other configurations. A closer look at the corresponding best VSL

zone setup and speed limits is shown in Figures 4.7 and 4.8. Since the speeds and densities

are correlated macroscopic variables (fundamental speed-density diagram), similar patterns can

be seen in Figures 4.6b, 4.6d, 4.6f and 4.6h, where orange-red represents a higher density

value (congestion). Looking at these plots vertically near the position of on-ramp r3 (merge

range from x = 5.4 to 5.65 [km]), it can be seen that the bottleneck becomes active at about t

= 0.45 [h]. In this case, the traffic density is about 35 [veh/km/lane] (light blue stripes in the

mentioned diagrams).
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Figure 4.6: Spatiotemporal diagrams for best obtained VSL configurations
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Figure 4.7: Average speed for the best VSL configuration 300−300−100

Figure 4.8: Speed limits for the best VSL configuration 300−300−100

Discussion

As can be seen in Figure 4.6, a traffic jam is inevitable due to the simulated high traffic demand,

whereupon the traffic flow enters the unstable congested state. No matter what VSL configu-

ration is chosen, SPSC-VSL cannot prevent the occurrence of congestion. In the case of the

best VSL configuration 300− 300− 100, the lengths of the VSL zones (VSL1 = VSL2 = 300

[m]) and the corresponding speed limits (see Figures 4.7 and 4.8) are sufficient to reduce the

traffic outflow from the VSL application zones, which eventually helps to relieve the down-

stream bottleneck. At the same time, the acceleration area of 100 [m] is sufficient to ensure that

vehicles leaving the VSL zone can accelerate and enter the bottleneck at critical speed (where

capacity is reached [28]). Consequently, relieving the bottleneck is more efficient than other

VSL zone configurations, resulting in the best congestion resolution. It should be noted that

this experiment is different from the one described in [28], where the lowest possible speed

limit is 10 [km/h], while the nominal speed is 100 [km/h]. Therefore, it is shown that the length
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of the acceleration area below 175 [m] is not sufficient to ensure enough distance for the vehicle

to reach the Vcr at the bottleneck when very low-speed limits are deployed [28]. Since the low-

est speed limit in this simulation experiment is 60 [km/h], the length of the acceleration area

of 100 [m] might seem sufficient for vehicles to accelerate and reach the bottleneck with Vcr.

In contrast, with a longer acceleration area, some of the vehicles might accelerate and reach a

speed above the Vcr and, thus, they need to perform deceleration again to adjust the speed to

the lower speed of the bottleneck. Thus, the congestion discharging effect of the bottleneck

is suboptimal. As a result, the congestion lasts longer and propagates much farther upstream.

Moreover, in the configuration with 500−500 VSL zones, the VSL zones are too long and the

vehicles that the VSL itself has slowed down travel longer. Consequently, the T T S is higher

even though the density and measured speeds in the bottleneck area are improved.

This fact implies that there is a VSL zone configuration where both downstream bottleneck

travel time and upstream traffic travel time affected by VSL could be efficiently minimized.

In other words, this implies that there might exist a trade-off between local optimization of

the bottleneck and the entire network as a whole. The recent results in [29] show that the

use of longer VSL application areas also implies the usage of longer acceleration areas in the

case of higher-speed limits deployment. Therefore, further research on a control structure that

adjusts the configurations of the VSL zones (more spatial variation) in the case of SPSC-VSL

is desirable. A positive impact of VSL on some aspects of traffic flow (TTS, average speed,

and density) is correlated with environmental characteristics (vehicle emissions). Based on the

results of this experiment, a multi-objective analysis is performed in the next section, which

includes two objectives: local bottleneck optimization and the system as a whole with respect

to different VSL zone configurations with a finer spatial VSL zones granularity.

4.1.2 Multi-criteria analysis for optimal VSL zones allocation

The first step of the suggested methodology is to perform a simulation analysis of the proposed

VSL zone model (see Figure 4.9) to identify the factors that have the strongest correlation

with the proposed optimization criteria. Based on these significant factors, a set of solutions

is generated for which an attempt is made to determine the correlation between the length and

distance of the VSL zone from the bottleneck as well as speed limit values. The analysis is

divided into two parts. First, the specific response of the system to different configurations of

VSL zones for an active speed limit value of 80 [km/h] during the congestion period is analyzed.

The case without VSL was taken as a baseline for the comparison of results (Figure 4.10).

The second simulation experiment examines different configurations of VSL zones along with

various speed limits. Both approaches are evaluated using two objectives: (i) the performance

of the overall system, measured as total TTS aggregated during the simulation, over the entire
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motorway segment, and (ii) the bottleneck congestion expressed as the average traffic density

over the entire simulation. Both parameters, i.e., their numeric values, are obtained as the

average of five simulations run with different simulation seeds. The first criterion has a global

character, i.e., it considers the cumulative amount of T T S of the vehicle in the network, whereas

the second criterion (simulation-mean traffic density in the bottleneck) has a local character. Fi-

nally, for the search of non-dominated solutions in two-dimensional space, the Matlab software

tool is used. Particularly, the function paretosearch from the program support for multi-criteria

optimization to determine the optimal Pareto front (optimal set of solutions) is used. The ob-

tained solutions were further analyzed to obtain an overall picture of the influence of VSL zone

configuration on traffic flow performance in the context of simulated traffic congestion.

Simulation experiment setup

In the simulation experiment, different configurations of VSL zones (zone length (L [m]) and

distance from a bottleneck (D [m])) were compared to analyze their effects on congestion opti-

mization in the bottleneck (a merge area in the vicinity of on-ramp located at X3 = 5.3 [km]).

The simulation environment used consists of the microscopic simulator SUMO, in which a syn-

thetic test model of the motorway was created. The VSL zone and speed limit were uniquely

defined for each simulation. Each simulation, i.e., each traffic experiment, lasts 1.5 [h]. In this

experiment, the motorway model and traffic demand with medium load defined in detail later in

chapter 6 is used.

VSL zone and speed limit configurations

The available configurations of VSL zones range from X1 = 3 to X3 = 5 [km] with a minimum

length of 100 [m] and a maximum length of 1,000 [m]. Thus, the main characteristics of the VSL

zone configuration (VSL application area and vehicle acceleration area) are clearly determined

by L and D (see Figure 4.9). Where s and e stand for the start of the VSL zone and its end,

respectively. The VSL activation scheme is based on a simple activation rule: if the lane-

weighted average traffic density in the bottleneck is greater than 30 [veh/km/lane], activate

VSL, i.e., apply speed limit, otherwise, turn it off, i.e., the nominal speed limit of 120 [km/h] is

used.

Analysis of Pareto optimal solution

Figure 4.10 shows a set of solutions obtained by the simulation experiment. On the x-axis is

T T S, and on the y-axis is the mean value of traffic density in the bottleneck. Each measured

point represents data for a particular configuration of the VSL zone. The selected points a, b

and c represent the Pareto front, i.e. a set of optimal non-dominant solutions according to the
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Figure 4.9: Scheme for VSL application zone design

criterion of minimization of both criteria. The configurations of the VSL zones for points a, b,

and c are shown in Table 4.4, where the measured parameters T T S and density are also shown

and compared with the case without VSL. It can be seen that points a and b have approximately

equal T T S values, while the average density in the bottleneck is lower compared to the density

without VSL. It follows that for the specific experiment, there are two solutions (points a and b)

for establishing VSL zones that have an adequate function to stabilize the traffic in the bottle-

neck without affecting the total travel time through the network. Although point c reduces the

traffic density in the bottleneck the most (a decrease of −3.56% compared to the case without

VSL), the dependence of the increase in the length of the VSL zone on the increase in T T S is

evident, which is 0.25% larger than without VSL.

Figure 4.10: Pareto front of optimal non-dominated solutions for different configurations of
VSL zones for an active speed limit of 80 [km/h] during the congestion period
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Table 4.4: Characteristics of non-dominated optimal solutions (Pareto front) for different
configurations of VSL zones with a speed limit of 80 [km/h]

L

[m]

D

[m]

VSL

[km/h]

TTS

[veh·h]

Reduction

[%]

Density in L4

[veh/km/lane]

Reduction

[%]

No VSL - - - 435.7 - 30.9 -

a 200 800 80 435.6 -0.02 30.3 -1.94

b 300 700 80 435.7 0 30.1 -2.59

c 400 600 80 436.8 0.25 29.8 -3.56

Analysis of Pareto optimal solution with different speed limits

To assess the impact of different speed limit values on the system, an additional analysis that

includes variation in speed limit range from 60 to 100 [km/h] has been performed. Figure 4.11

shows a set of solutions obtained by the simulation experiment in which the speed limits were

varied in addition to the different configurations of the VSL zones. Different speed limits for

individual measurements are marked with different colors. The right side of the graph shows

a scale where the blue color represents a speed from 60 [km/h], to the yellow color represent-

ing a speed limit of 100 [km/h] (in between there are speed limits with a discrete step size of

10 [km/h]). Thus, as in the previous case, every measured point represents data for each in-

dividual unique configuration of the VSL zone with an additional unique color indicating the

speed limit. The isolated points a′ and b′ represent the Pareto front, i.e., a set of optimal, non-

dominant solutions. The configurations of the VSL zones for points a′ and b′ are shown in

Table 4.5, where the measured parameters T T S and density are also shown and compared with

the case without VSL. It is obvious that points a′ and b′ with the speed limit of 100 [km/h]

have better (lower) values of T T S and density in the bottleneck, compared to the case without

VSL. It follows that for the specific experiment, there are two solutions (points a′ and b′) for

establishing VSL zones that have an adequate function to stabilize the traffic in the bottleneck

without affecting the total travel time in the network. Moreover, compared to the previous solu-

tion, there is an additional reduction in TTS and traffic density when the speed limit is increased

from 80 to 100 [km/h]. It can be concluded that the variables for the configuration of the VSL

zone and the speed limits are interdependent and their setup strongly depends on the charac-

teristics of the traffic problem to be optimized. Also, the trade-off between local bottleneck

optimization and global system performance is evident from the obtained results. For example,

one can significantly reduce the speed limit without further improving the performance of the

bottleneck, but the traffic on the motorway as a whole will suffer.
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' '

Figure 4.11: Pareto front of optimal non-dominated solutions for different configurations of
VSL zones and speed limits

Table 4.5: Characteristics of non-dominated optimal solutions (Pareto front) for different
configurations of VSL zones and speed limits

L

[m]

D

[m]

VSL

[km/h]

TTS

[veh·h]

Reduction

[%]

Density in L4

[veh/km/lane]

Reduction

[%]

No VSL - - - 435.7 - 30.9 -

a′ 200 300 100 430.8 -1.12 29.4 -4.76

b′ 700 700 100 434.9 -0.18 29.3 -5.18

4.2 Nondeterministic capacity behavior and VSL zones allo-

cation

In this section, the impact of spatiotemporal capacity variations on motorways on optimal VSL

zones allocation is addressed. As presented in chapter 2, traffic breakdown and, therefore, the

operational capacity, is a random parameter, i.e., even measured at the same location, it can vary

from time to time.

Accordingly, for a better understanding of the hypothesis about dependencies in the allocation of

VSL zones and nondeterministic capacity, an illustrative example from Figure 4.12 can be used.

The phenomena of a bottleneck capacity drop (area A1) caused by on-ramp traffic is depicted.
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The function qcap(x, t̄) illustrated above the hypothetical motorway segment is, therefore, asso-

ciated with fluctuating motorway capacity for a given fixed moment t̄. Therefore, to adjust the

upstream arriving flow q̄in(x, t̄) (this illustrative example assumed constant uninformed main-

stream demand indicated by a horizontal dashed line with the arrows in the direction of traffic)

to fit into the reduced bottleneck capacity reduced by the amount ∆qdrop(t̄), VSL should not be

implemented wherever. This is because the upstream capacity itself is limited. Accordingly:

• favorable areas that can be used as storage to accommodate an additional amount of ve-

hicles (equal to ∆qdrop(t̄)) are areas (motorway regions) A2 and A3 (Figure 4.12);

• in case of temporary flow reduction, the length of VSL zones dictates the duration of flow

reduction (Figure 2.5);

• there is no apparent motivation to reduce the flow rate from the VSL area lower than the

dropped capacity ∆qdrop(t̄).

Therefore, to avoid VSL-induced additional traffic breakdown (and capacity drop) upstream

of the bottleneck, VSL should be applied in regions where additional capacity exists with an

appropriate VSL zone length proportion and speed limit value. Therefore, regions A2 and A3

(Figure 4.12) should be associated with sections on which VSL zones should be adapted for the

particular moment t̄. However, given that a moment later t̄1, the curve qcap(x, t̄1), q̄in(x, t̄1) and

∆qdrop(t̄1) might look differently, and, thus, A2 and A3. This implies the need for an additional

adjustment of VSL zones in time. Accordingly, one can conclude that the optimal positioning

of the VSL zone is not just a question of how far it should be from the bottleneck as presented,

for example, in [28, 29], but is also dependent on spatially and temporally constrained upstream

motorway capacity by the given prevailing conditions.

Regarding the effect of a temporary reduction of traffic flow (presented in chapter 2) if the

higher traffic demand at the on-ramp lasts longer, the temporary effect will disappear after

some time. Therefore, the bottleneck will again be exposed to a stronger loading. Thus, the

following questions arise. (i) Is it possible to prolong the temporary flow rate reduction from

the VSL area by activating different VSL zones? For example, once an active VSL zone has

lost the ability to reduce traffic flow can activation of a new capacity-free VSL zone prolong

temporary flow reduction? (ii) Is it possible to accommodate additional vehicles in a distributed

way across the regions with available capacities (e.g., regions A2 and A3) to achieve the needed

lower flow rate to meet the capacity drop ∆qdrop(t̄)?

One can postulate that this may be achieved by activating VSL zones using appropriate switch-

ing procedures, i.e., activating/deactivating, shrinking/extending, and reallocating VSL zones in

certain sequences in a timely manner. By doing so, partially temporary flow reduction achieved

at different locations (e.g., at A2 and A3 in Figure 4.12) can be summed up as a semi-permanent
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flow reduction effect that prolongs the temporary flow reduction effect for a substantial portion

of time equal to the duration of for example peak flow rate at the on-ramp. Apparently, such

additive property could be useful in VSL traffic control on motorways where the regulation

does not allow for implementing speed limits less than e.g., 60 [km/h]. In other words, this can

accomplish the low-valued controlled flow (severe flow reduction) achieved by standard MTFC

approaches [13, 28, 38] that rely on much lower speed limit values (far below 60 [km/h]).

∆qdrop(t)
Mainstream 

traffic

On-ramp
traffic

No additional 
capacity 

A1
A2A3

VSL areaVSL area

-

qcap(x,t)-
qin(x,t)-_

Figure 4.12: Impact of capacity as a function of position and time on VSL zones positioning

The question, then, is: how can one quantify uncertainty in spatiotemporal motorway opera-

tional capacity? Given the relationship (2.1) from the fundamental traffic diagram, there is also

a relationship between the critical parameter of traffic flow qcap = ρcrvcr. As pointed out in [4],

it follows that ρcr is a more stable parameter, while qcap is not. This means that vcr varies with

the change in qcap. Therefore, the sensitivity of vcr to stochastic traffic characteristics or en-

vironmental effects may be similar to the sensitivity of qcap. Accordingly, the spatiotemporal

capacity can be expressed as a function:

qcap(x, t) = ρcr(x, t)vcr(x, t). (4.3)

Although a strong analytical formulation of this conjecture about the correlation between the

upstream constrained capacity and the position of VSL zones is not provided, simulations have

been used to explain the proposed postulation. Moreover, it can be assumed that important in-

formation about the flow capacity and its uncertainty is embedded in ρcr(x, t) and vcr(x, t) and

their spatiotemporal patterns to support the proposed conjecture. Therefore, ρ(x, t) and v(x, t)

can be used as state variables for the proposed DWL-ST-VSL since RL agents could benefit

from them by extracting knowledge about preconditions (from traffic patterns) that lead to un-

desirable capacity constraints, i.e., detecting probabilistic traffic breakdown, and proactively

adjusting speed limits and VSL zones accordingly.
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4.3 Model for dynamic spatiotemporal VSL zones adapta-

tion

By synthesizing all the research results and the simulated results, conclusions can be drawn,

based on which the dynamic spatiotemporal VSL zones adaptation model is proposed, which

must allow for the timely allocation of sufficient VSL zones combinations. In particular, this

is confirmed by the results of the multi-criteria analysis, which shows that multiple acceptable

solutions (pareto front) to the objectives can be achieved by using completely different VSL

zone configurations and speed limits. Thus, the results show that VSL zones should have de-

grees of freedom in both directions along the motorway. In this way, VSL can adjust the zone

configuration closer or farther from the bottleneck (Figure 4.13).
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Figure 4.13: Scheme for dynamic VSL zones adaptation

Thus, according to findings in this chapter, the dynamic VSL zones adapting model must be able

to: (i) precisely respond to the bottleneck, i.e., adjust the VSL zone to the bottleneck location;

(ii) adjust VSL zones to accomplish a congestion tail that moves upstream ∆X(t) (this can be

useful for the mitigation of shockwaves, i.e., moving bottlenecks); and (iii) account for local

spatiotemporal disturbances that might occur upstream of the bottleneck.

Accordingly, in Figure 4.13, a virtual VSL area is associated with the spatial domain on which

the various VSL zone configurations can be activated. To illustrate this, one can imagine a

different combination of active discrete VSL zones within the virtual VSL area. For clarity, in

Figure 4.13 the left and right groups of available VSL zones are shown since they will be used

by adjacent learning agents to control their own section. For example, an upstream agent may
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use the configurations of 1L,. . ., and 4L, while a downstream agent (closer to the bottleneck)

may use the VSL zone of 1R,. . ., and 4R. More on this will be elaborated in the following

chapters.

By doing so, dynamic spatiotemporal adaptive VSL zones do not just account for the lengths

of VSL application area (L1(t), L2(t)) and acceleration area (Xacc(t)). Moreover, different VSL

configurations allow for temporary flow reduction prolongation since different VSL zones can

be activated once previously triggered VSL zones get overloaded and if they have lost the flow

reduction effect. This goes in line with the proposed conjecture that VSL installation should

take into account the uncertain capacity constraints of the motorway upstream sections.

The model scheme of dynamic VSL zones that is presented here represents the underlying

logical structure of how VSL application areas should behave. Technically, this is an interface

between the VSL controller and the controlled motorway environment that determines how and

in what range VSL zones can be adjusted. As such, it will be an integral part of the main

program logic of the proposed learning-based controllers. The task now is to develop a strategic

control logic capable of simultaneously optimizing the speed limits V 1 and V 2 as well as the

VSL zone lengths L1 and L2, and, thus, the acceleration area Xacc in the given example. As

such the presented adaptive model satisfies all the basic criteria for setting VSL zones defined

in the research literature so far.

4.4 Concluding remarks

For optimal traffic flow control on the motorway using VSL, the initial conditions of traffic

dynamics in the area of interest must be taken into account when calculating the new speed lim-

its and the position of the VSL zone. However, the spatial boundary conditions of constrained

capacity must also be taken into account. Thus, the facility where the speed limit must be imple-

mented is split into two segments: (i) the point to be optimized, e.g., a downstream bottleneck,

and (ii) the upstream motorway segment where VSL is to be deployed. Thus, the constraints

must include both a feasible region of additional upstream capacity where VSL can be applied

and the point of interest for optimization.

Accordingly, the need for a spatiotemporal dynamic adaptation of VSL zones that accounts for

the nondeterministic nature of motorway capacity using the fact that capacity is not constant

but changes with position and time can be postulated. To accomplish this, a model for dynamic

spatiotemporal adjustment of VSL zones is proposed. It is a rather simple model, but with it,

one can achieve and justify quite a number of things about dynamic VSL zones adaptation,

which will be presented in the following chapters.

Multi-criteria analysis for the simulated bottleneck provides evidence that exists the trade-off
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between local bottleneck optimization and the system as a whole. Accordingly, the main hy-

pothesis regarding the operation of dynamic spatiotemporal VSL zones is as follows. To achieve

a reduction in traffic flow equal to or less than the capacity of the activated bottleneck, it is not

always necessary to reduce the speed of upstream traffic to values equal to or less than the speed

of the bottleneck. It is supposed that an adequate reduction in traffic flow can be achieved by

maintaining the speed of upstream traffic flow at a higher level by dynamically and sequentially

adjusting the VSL zones along with the speed limit values. Of course, the adjustment should

be done taking into account the spatiotemporal traffic characteristics, which will be discussed

further on. Thus, one can try to simultaneously take advantage of both effects - speed homoge-

nization and MTFC - by dynamically adjusting the VSL zones to improve the operation of the

bottleneck without affecting the overall system performance.
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Chapter 5

Reinforcement learning based VSL

This chapter presents the essential elements for understanding RL techniques and solving VSL

control problems with their help. Accordingly, a single-agent RL controller for VSL is intro-

duced. The twin curses of modeling VSL using continuous traffic variables are discussed, for

which an application of function approximation techniques in RL to deal with such problems is

presented.

5.1 Reinforcement learning

RL can be seen as a form of simulation-based dynamic programming technique for making de-

cisions in situations that have some dynamics - that evolve over time [18]. In an AI community,

RL is viewed as a machine learning technique. Hence the word learning, while reinforcement

can be associated with an agent that learns through trials and errors as it shall be seen later. It is

useful in solving large-scale nondeterministic processes [111]. Decisions are made sequentially.

The concept itself is called stochastic control, and the main method to deal with such problems

is dynamic programming. In that context, RL can be seen as an approximation method for solv-

ing classical dynamic programming problems. It combines the principle of the Monte Carlo

method with the principle of dynamic programming, which in RL is called the temporal dif-

ference method. In RL, a simulation can be used to generate samples of the value function of

a complex system, rather than finding an explicit model (state transition probability). Samples

are then discounted or averaged to obtain the expected value of the value function. Therefore,

transition probabilities are not required in RL.
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Dynamics
motorway traffic flow

st

Control

Disturbance
e.g. on-ramp traffic

VSL agent (controller)

at ~ π (·|st) St+1

rt(st,at)

State-action reward

rt+1(st,at,st+1)

State New state
π(·)

New reward

Figure 5.1: Concept of applying RL in VSL control

This avoids the curse of dimensionality, i.e., a potentially large number of states which leads

to the well-known curses of dynamic programming: the curse of modeling and the curse of

dimensionality [18]. Although it is known as a model-free technique, the RL optimization

process heavily relies on simulations. Therefore, an implicit model of the controlled process is

persisted in a simulator classifying the RL as a simulation-based optimization technique.

RL agent in general learns its optimal behavior (e.g., VSL control optimization) by trial-and-

error interactions within its environment (see Figure 5.1). Thus, in the standard RL paradigm,

the agent is connected to its environment via the perception and action framework. At each step

of interaction, the agent senses the environment and then selects an action to change the state

of the environment. This state transition generates a reinforcement signal (reward or penalty)

received by the agent [112]. Therefore, the agent’s goal is to learn how to move the system along

a desirable trajectory of states to maximize the return. The agent’s environment is assumed to

be modeled as a Markov Decision Problem (MDP). An MDP is a tuple ⟨S,A,P,R⟩ where S

is a finite set of n discrete states and A is a finite set of actions available to the agent. The

actions are stochastic and Markovian in the sense that an action at in a given state st ∈ S results

in a state st+1 with fixed probability P(st+1|st ,at), while R(st+1|st ,at) represents the reward

received after state transition. Policy π is a function representing a mapping from states to

actions π : S 7→ A, which optimizes performance, for example, expected accumulated reward

received. RL methods differ according to the exact measure and optimization criteria (total

reward optimization, discounted reward optimization, or average reward optimization) used for

select actions.
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5.1.1 Q-learning algorithm

In this thesis, the focus is on using the Q-learning algorithm to optimize the VSL control pro-

cess. Q-learning is an off-policy model-free RL algorithm that learns to associate an action at

with the expected long-term payoff (reward) for performing that action in a given state st [113].

How good an action is in a given state is expressed as a Q-value stored in the Q-learning function

Q(st ,at). Q-function is learned using the following iterative update rule:

Qi(st ,at) :=Qi(st ,at)+αn(rt+1 + γ max
a′∈A

Qi(st+1,a′)−Qi(st ,at)). (5.1)

The performed action at in state st stimulates a state transition to the new state st+1, from which

an optimal action is a′. Depending on this transition, the agent receives a reward rt+1. The

parameter αn is the learning rate that controls how fast the Q-values are adjusted. The discount

factor γ controls the importance of future rewards. Various exploration/exploitation strategies

(e.g., ε-greedy) are used to search the solution space, i.e., to ensure that the agent sufficiently

explores its environment and learns the appropriate action in a given state.

5.1.2 Function approximation for RL

The update rule for Q-learning implies that equation (5.1) requires a lookup table to store the

learned Q-values for all possible (st ,at) pairs. When RL is applied, for example, to traffic

control on motorways, states can be defined using traffic parameters such as normalized traffic

density and average traffic speed suitable to describe traffic conditions. As a result, the sets S,

and A become vast or infinite, and the stochastic algorithm (5.1) loses its efficiency in its basic

lookup formulation. The dimensions of the state representation grow as a function of the dis-

cretization of the traffic flow parameters. As the number of states or discretization granularity

rises, the size of the lookup table increases exponentially, revealing the curse of dimension-

ality. It is worth noting that the state space becomes infinite by the inclusion of continuous

variables. Actions have a similar problem. The number of actions increases the size of the

table. And if the actions are continuous, the table becomes infinitely large. But, continuous

actions along with high-dimensional state modalities are desirable in many real-world control

applications. Accordingly, to visit every state-action pair sufficiently for good Q-value function

estimation can take a considerable amount of computer time or could be impossible [113]. The

most common solution to these problems is to replace the table with an approximation function.

Thus, learning the optimal Q-values requires some form of function approximation (linear or

nonlinear). Approximations address the large dimensionality problem of storing state-action

values in the computer’s memory and provide a way to obtain solutions in a reasonable com-

putational time [18]. Moreover, the approximation function of Q-values allows the computer to
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work with continuous state/action variables, which, in the end, plagues many real systems with

possible large solution space, e.g., modeling VSL control as RL problem [24, 53]. Moreover,

nonlinear function approximation techniques, like neural network approximator, may improve

control if an underlying controlled process is nonlinear and nonstationary, as can be the case

with motorway traffic control [21, 54, 114].

5.2 Modeling VSL as RL problem

In this section, the single-agent RL-VSL controller is introduced. Particularly, Q-learning to

solve the VSL control (QVSL) problem is used. To assess the benefit of using function approxi-

mation in RL both are presented, QVSL with full state representation (QVSL-FS) using tabular

formulation (Q-matrix) and the QVSL with the function approximation (QVSL-FA) techniques.

5.2.1 Variable speed limit control as an MDP

The VSL problem has to be defined as an MDP with the assumption that an agent makes the

control decisions. The agent has to activate different speed limits at the end of every decision

interval. For every possible state of the environment, the agent can select a particular action and

obtain a reward depending on how well the selected action (speed limit) has performed. The

agent cares for accumulated discounted rewards gained from a sequence of executed actions.

The transition time between states after activating VSL control equals the control time step. The

state may change every time when the agent takes an action that affects the current traffic state.

Thus, the VSL decision process can be formulated as an MDP problem and solved by applying

RL [115].

Figure 5.2: Controlled motorway stretch divided into four sections

For QVSL, the controlled stretch of the urban motorway divided into smaller sections (see

Figure 5.2) represents the model of the agent’s environment. Actions are speed limits that the

agent can send on VMS. For each state st ∈S of the environment, the agent can select an action

at from a finite set of actions A. For simplicity, the executed action at at time t is a single

speed limit posted on VMS at the beginning of the controlled sections (L2 and L3 in Figure 5.2)

simultaneously for all analyzed approaches. In this experiment, a VSL setup with fixed zones
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is examined. Traffic density and speed measured in several consecutive sections (L2, L3, and L4

in Figure 5.2) are used for state representation.

The reward rt received by the agent at time step t after state transition to the new state st+1 has

the following form for all implemented QVSL approaches:

rt =



−δ , if (a(t −2) = a(t −1))∧(a(t −1) ̸= a(t))

−δ , if |a(t −1)−a(t)|> 20

0, if 105 < min
{

vi(t +1) | i = 2,3,4
}
< 110

δ , if min
{

vi(t+1) | i = 2,3,4
}
≥ 110

−T T S(t), otherwise

, (5.2)

with slight modification compared to the reward function used in [116] by including the positive

reward δ in the case when the agent recognized free-flow conditions. The constant δ should

be at least equal to the maximal expected T T S value, measured between the previous and the

current control time step. The first condition of rt prevents oscillations of the speed limit, and

the second presents punishment if the difference between two consecutive speed limits is too

large. If the average speed vi of the observed motorway sections i is between 105 [km/h]<vi <

110 [km/h], it can be assumed that there is currently no congestion. Therefore, the agent does

not receive punishment in such states. In the case where measured average speeds are above

110 [km/h], free-flow traffic is assumed, and the agent receives a reward. These two conditions

can be true if the agent executes actions that allow for free flow traveling speed of vehicles,

and there is a free flow condition across affected sections. In all other cases, the agent receives

a punishment that is proportional to T T S spent between the previous and current control time

step measured across the affected area (L2, L3 and beginning of L4 in Figure 5.2) during every

control time interval. As such T T S can be used to define the objective function of the traffic

flow optimization [116], [117].

In the beginning, the agent does not know anything about the environment and which action

to take. An exploration-exploitation strategy has to be applied to test all possible actions. In

this thesis, the ε-greedy mechanism is applied in all compared approaches. First, the agent tries

random actions, and, with time, starts to use what it has learned. The exploration parameter

ε bounded with 0< ε < 1 is used to manage the share of exploration and exploitation during

learning. When ε → 1 the agent acts only randomly and can even worsen the current LoS on the

urban motorway. When ε → 0 the agent uses the knowledge stored in a Q-matrix (the memory

of what the agent has learned through experience). During multiple simulations, ε is gradually

decreased according to the function ε =exp (1−n)
600 (n denotes the number of current simulation).

When ε reaches 0.03, it remains constant.
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Q-Learning with full state representation

For the implementation of QVSL-FS, discrete states and actions need to be defined. Actions

belong to one of the following two sets:

A1 =
{

130,110,100,90,80,70,60
}
, (5.3)

A2 =
{

130,110,100,80,60
}
, (5.4)

where the set A1 has been used for the analysis of QVSL-FS and QVSL-FA, and the smaller

set A2 only in QVSL-FS with constant learning rate α = 0.5. This has been done to make a

Q-matrix with fewer number of elements (only 3,125).

A Q-value is assigned to each state-action pair as a measure of the quality of each combination.

The learned Q-value function Q : S×A 7→ R represents a mapping from state-action pairs to

expected long-term return obtained by executing a specific action in a given state [113, 118]. For

a non-deterministic environment, the basic idea of Q-learning is to update the Q-value iteratively

by using newly received training sample (st ,at ,st+1,rt+1) according to equation (5.1).

In the case of QVSL-FS, the learning rate αn=
1
n . The rate of αn should be decreased over time

to ensure convergence to an optimal policy as explained in [113]. In this analysis, γ is set to

0.8, and remains the same for all tested approaches. Q-values for implemented QVSL-FS are

stored in a five-dimensional Q-matrix with 6,125 elements according to |S×A1|, where S is a

finite set of states defined as:

S =
{

ρ2(t),ρ3(t),ρ4(t),a(t −1)
}
, (5.5)

where ρi(t) represents the density of the traffic flow at the ith section for time step t. Different

density values are coded in five grades based on the values (10,15,22,30). The critical density

for the applied model is ρc = 29 [veh/km/lane]. The last term in (5.5) a(t−1) is the speed limit

from the previous control time interval.

The Q-learning algorithm (5.1) converges to the optimal Q-values if every state-action pair is

visited plenty of times and the learning rate is decreased appropriately over time. After the Q-

values for sufficiently many state-action pairs have been estimated during the learning process,

the optimal action for a particular state is determined as the one with the largest Q-value. Then,

the Q-learning agent can be applied for optimal control using its knowledge.

91



5. Reinforcement learning based VSL

Q-Learning with function approximation

When RL is applied for traffic control on motorways, states of the system can be defined using

traffic parameters such as normalized density and average speed, which are suitable to define

precisely current traffic states. Once dealing with continuous variables, the computation of

Q-values requires some form of function approximation (Q-function parametrization).

To model the Q-learning with function approximation, feature-based state representation is used

as a method for constructing the basis for the function approximation. Features capture impor-

tant properties of continuous space of the agent’s environment. In the case of linear function ap-

proximation methods, using the methods coarse and tile coding, the state space can be mapped

into a vector of binary features. For example, if the state s is inside a circle (see Figure 5.3),

then the corresponding feature has the value 1 and is said to be present, otherwise, the feature

is 0 and is said to be absent. This kind of 1-0 valued feature is called a binary feature.

On the other hand, for example, the radial basis function (RBF) uses the Gaussian function to

map the state vector s⃗t into features represented with real numbers within the interval [0,1].

Mentioned approaches are used to create basis functions whose linear combinations approxi-

mate the Q-values. Thus, in the setting of Q-learning with function approximation, the goal is to

approximate the Q-value by learning the parameter vector θ⃗ of an approximate value function

Qθ as:

Qθ (s,a) = θ⃗
T

φ⃗s,a ≈ Q(s,a), (5.6)

where φ⃗s,a is an m-dimensional column vector that captures important properties from the state-

action pair (st ,at), and θ⃗ is a parameter whose dimension is identical to φ⃗s,a [119]. At the

beginning all components of θ⃗ are set to zero. Now, the task is to learn θ⃗ by applying the

incremental stochastic gradient descent update rule (5.7) allowing for approximation of the Q-

value function (5.6):

θ⃗t+1 := θ⃗t +αn(rt+1 + γ max
a′∈A

(⃗θ T
t φ⃗st+1,a′)− θ⃗

T
t φ⃗st ,at )φ⃗st ,at , (5.7)

where αn is the learning rate that decreases with the number of learning episodes. In the case

of the presented simulation experiment, the episode refers to one simulation that comprises the

uncongested traffic condition, breakdown, congested condition, and traffic recovery.
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Feature-based state representation

Generalization of states is essential when Q-learning is applied to continuous state space. Feature-

based representation captures important state properties. Often to binary numbers (0/1) (coarse

and tile coding) or to the interval [0,1] (RBF). The used state vector s⃗t was slightly modified

compared to the one used in [116]. Three additional density states were added for improving the

representation of the current traffic states. In all three methods of feature constructions (coarse

coding, tile coding, and RBF), the state set now becomes a state vector s⃗t ∈ Rm0 , where m0 =8

is the number of state components. Also, the chosen state vector comprises average speeds and

past two actions as components of the current state:

s⃗t = (
a(t−1)

v f
,

a(t−2)

v f
,

ρ2(t)

ρ j
,

ρ3(t)

ρ j
,

ρ4(t)

ρ j
,

v2(t)

v f
,

v3(t)

v f
,

v4(t)

v f
). (5.8)

The numerators of the first two components of the state vector (5.8) are the previously executed

speed limit values. Variable ρi(t) is the current density, and vi(t) is the current average speed

in motorway section i. Every element in the state vector (5.8) is normalized into the interval

[0,1] by appropriate denominators, where v f = 130 [km/h] is the free flow speed, and ρ j =

80 [veh/km/lane] is the jam density. Using the earlier mentioned feature-based methods, the

important properties from (5.8) are captured into the feature vector φ⃗s,a.

This feature vector is defined differently for the three chosen state representations as follows [53].

Coarse coding

The receptive field corresponds to circles in the state space. For example, according to two-

dimensional state space, if the state coordinate is inside the circle, then the corresponding

feature has the value 1 and is said to be present. Otherwise, the feature is equal to 0. The

receptive field can overlap, enabling generalization between different states as can be seen in

Figure 5.3. The binary feature vector corresponding to 2D state space in the example below

becomes φ⃗s = (0,1,1,0,1,0,0,0,0,0,0,0,0).
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Figure 5.3: An example of a binary feature vector corresponding to 2D state space

Extending of coarse coding in an eight-dimensional state space corresponds to s⃗t (5.8), and

the receptive fields are now hypersphere tiles with radius r = 0.7. The state space was filled

with k = 900 points. Each of those represents the center of a hypersphere. The points are

placed randomly within the state space, thus, achieving an overlap effect. The dimension of

the feature vector (5.9) is m = 1+ |A1|l with |A1| representing the cardinality of the action set,

while l = k, plus one extra element for bias. The same state vector is used in all three approaches

with function approximation. Each possible combination of actions and hypersphere tiles has a

unique component in θ⃗ .

Tile coding

The receptive field of the features is grouped into partitions of the input space. Each parti-

tion is called tiling, and each element of the partition is called a tile. According to a two-

dimensional state space example, the simplest tiling is a uniform grid, where receptive field

(tiles) are squares [111]. One tiling in eight-dimension fills the state space with pm0 equally

spaced hypercube tiles. The binary feature vector in this case is Rm, where m = 1+ |A1|l. Here

l = kpm0 , parameter p=3 is the number of tiles (hypercubes) along one dimension, parameter

k = 64 is the number of tilings, and m0 is the dimension of the state vector (5.8). To ensure

a higher resolution of the state space partitioning, k tilings are created. Each tiling is shifted

by the displacement vector d⃗ = ( 1
10 ,

3
10 ,

5
10 ,

7
10 ,

9
10 ,

11
10 ,

13
10 ,

15
10), meaning that it is shifted from the

previous tiling by ω

k times d⃗ [111]. Tile width ω was defined as ω = 1.4
(p−1+ 1

k )
. With those small

shifts, the state space is filled with k overlapping tiles. A single point within Rm0 , corresponds

to the coordinates of the state vector (5.8), will fall in precisely one tile in every of the k tilings.

94



5.2. Modeling VSL as RL problem

These k tiles correspond to k features in (5.9) that become active when a particular state occurs,

and particular action has been executed. As mentioned, the feature vector is in Rm and has the

following form:

φ⃗s,a = (1,φ1(s,a1), . . . ,φl(s,a1), . . . ,φ1(s,a7), . . . ,φl(s,a7)), (5.9)

where an index of action a indicates the speed limit which has been executed in respective state

s. The index l stands for possible active tiles at time t. The first component stands for the bias

term to properly scale the function values. The number of total elements in (5.9) seems a bit

bigger, but computing the dot product of θ⃗ T φ⃗ in (5.7) gains computational advantages because

most binary features in (5.9) are always zero.

RBF

This approach is a natural generalization of coarse coding to continuous-valued features. The

feature can gain value from the interval [0,1]. Typical RBF uses the following Gaussian re-

sponse:

φis,a = exp
(
−||⃗st − c⃗i||2

2σ2
i

)
, (5.10)

where
{

φi(||⃗st − c⃗i||) | i = 1,2, . . . ,k
}

is a set of k arbitrary functions, known as radial basis

functions. The ith function is a component of the feature vector φ⃗s,a. The response of (5.10)

depends on the distance between the state vector s⃗t and the center of the basis function c⃗i,

and relative to the width σi of the radial basis function with respect to the center c⃗i [111] (a

one-dimensional example of RBF is shown in Figure 5.4).

Figure 5.4: An example of one-dimensional radial basis functions [111]

The feature vector is in Rm, where m=1+ |A1|l. In the implementation of QVSL using feature

construction with RBF, l = k = 64, and σi have been set to 0.5 according to [120]. This method

reduces performance when there are more than two state dimensions like in QVSL because all

components (associated with the currently executed action) in (5.9) are active at time t. But

so far, the number of RBF functions (5.10) within the feature vector (5.9) has been reduced

compared to the previous two cases.
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In all mentioned QVSL-FA approaches (coarse and tile coding, and RBF), the components in

(5.9) associated with actions that are not executed at time t will be zero, except the bias term.

Simulation setup

To simulate the described QVSL implementations, in this experiment, a simulation framework

consisting of the microscopic simulator VISSIM and MATLAB [117, 121] was used. Every

simulation lasted 2.5 [h]. All QVSL approaches are learned during 5,000 simulations (episodes)

with different seeds to generate a wider spectrum of traffic events, i.e., a stochastic environment

for the agent.

Model of the urban motorway

The characteristics of the used motorway model were taken from [122] and modified in order to

be suitable for the applied simulation framework [117]. It is a three-lane motorway section as

shown in Figure 5.2, divided into four sections. VSL is active within the green area in sections

L2 and L3, and at the beginning of L4. The first section L1 is without VSL. A new speed limit

value is sent to the VMS during every control time step, Tc (300 [s] in this experiment). All

traffic data are collected with the frequency of T = 30 [s]. Section L2 contains one on- and

off-ramp (r1 and s1). The second on-ramp r2 is placed in section L4, and here congestion is

created by changing the input flow at this on-ramp. Congestion gradually propagates upstream

into section L3 and creates a disturbance in it.

The simulated traffic flow consists of 96% cars, 2% trucks, and 2% of buses. The mainstream

flow has a constant demand of 4,500 [veh/h] during the whole simulation, of which 95% of

traffic remains on the mainstream while the other 5% exit the motorway through the off-ramp s1.

The on-ramp r1 has a constant traffic demand of 1,350 [veh/h] while traffic demand at the on-

ramp r2 changes during simulation. It starts with a constant value of 300 [veh/h], whereupon it

increases linearly reaching the maximum of 1,250 [veh/h]. This value remains for half an hour

after which the traffic demand linearly decreases to its starting value and stays constant to the

end of the simulation. One has to notice that the applied traffic simulator generates vehicles for

the envisaged traffic flows stochastically using a particular seed for each repeatable simulation.

5.2.2 Simulation analysis

Normalized T T S values obtained during the learning process are given in Figure 5.5. A poly-

nomial interpolation was used for a comprehensive illustration. All approaches reduce T T S,

but linear function approximation approaches have a steeper decrease rate. The two blue curves

represent the results of the QVSL-FS algorithms. The first has a constant learning rate α , and

the VSL controller learns faster due to the lower number of elements in the Q-matrix as a con-
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Table 5.1: VSLS PERFORMANCE RESULTS

No QVSL-FS α =0.5 QVSL-FS dec. α QVSL-FA Coarse QVSL-FA Tile QVSL-FA RBF
VSL Obtained Red. [%] Obtained Red. [%] Obtained Red. [%] Obtained Red. [%] Obtained Red. [%]

Max. T T [s] 387 322 16.7 285 26.2 304 21.2 319 17.5 313 19.1

Avg. T T [s] 184 184 0 185 −0.6 177 3.6 179 2.3 180 1.9

T T S [veh ·h] 749 729 2.6 736 1.7 708 5.5 714 4.6 723 3.5

Max. Queue [veh] 36 31 13.9 11 69.4 16 55.6 21 41.7 36 0

Avg. Queue [veh] 4.2 4.0 4.1 0.9 77.0 1.2 71.3 1.2 70.7 2.5 39.2

sequence of the smaller action set A2. The second also has a decreasing learning rate αn. A

slighter decrease in T T S could be related to an inappropriate (too fast) decrease in the param-

eter αn, where the agent cannot correct the Q-values associated with random (bad) actions at

the beginning of the learning process. In general, QVSL-FA methods with state generalization

outperform QVSL-FS. All QVSL-FA methods exhibit a similar rate of T T S decrease, though

the rate is somewhat steeper with coarse coding.

Figure 5.5: Convergence of the normalized T T S during the training process

The impact of VSL on the mainstream traffic parameters is most evident in sections L3 and L4 as

shown in Figure 5.6. Two cases are shown. The first case is that of no-control (denoted black by

a dashed line) and the second is for QVSL with tile coding (indicated in green). Tile coding was

selected for presentation since the typical gradual decrease of the speed limit, and its increase

without large unallowed changes is most apparent. This is a desirable behavior of VSL that has

to be ensured. In the density graph in Figure 5.6 for section L4, the positive effect of VSL is

evident with actions that actively reduce the density compared with the case of no-control. The

timely applied sequence of speed limits upstream of the bottleneck keeps the traffic flow speed

in the bottleneck L4 at a higher value compared to the case of no-control. The gradual reduction

of vehicle speeds coming into section L4 allows the congestion to dissolve more quickly than in

the case of no-control. After the congestion has dissolved, a steep increase in speed in sections

L3 and L4 can be observed in comparison to the case of no-control.
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Figure 5.6: Traffic parameters for tile coding in sections L3 and L4

Additional MoEs Travel Time (T T ) on mainstream, T T S, and queue length at the on-ramp r2

were measured during simulations. The performance has improved regarding these additional

MoEs as shown in Table 5.1. QVSL improves the LoS on the mainstream (lower T T ) and

at the congested on-ramp (shorter queues). Only QVSL-FS with decreasing αn has a minor

deterioration of T T . Coarse coding shows the best performance regarding obtained convergence

rate and value of T T S.

5.3 Concluding remarks

In this chapter, four different approaches of modeling QVSL to learn the optimal VSL policy

with the goal of minimizing T T S on the simulated motorway segment are applied. Mainly the

standard lookup formulation of modeling QVSL as well as the function approximation methods

that allow working with the continuous state space domain are presented. Particularly linear

function approximation with different state representation methods based on feature construc-

tion techniques, Coarse and Tile coding, and RBF, are demonstrated. The simulation results

show that function approximation can learn the needed control policy faster compared to stan-

dard full-state representation. However, QVSL-FS, in theory, will achieve equal or even better

results but it requires much more computations (training episodes as evident from results in

Figure 5.5).

Feature construction for linear methods is a practically applicable method to generalize a con-
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tinuous higher dimensional state space. In this case, generalization is required to capture es-

sential properties of multiple traffic state variables. However, as the dimensions of the state

space increase, the feature vector may grow exponentially due to finer partitioning of the state

space resolution. Accordingly, the designer of such a controller must identify representative

traffic parameters that provide comprehensive information about traffic state conditions in order

to reduce the dimensions of the state vector or the size of the lookup table (Q-matrix). This

would enable state space dimension reduction and, consequently, allow for finer partitioning

(higher resolution) of the state space, thus, improving the generalization of unvisited state space

regions.
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Chapter 6

Cooperative multi-agent learning VSL
control system

This chapter extends beyond the notion of a single-agent RL introduced in the previous chapter.

Therefore, this chapter is entirely about MARL techniques and their application in VSL control.

First, the W-learning algorithm that is primarily used for solving control tasks characterized by

competitive control policies is introduced. This is an essential foundation to introduce the DWL

algorithm that is used to solve VSL control with dynamic VSL zones. In general, several exper-

iments will be presented: (i) whether MARL has some benefit and to which extent compared to

single agent RL, (ii) whether the agents’ cooperation in DWL can improve the VSL control, and

most importantly (iii) whether the DWL-ST-VSL with a dynamic spatiotemporal adaptation of

VSL zones can improve VSL control.

6.1 Multi-agent based RL

If multiple intelligent RL agents form one system, it can be called a MARL system, in which

agents can interact and collaborate using direct or indirect communication [123]. As shown

in the previous chapter, RL is a technique that can automatically detect patterns in the data

received from the system (process), and then use the discovered patterns to predict the future

of the data or to perform other types of decision-making under uncertainty. Thus, its extended

version MARL, to address the uncertainty in the motorway flow capacity and to optimize traffic

via VSL, is elaborated in this chapter.
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6.1. Multi-agent based RL

6.1.1 W-learning

WL algorithm proposed in [55] was designed to manage competition between multiple tasks.

In particular, an individual policy is implemented as a separate Q-learning process designed

by its own state space. As mentioned, the goal is to learn Q-values for state-action pairs for

each policy, where a single policy can be viewed as an agent. At every control time step, each

policy nominates an action based on Q-values. Applying WL for every state s of each of their

policies, the agent learns what happens concerning the reward received if the nominated action

is not performed (rated using a W-value for a given state W (s)). Thus, an agent only needs local

knowledge—what state st it was in, whether the nominated action was obeyed or not, the state

transition st+1, and the received reward rt+1.

Hence, all policies recommend new actions. Nevertheless, only one action is executed (sug-

gested by the winner policy) based on the highest W-value (if not, this policy will suffer the

highest deviation). Each policy updates its own Qi function using the winning action ak and its

own received reward ri. Wi values are updated only for policies that were not obeyed (i ̸= k)

using the following update rule:

Wi(st) := (1−αW )Wi(st)+αW (1−αQ)
ω(Qi(st ,ai)− (ri,t+1 + γ max

a′∈A
Qi(st+1,a′)), (6.1)

where learning rate αW and delaying rate ω (ω > 0) control the convergence of Wi.

Thus, WL can be seen as a fair resolution of competition. Competition results in fragmentation

of the state space between the different agents, thus, allowing any collection of agents. Eventu-

ally, they will divide up the state space among them based on the deviations they cause in each

other. The winner of a state (determined by the highest W (s)) is the agent that is most likely to

suffer the highest deviation if it does not win. Eventually, agents are aware of their competition

indirectly by the interference they cause.

6.1.2 Distributed W-learning

The DWL algorithm proposed in [27] enables an agent Ai ∈ A =
{

A1, . . . ,An
}

to learn to select

actions that match its local policies while learning how its actions affect its neighbors A j ∈
A, and to give different weights to the preferences of its neighbors when selecting an action.

To prompt an agent Ai to consider the action preference of its neighbors (i.e., to cooperate),

each agent implements, in addition to its own local policy LPi =
{

LPi1, . . . ,LPil
}

, a remote

policy RPi =
{

RPi j1, . . . ,RPi jr
}

for each of the local policies LPjl used on each of its neighbors.

To help neighbor A j implement its local policy, remote policy RPi receives a reward ri jr every

time a neighbor’s local policy LPjl receives a reward r jl (ri jr = r jl).
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6. Cooperative multi-agent learning VSL control system

RPi enables heterogeneous agents to cooperate, implement different policies, and have different

actions and state spaces. Thus, the DWL scheme lets an agent adapt to the other agents since

their dynamics are generally changeable. Each agent implements its policy as a combination

of a Q-learning and a WL process. Q-values are associated with each of its state-action pairs,

while W-values are associated with states. In the learning process, an agent Ai also learns Q-

values for remote-state/local-action pairs and W-values for local/remote states, through which

it acquires the influence of its local actions on the states of its neighbors A j. Thus, DWL does

not need a global knowledge or central component. It relies on local learning and interactions

with its neighbors, local rewards from the environment, and local actions.

To learn how its actions affect its neighbors, at each control time step, the agent receives infor-

mation about the current states of its neighbors and the rewards they have received. All local

and remote policies nominate an action with an associated W-value. Nominations for LPi ac-

tions are treated with full W-values. In contrast, RPi nominations are scaled by a cooperation

coefficient C (0 ≤ C ≤ 1) to enable an agent to weigh the action preferences of its neighbors.

C= 0 indicates a non-cooperative local agent, i.e., it does not consider the performance of its

neighbors when picking an action. For C=1, the local agent is entirely cooperative, implying

that it cares about its neighbors’ performance as much as its own.

The action performed at the given control time step (one that wins the competition between

policies) is selected based on the highest W-value (Wwin) after scaling the remote W-values by

C using the following equation:

Wwin = max(Wil,C×Wi jr), (6.2)

where Wil and Wi jr are W-values nominated by LPi and RPi policies of agent Ai, respectively.

6.2 Modeling VSL as a W-learning problem

Using a multi-agent approach based on the WL for VSL control states st , actions at , and reward

functions rt+1 are defined as follows.

6.2.1 Agents environment formulation

State description

Since the measured speed can give an agent information about actions it takes, the speed as

one of the state variables is used. State variables describing traffic flow speed are coded into

variable Vi corresponding to measured average speed v̄i,t [km/h] at time t in motorway sections
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L1 and L2 (i = 1,2) as presented in Figure 6.1.

Traffic flow

VSL 2 area
Congested

area

L1= 1 [km]

qin qout

VSL 1 area

L2= 1 [km] L3= 0.5 [km] 2.5 [km]3 [km]

TTSreward [veh·h]

O1 O2 O3

VMS 1 VMS 2

Figure 6.1: Motorway model

Vi =



v1, if 0 ≤ v̄i,t < 54

v2, if 54 ≤ v̄i,t < 72

v3, if 72 ≤ v̄i,t < 90

v4, if 90 ≤ v̄i,t < 108

v5, if 108 ≤ v̄i,t

(6.3)

State variable ρ3 contains information about current traffic density ρ̄3,t [veh/km/lane] measured

in congested section L3 (red cross-hatched area in Figure 6.1) as a strong indicator for traffic

congestion. According to V1 ×V2 ×ρ3 7→ S the number of possible states is |S|= 225.

ρ3 =



ρ1, if 0 ≤ ρ̄3,t < 15

ρ2, if 15 ≤ ρ̄3,t < 20

ρ3, if 20 ≤ ρ̄3,t < 25

ρ4, if 25 ≤ ρ̄3,t < 30

ρ5, if 30 ≤ ρ̄3,t < 35

ρ6, if 35 ≤ ρ̄3,t < 40

ρ7, if 40 ≤ ρ̄3,t < 45

ρ8, if 45 ≤ ρ̄3,t < 50

ρ9, if 50 ≤ ρ̄3,t

(6.4)

Action space

Each element in the action set (6.7) contains two variables. The upper part represents the speed

limit in section L1, while the variable below is the speed limit in section L2. In that way, the

winner agent in WL-VSL (one with the highest Wi(st) value in state st) will define the speed

limits for sections L1 and L2. An additional restriction is added to action set AWL. The absolute
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6. Cooperative multi-agent learning VSL control system

speed difference (∥at,L1−at,L2∥≤ 20) between posted speed limits in consecutive sections must

not be greater than 20 [km/h]. This is necessary to ensure smooth and safer speed transition

(harmonization) for flow entering the bottleneck region. This may seem like an additional

increase in state-action space, but in this way, there is no need to model restrictions directly

into the reward function, keeping the reward function simpler and focused on optimization

parameters. At the same time, WL-VSL is able to operate safely following the authority’s

recommendation about maximum allowed speed changes.

AWL =

{
60

60

 ,


60

80

 ,


80

60

 ,


80

80

 ,


80

100

 ,


100

80

 ,


100

100

 ,


100

120

 ,


120

100

 ,


120

120


}

(6.5)

Finally, the action executed by the winner agent (Ak) at time step t is chosen from available

subset A*
WL ⊂ AWL. E.g. if ak,t−1 =AWL(9), then available action subset at time t is A*

WL ={
AWL(6),AWL(7),AWL(8),AWL(9),AWL(10)}). Similar is done in [21], where action selections

are state-dependent.

Reward function

In [19] and [21], TTS has been successfully used as a measure of performance for RL-VSL.

Based on these insights, one part of the used reward function is also based on TTS. An extra

factor sensing the average speed induced by the posted speed limit in the section of each agent

is added. In this way, one can ensure that the reward slightly varies for each agent at a time. An

agent can minimize punishment (negative sign in reward) by achieving a higher average speed

in a controlled area (L1 and L2), or by decreasing the T T S. Combining the speed part and T T S,

an agent is forced to find a balance between both. E.g., in the case of an inactive bottleneck, the

penalty will be smaller if the posted speed limit is higher. On the other hand, when a bottleneck

is active but speed limits are high, drivers have no information about the downstream congested

area of the motorway. Vehicles will enter the jam at high speed. Vehicles that decelerate sud-

denly will create shock waves, greater congestion and higher T T S. In this way, reward (6.6)

effectively provides the agent with a more direct signal about the consequences of its actions.

Thus, T T S from sections L1 and L2 is scaled since section L3 is half as long. Incorporating

speed into the reward system enables the agent to more directly perceive the impact of its ac-

tions, potentially accelerating the learning process. In (6.6), v̄i,t+1 is the average speed (see

(6.3)), δ [km/h] is the scale parameter, and T T Si is total time spent [veh ·h] measured in section

i = 1,2,3 (see Figure 6.1) between two control time steps t and t +1.

ri,t+1 =−
[
(1−

v̄i,t+1

δ
)(

1
2
(T T S1 +T T S2)+T T S3)

]
(6.6)
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Winner action

In the case of WL-VSL, Qi-matrix has dimension m×n, where m = 225 is equal to the number

of states and n = 10 is the number of actions in AWL. Wi has dimension 225×1. Using gained

knowledge from Qi, all agents are able to suggest new actions, but based on highest Wi(st) value,

only the leader’s action ak is executed. After the state transition st 7→st+1 each agent receives

its unique reward ri depending on the consequences of executed action ak (speed limits). After

that, all agents are updating their Qi-function (for winner action ak), while only agents who

were not obeyed update their Wi value [55].

How fast agents learn the Qi-function depends on the parameters αQ, and γ . The convergence

of Wi is controlled by αW and parameter ω . Exploration/exploitation is controlled using the

ε-greedy mechanism explained in the next section.

6.2.2 Simulation setup

The proposed WL-VSL is compared with baselines independent RL-VSL agents (IND-VSL)

and single-agent RL-VSL (SGL-VSL), to assess its benefit over previous work (single-agent

RL-VSL) [53], and to assess the benefits of the cooperation using WL over IND-VSL.

6.2.3 Simulation model

The applied simulation framework consists of the microscopic simulator SUMO and the pro-

gramming environment Python [124]. The motorway model used for testing WL-VSL is based

on the model used in [53]. It is divided into three main sections L1, L2 and L3. Two sections

(L1 = L2 = 1 [km]) are equipped with VMSs and controlled by VSL, while a bottleneck is cre-

ated in motorway section L3 = 0.5 [km] (see Figure 6.1). Every simulation lasted 1.5 hours. All

VSL approaches were learned on 6,000 simulations. For testing the learned control policy, an

additional 200 runs using only exploitation (ε 7→ 0) were performed.

A new speed limit value is sent to the VMS during every control time step Tc (in this MARL-

related part Tc = 150 [s]). Parameters taken for evaluation of VSLs strategies are overall T T S,

measured for the entire motorway stretch (including all ramps), and T T Sreward as part of objec-

tive optimization (reward function). Macroscopic parameters such as average flow speed and

density, as well as occupancy on the acceleration lane in the bottleneck area, are taken as valid

indicators of the efficiency of upstream applied VSL to control the downstream bottleneck.

Traffic scenarios

To assess WL-VSL learning stability and benefits of cooperation using WL over baseline ap-

proaches, two traffic scenarios, dynamic and static, were used for evaluation.
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Figure 6.2: Tested traffic scenarios

Dynamic traffic scenario In downstream section L3 (see Figure 6.1), the presence of a bottle-

neck is being induced by an increase in traffic demand at on-ramp O3. The induced downstream

bottleneck is the main test for the proposed WL-VSL. In this scenario, the traffic demand at

on-ramp O3 varies over time (see Figure 6.2). For the highest demand 1,300 [veh/h], the main-

stream traffic flow is influenced by merging vehicles, and congestion occurs (active bottleneck).

Traffic flow consists of 94% passenger cars, 3% trucks, and 3% of buses. The mainstream flow

entering the bottleneck area has a constant demand of 2,700 [veh/h]. The driving dynamics of

vehicles in SUMO were modeled using the Krauss Car-Following Model.

Static traffic scenario The static scenario with constant traffic demand is used to confirm

stability when WL-VSL operates in different traffic regimes. This is needed because before and

after peak hours, traffic is stable without high deviations in demand. Therefore, WL-VSL has to

be able to perform optimally and safely in such conditions. For that, three different cases were

used for testing all approaches regarding the traffic demand at on-ramp O3; low = 200, medium

= 700, and high = 1,300 [veh/h], respectively.

Baselines SGL-VSL and IND-VSL

For SGL-VSL and IND-VSL, the available action set is A=
{

60,80,100,120
}
[km/h]. In the

case of SGL-VSL, the same speed limit value is sent on both VMSs in motorway sections L1

and L2. In the case of two independent VSL agents (IND-VSL), each agent is able to post the

speed limit in its section without any coordination between them. The executed action at ∈ A

should follow the authority rules as explained in the action section. Eventually, an agent is

limited to choosing an action from the A* ⊂ A according to which action was mandatory in the

previous time step at−1. In IND-VSL, each agent received a reward, as explained in the reward

section. Because SGL-VSL is a single-agent RL and the same speed limit is set in both sections

and, thus, has a similar effect on the flow in both sections, it takes average speed in L1 in order

to calculate reward (6.6). Qi-values in case of SGL-VSL and IND-VSL are stored in a 225×4
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Qi-matrix, according to the number of possible states and actions. How fast the agents learn

Qi depends on αQ and γ , as mentioned above. In this MARL-related part, the values are kept

constant αQ = 0.5 and γ = 0.8, according to [27, 53]. Most of the time, an agent picks good

(learned) actions but also does random exploration. This is controlled by the parameter ε which

is decreased with the number of simulation runs N using function ε = exp −ln(20)N
6000 . Bigger ε

values let the agent behave randomly in the beginning. As ε gets smaller, the agent starts to

utilize its learned knowledge.

WL-VSL parameters

For updates of Qi and Wi, values in case of WL-VSL, αQ = 0.5, αW = 0.5, while ω = 0.3 has

been slightly lower compared to [55] and selected from multiple tests. Parameter δ , used to

scale measured average speed v̄i,t+1 in the applied reward function, is set to 150 [km/h]. As the

maximal allowed speed limit is 120 [km/h], this way, it is ensured that in case of light traffic,

part of reward function (1− v̄i,t+1
δ

) will not switch the sign if any vehicle goes slightly faster

than allowed. Parameter ε is reduced as in the baseline cases.

6.2.4 Results and analysis

In this part, the simulation results are presented and the efficiency of WL-VSL through the ob-

servation of traffic parameters measured within the bottleneck and the entire motorway network

is investigated.

Dynamic traffic scenario

Results obtained during the learning process in the case of dynamic traffic scenarios are given

in Figure 6.3 and in Table 6.1.

Analysis of control policy

WL-VSL From Figure 6.3, it can be seen that WL-VSL has started applying actions slightly

before the density began to increase, indicating proactive control noticed in [20]. Mostly the

speed limit is active in section L1. While density was high, speed limits have been alternated

between values 100 and 120 [km/h]. As density gets lower, WL-VSL recognizes free-flow

conditions, and the speed limit is increased to the maximum of 120 [km/h], which remains

mandatory until the end of the simulation. The alternating actions between sections could be

due to the extensive length of the managed motorway region (sections L1 and L2) where both

agents operate. If speed limits in both sections were active at the same time, this could gain

higher T T S (because of the lower speeds in L1 and L2) in such amount that is better to split
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activity to one of the sections. Agents in that case compromise, either section L1 or L2 will

reduce the speed limit when needed.

Baselines SGL-VSL and IND-VSL In case of IND-VSL, only the agent in L2 reduces the

speed from 120 to 80 [km/h] and starts increasing speed limits immediately after reaching the

peak density value (see Figure 6.3). This is desirable behavior of the IND-VSL controller since

it recognizes when a bottleneck is active or tends to be inactive. The agent in L1 remains inactive

at all times, possibly for the same reason explained in the previous paragraph: the sections are

too long.

SGL-VSL is inactive most of the time. The extended length of the managed segment may be

the reason as a single agent controls both sections simultaneously. Thus, it cannot delegate

decisions to other agents, and in this way, it will produce a higher T T S. Therefore, the agent

often determines that inactivity is the optimal strategy to meet its defined objectives.

Density analysis

WL-VSL Traffic density is analyzed since it is included as a state variable in part of the RL

algorithm used for all VSL approaches. The second reason is that density is a reliable indicator

for the presence of a bottleneck [20]. In the density graph given in Figure 6.3, the positive

effect of actions selected by WL-VSL is most visible. Actions selected by WL-VSL efficiently

managed to reduce the density during the congested period compared with all other baselines.

Compared with no-control, density was reduced up to 18% using WL-VSL. This is desirable

because, by reducing the density, it is possible to dissolve the active bottleneck faster or prevent

the activation of the bottleneck. This result proves that WL-VSL can be used for controlling

existing bottlenecks.

Baselines SGL-VSL and IND-VSL Compared to WL-VSL, both IND-VSL and SGL-VSL

achieve a slightly lesser reduction in density. By applying the lower speed limits, IND-VSL

tries to create an artificial bottleneck before the real one. This shows less effect in the reduction

of the density in the bottleneck region. In addition, performing an action too early and after the

creation of a bottleneck in the case of SGL-VSL cannot reduce density as much as WL-VSL

did.

Speed analysis

WL-VSL The timely applied sequence of speed limits in motorway sections L1 and L2 keeps

the traffic flow speed measured in section L3 at a higher value compared with base cases. The

increase in average speed using WL-VSL is 7.3% compared to no-control, indicating more

stable traffic flow within section L3. This is confirmed with the easier merging of vehicles from
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Figure 6.3: Results in the dynamic traffic scenario

on-ramp O3 into mainstream traffic in section L3, where less occupied acceleration lane (for

28%) using WL-VSL is achieved compared with the no-control case.

Baselines SGL-VSL and IND-VSL In the case of SGL-VSL, there is no significant improve-

ment in the average speed. In the case of IND-VSL, the average speed measured within L3 was

lower for 2% compared with no-control. The reason for that is a stronger decrease in the speed
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Table 6.1: VSLS PERFORMANCE RESULTS

No WL-VSL IND-VSL SGL-VSL

VSL Obtained Improv. [%] Obtained Improv. [%] Obtained Improv. [%]

T T Sreward [veh ·h] 2.37 2.14 9.70 2.35 0.84 2.24 5.48

Avg. Speed in L3 [km/h] 83.4 89.5 7.31 81.7 −2.03 83.7 0.36

Avg. Density in L3 [veh/km/lane] 25.3 20.7 18.18 25.1 0.79 23.4 7.51

Avg. occupancy of accel. lane in L3 [%] 7 5 28.57 8 −14.28 7 0

limit in section L2 (80 [km/h]). Occupancy of the acceleration lane, in that case, was higher by

14% compared with no-control, indicating more difficult merging of vehicles in the mainstream

flow. Thus, creating the stronger artificial bottleneck in section L2 in front of the congested

section (L3) deteriorates the traffic in the downstream bottleneck. As shown in [28], in addition

to speed limits, positioning and choosing the appropriate length of the section covered by the

VSL is the crucial part of the optimal utilization of the VSL system. Therefore, the position

and length of section L2 can be one of the reasons for the suboptimal behavior of applied speed

limits in section L2 in case of IND-VSL.

TTS reward analysis

WL-VSL From Figure 6.3, it can be seen that WL-VSL reduces the amount of T T Sreward

significantly during the period of high density in section L3 compared to baselines. This is

desirable since the reward function (6.6) is modeled in a way to minimize T T S within the

motorway sections L1, L2, and L3. An average improvement of 9.7% (Table 6.1) compared to

the no-control case is achieved by using WL-VSL.

Baselines SGL-VSL and IND-VSL Improvement of measured T T Sreward is also achieved

for both (SGL-VSL and IND-VSL) but in a lower amount compared to WL-VSL.

TTS - overall network

In Figure 6.4, a comparison of convergence of overall T T S measured cumulatively during the

simulation in the entire motorway network (including all on- and off-ramps) is shown. At the

beginning of the learning process, all VSLs performed worse compared to the no-control case

since they explore the world in which they operate. As simulations progress, T T S consistently

decreases. After the 6,000 simulations (using dynamic traffic scenario), T T S for all VSLs con-

verges around the average T T S value obtained in simulations without VSL control. Eventually,

compared with the starting values, the overall T T S has been improved by around 7% for all

baselines and WL-VSL cases. It can be seen that WL-VSL has a slightly slower convergence

rate, but after a higher number of simulations, it gradually approaches other methods. The rea-

son for a longer convergence time to a steady state may be the larger action set (10 actions)
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Figure 6.4: Convergence of T T S during training process

which considers safety restrictions during action selection in WL-VSL. In case of SGL-VSL

and IND-VSL, the number of available actions is 4. Due to the bigger state-action space, WL-

VSL needs more time (simulations) to explore and learn optimal control policy. Eventually,

overall T T S confirms that WL-VSL does not worsen upstream traffic while being applied for

local downstream bottleneck optimization.

Static traffic scenario

After training the agents on the dynamic traffic scenario, their action policy is tested on a static

traffic scenario. Results are presented in Figure 6.5. In the static traffic scenario, three differ-

ent traffic loads influencing traffic demand at on-ramp O3 were used (low, medium, and high,

see Figure 6.2). As the results follow the same pattern, the medium scenario (700 [veh/h]) is

selected, which corresponds to realistic traffic conditions before and after the congested period.

Figure 6.5 shows that all controllers maintain stable values for the observed traffic parameters

(density, speed, and T T Sreward). WL-VSL and IND-VSL are activated on a slight increase of the

density value in the downstream section L3 at the beginning of simulations. When the density

decreases, both controllers increase the speed limit to the maximum value of 120 [km/h] since

density in the bottleneck area L3 remains low. WL-VSL strategy is active for a longer period

and adapts speed limits on both sections L1 and L2. When IND-VSL is applied in the static

scenario, the agent on section L1 is active, while in the dynamic scenario, the agent on section

L2 is active. SGL-VSL stays inactive for the full duration of the simulation. In general, all

approaches, including WL-VSL, did not worsen traffic performance, which confirms that WL-

VSL could be applied as a stable and efficient VSL control strategy in both static and dynamic

traffic scenarios.
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Figure 6.5: Results in the static traffic scenario

6.2.5 Discussion

The discussion in this section is restricted by the design of WL-VSL: a novel multi-agent RL-

based VSL control approach. WL-VSL is implemented on a motorway simulation scenario

where two agents are learning, using the W-learning algorithm, to control two segments up-

stream of a congested area jointly. The proposed approach is compared to a single agent and
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two independent agent implementations, and it has been shown that WL-VSL outperforms these

baselines with respect to measured traffic parameters TTS, density, and average speed in the

downstream congested motorway area. Roughly speaking, WL-VSL confirms that the multi-

agent VSL approach has benefits over single-agent VSL and, thus, can be used to control the

active bottleneck efficiently. When facing a high density at the bottleneck, WL-VSL has been

proven to produce a more stable traffic flow downstream by adapting speed limits gradually

throughout the VSL application area and in this way limiting the need for more restrictive ac-

tions such as a sudden decrease in speed limit values, which could negatively impact the flow

upstream of the controlled sections. Therefore, in the context of the next section, it is assessed

if additional cooperation among agents using DWL can improve VSL control even further.

6.3 Modeling spatiotemporal VSL as distributed W-learning

problem

In this section, the control algorithm for the spatiotemporal dynamic VSL zones adaptation

model proposed in section 4.3 is described. For this, the development process of DWL-ST-VSL

is explained in a methodological way, starting with the introduction of DWL. Then, the DWL-

ST-VSL control problem as a two-agent control problem in resolving bottlenecks is formulated.

To verify the extended applicability of DWL-ST-VSL and to assess whether the inclusion of

additional agents can improve the spatiotemporal VSL control, experiments with four agents

are performed.

6.3.1 Configuration with two agents

DWL has been successfully applied to the problem of controlling multiple traffic lights [27], yet

never to VSL. In the proposed DWL2-ST-VSL framework, two neighboring agents (Ai, i=1,2)

control the speed limit and VSL zone configuration (position and length) each on their own

motorway section. Each agent perceives its local environment through the agent states and

receives a reward (see Figure 6.6).
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Figure 6.6: DWL2-ST-VSL configuration scheme

To solve the multi-agent optimization problem modeled in DWL2-ST-VSL on multiple conflict-

ing policies, the agent states st , actions at , and reward functions rt+1 are defined as follows.

State-action space and rewards description

In continuation, the state-action space of the agents is elaborated along with the associated

reward functions.

State description

Information about the speed of the neighboring agent segment can improve the learning pro-

cess, especially when agents cause interference by randomly executing speed limits (exploration

phase). Moreover, speed indicates traffic flow disruption caused by congestion. Speeds are en-

coded in the variable Vn, which corresponds to the measured average vehicle speeds v̄n,t at time

t in motorway section Sn (n=1,2,3), as shown in Figure 6.6. It has been decided on four inter-

vals defined with boundary points (50,76,101 [km/h]) where each speed measurement can fall

into one interval.

The state variable ρn contains information about the current traffic density ρ̄n,t measured in the

motorway section Sn. Each density measurement can fall into one of twelve intervals defined

with boundary points (15,20,23,26,29,32,35,38,45,55,65 [veh/km/lane]). Density uniquely

determines whether the traffic state is in the free-flow, saturated, or oversaturated state. Since

the agents’ reward depends on TTS, it is beneficial to have an overview of the density of the

motorway section, because density is an independent variable in the computation of TTS. Also,

the agent state contains information about the agent’s action from the previous control time step.

Therefore, A1’s local policy LP11 at time t senses state s=(ρ1,ρ2,V2,a1,t−1), while LP12 s=

(ρ1,ρ2,V1,a1,t−1). A2’s local policy LP21 senses state s= (ρ2,ρ3,V3,a2,t−1), while LP22 s=

(ρ2,ρ3,V2,a2,t−1), see Figure 6.6.
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Action space

Each element in the action set (6.7) contains two variables. The upper one represents the speed

limit in section Sn, while the lower one represents the VSL zone configuration (indexes for

the left/right configuration labels iL and iR, see Figure 6.6). Agent A1 controls the speed limit

and the length of the VSL zone in section S1, while A2 controls section S2. In this way, the

agent winning policy (either local or remote), will define the speed limit and the VSL zone

configuration for a given motorway section. The absolute difference between two speed limits

within a section (n) must not exceed 20 [km/h]. This is necessary to ensure a smooth and safe

speed transition between the upstream free-flow and the downstream slower flow caused by the

bottleneck. This constraint implies that the next possible action in γ max
a′∈A

Qi(st+1,a′) (see (5.1))

must be bounded based on at−1. Thus, each time the Q-value is updated, a possible subset of

the allowed actions is considered. In this way, it is not necessary to model constraints directly

in the reward function. Thus, the reward function focuses on the optimization parameters. At

the same time, DWL2-ST-VSL is able to operate safely by adhering to the recommended rules

for maximum allowed speed changes. It is important to note that spatial variation in speed limit

between two adjacent VSL zones on the motorway is not considered in this setup.
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(6.7)

Reward function

In [21], T T S was successfully used as a performance measure for RL-VSL. Therefore, the T T S

measures are used for the reward. The variable T T Sn,t+1 measures T T S between two control

time steps t and t +1 on section n, signaling to the agent how good its action was. Every agent

must learn to balance between two conflict policies simultaneously. In the case of an inactive

bottleneck, the penalty will be lower for a higher speed limit. Conversely, when congestion

occurs, it is necessary to gradually reduce the speed limit upstream in order to control the inflow

into the congested area so that the traffic volume is maintained near the operational capacity of

the active bottleneck. Therefore, each policy seeks to optimize its objective as follows.

Modeling local and remote policies

To optimize the local agent’s goal, local policies are used. To determine the neighbors’ pref-

erences, the agents also learn the remote policies. According to the defined reward functions,

each policy tries to optimize its goal as follows.
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Local policy for free-flow control The first local policy LPi1 of an agent Ai, aims to learn the

speed limit to ensure a reduction of T T S by promoting, when possible, speed in free-flow traffic

(average vehicle speeds above 102 [km
h ]). To achieve this goal, LPi1 reward is:

rLPi1,t+1 =

0, if min
{

v̄n,t+1 |n = i, i+1
}
≥ 102

−T T Sn,t+1, n = i otherwise
. (6.8)

In a certain percentage, LPi1 is activated in saturated flow during the transition from free-flow to

congested flow and vice versa. Therefore, it prepares traffic for the second policy (LPi2), which

dominates in oversaturated conditions. After congestion, LPi1 helps to restore traffic back to

free-flow as soon as possible by gradually increasing the speed limit.

Local policy for congested traffic control The second local policy, LPi2, aims to reduce T T S

in the downstream section in the presence of an active bottleneck. Thus, an agent must learn

appropriate speed limits to restrict the bottleneck inflow until the discharge capacity is restored.

Otherwise, it will increase its penalty proportionally:

rLPi2,t+1 =−βT T Sn,t+1, n = i+1, (6.9)

where β determines how sensitive the agent is to congestion.

Remote policies The cooperation between agents is based on remote policies. Thus, an agent

Ai learns two additional remote policies (RPi j1 and RPi j2) that complement its neighboring

agent’s local policies. In order to know how its local actions affect its neighbors’ states, the

agent updates the remote policies on the information it receives about its neighbors’ current

states and the rewards that neighbor agents have received (Figure 6.6).

Winner action selection

In the case of DWL2-ST-VSL, an agent Ai’s experiences (Q-values for local-state/action pairs

and Q-values for remote-state/local-action pairs) for each policy are respectively stored in Qik

matrices (k=1, ...,4). At the same time, for each of the states of its policies, an agent learns W-

values of what happens in terms of the reward received if the action nominated by that policy is

not performed [55]. This is expressed as a W-value (W (si,t)) and stored in Wik matrices in each

case. With the knowledge gained from these matrices, all policies (local and remote) propose

new actions. The action ak,t that wins the competition between policies at this time step is the

one with the highest W-value (Wmax) (computed using (6.2)) [27]. After the state transition

st 7→ st+1, each agent’s local policy receives its unique reward (rLPi1,t+1, rLPi2,t+1) and state

(sLPi1,t+1, sLPi2,t+1) depending on the consequences of the executed action ak,t . The remote
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policies RPi jr obtain rewards and state information from their neighbor agent by querying the

neighbor’s local policies states/rewards (sLP j1,t+1, rLP j1,t+1, sLP j2,t+1, and rLP j2,t+1). Then, all

policies update their Q-values (for the winning action ak,t), while only the policies that were not

obeyed update their W-value. The above process is repeated for all agents.

The summary of the execution of the DWL2-ST-VSL model is presented by Algorithm 6.1.

In addition, readers are also referred to the original paper [27] where the DWL algorithm is

proposed.

Algorithm 6.1 DWL2-ST-VSL at each learning step

// Set DWL2-ST-VSL parameters and load sim. model
for each simulation step

if simulation time % 150 [s] == 0 then
for each Ai in A

for each LPil in LPi
Get LPil’s traffic states, sil,t
Get rewards from Ai’s environment
Update QLPil(sil,t−1,ail,t−1) for LPil
Update WLPil(sil,t−1)
Nominate action ail,t with max QLPil for sil,t
Get WLPil(sil,t)

end for
// Get nomination by remote policies
for each RPi jr in RPi

Get RPi jr’s traffic states, si jr,t
Get rewards for si jr from A j’s environment
Update QRPi jr(si jr,t−1,ai jr,t−1) for RPi jr
Update WRPi jr(si jr,t−1)
Nominate action ai jr,t with max QRPi jr for si jr,t
Get WRPi jr(si jr,t)

end for
// Select and perform action (set new speed limit and VSL zone configuration)
Compute and execute winning action ak (using formula ( 6.2))

end for
end if

end for

6.3.2 Configuration with four agents

So far, DWL has been successfully applied to the problem of controlling urban intersections on

a larger scale network with a higher number of agents [27]. DWL has also proven successful in

the VSL control optimization problem [26] on a smaller motorway segment in the configuration

of two VSL agents (DWL2-ST-VSL). Nevertheless, it has never been tested for its extended

applicability to motorway traffic control with a higher number of deployed VSL agents. Thus,

117



6. Cooperative multi-agent learning VSL control system

in the proposed extended DWL4-ST-VSL framework, four neighboring agents (Ai, i=1,2,3,4)

control the speed limit and VSL zone configuration (length and position) on their own motorway

section.
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Figure 6.7: DWL4-ST-VSL scheme and configuration of motorway segment

Each agent in DWL4-ST-VSL perceives its local environment through agent states and rewards

(see Figure 6.7). Thus, in the proposed multi-agent control optimization problem, the agent

states st , actions at , and reward functions rt+1 are modeled as follows.

State-action space and rewards description

In continuation, the state-action space of the DWL4-ST-VSL configuration is elaborated along

with the associated reward functions.

State description

As stated in [21], defining a compact Markovian state representation for motorways is diffi-

cult because many external factors influence traffic flow: e.g., weather conditions, motorway

geometry (curvature, slope), etc., which are hard to model precisely. Augmenting the state by

additional information, such as observing more sections (e.g., the density measured on the mo-

torway section further upstream from the congestion location and the on-ramp queue length,

primarily to provide a predictive component in terms of motorway demand [24]) or including

information from the past in states, may improve the algorithm’s performance. Though this

increases solution space, it can be overcome by the function approximation technique [21, 53].

However, in DWL modeling, the observation of the agent’s neighborhood is available through

remote policies. Nevertheless, the observability of the state must be assured. An example of
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a partially observable state is the usage of traffic flow rate for states. From traffic flow theory,

macroscopic variables describe traffic conditions (speed, density, flow). As a result of the non-

linearity of the fundamental diagram (flow-density relationship) [38], the same traffic flow rate

can be observed for a density value below critical density with high speed (stable flow) and

a density value above critical density with low speed (unstable flow). Thus, the traffic condi-

tion is uniquely determined by using traffic density information. Therefore, speed and density

measurements to omit the agents’ confusion are used in the proposed approach, thus, uniquely

determining traffic conditions. As a result, the negative effect of imperfect and incomplete

perception of agents’ partially observable states in MDP modeling is reduced.

Including the speed measurement of the neighboring segments into the state can enhance the

learning process, particularly at the beginning of the learning process, when agents cause inter-

ference by randomly performing actions (exploration). Besides, low speed indicates traffic flow

disruption provoked by congestion. Speeds are encoded in the variable Vn, which corresponds

to the measured average vehicle speed v̄n,t at time t in motorway section Sn (n=0,1,2,3,4), as

shown in Figure 6.7. Each speed measurement can fall into one of four intervals identical to

those defined earlier in case of DWL2-ST-VSL configuration.

Current traffic density ρ̄n,t measured in the motorway section Sn, is stored in the variable ρn.

Each measurement can fall into one of twelve intervals defined identically as earlier, in the case

of two agents configuration. Additionally, the state space contains information about the agent’s

action from the previous control time step, thereby enabling modeling restrictions on the action

space by making it state-dependent, which is explained in more detail in the following section.

Therefore, A1’s local policy LP11 at time t senses state s=(a1,t−1,V0,ρ0,ρ1), while LP12 s=

(a1,t−1,V1,ρ0,ρ1). A2’s LP21 senses state s = (a2,t−1,V1,ρ1,ρ2,), while LP22

s = (a2,t−1,V2,ρ1,ρ2). Similarly, A3’s LP31 senses state s = (a3,t−1,V2,ρ2,ρ3,), while LP32

s=(a3,t−1,V3,ρ2,ρ3). Finally, A4’s LP41 senses state s=(a4,t−1,V3,ρ3,ρ4,), while LP42 s=

(a4,t−1,V4,ρ3,ρ4) (see Figure 6.7).

Action space

Each element in the action sets (6.10) and (6.11) consists of two variables. The upper one

represents the speed limit [km/h] in section Sn, while the lower one represents an active VSL

zone (indexes define the left (iL)/right (iR) configuration; see Figure 6.7). Agent A1 controls the

speed limit and the length of the VSL zone in section S1, while A2 controls section S2, and so

on. In this way, the agent’s winning policy (either LPi or RPi) will define the speed limit and the
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VSL zone configuration for a given motorway section.
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Q-values in (DWL2 and DWL4)-ST-VSL are stored in a Q|S|×|ADWL| matrix, where S is a finite set

containing the indices of the coded states of the Cartesian product of the input traffic variables

(|S|= 4,608 and |ADWL|= |A1,2,DWL|= |A3,4,DWL|=8). This seems to be a large solution space

for learning optimal Q-values using (5.1). Nevertheless, the feasible solution space was reduced

by constraining the action selection in the nomination process explained further on. Thus, the

resulting Q-matrix can be considered a sparse matrix, and there is no need to search the whole

space.

The consecutive speed limit change within a section (n) must satisfy the constraint |at−1,n −
at,n | ≤ 20 in the case of agents A1 and A2, which use action set A1,2,DWL. In the case of A3

and A4 (A3,4,DWL), the constraint is |at−1,n −at,n | ≤ 10. This ensures a smooth and safe speed

transition between the upstream free-flow and the congested downstream flow, characterized by

lower vehicle speeds due to the bottleneck. Thus, the final set of actions allowed for the agent

Ai at time t depends on the previously executed actions of the agent. This constraint also im-

plies that the next possible action (a′) in the update process of the W- and Q-values (see update

rules (5.1) and (6.1)) must be bounded based on at . Thus, each time the Q-value is updated, a

possible subset of the allowed actions is considered. E.g., if ak,t−1=A1,2,DWL(7), then the avail-

able action subset at time t is A*
1,2,DWL =

{
A1,2,DWL(5),A1,2,DWL(6),A1,2,DWL(7),A1,2,DWL(8)}.

Therefore, the previous action in the state space is used to uniquely distinguish between states’

transitions given the constrained subset of actions between control time steps. This constraint

is implicitly modeled in the update rule (5.1). It addresses a unique row in Q-matrix (Q(s,a))

and the reachable entries in that row, corresponding to a given action index. Feasible entries in

the particular row correspond to the original indexes of elements from the original action set.

Thus, only such entries in Q(s,a) are reachable in updating Q- and W-values and in the action

nomination process while using argmax in the Q-learning algorithm [125]. Otherwise, the os-

cillation in the values of elements in a particular state (row) will be present. Thus, Q-values will

not converge to a stationary policy, and action nomination in a particular state will constantly

switch no matter how long the learning period is. Eventually, a stable agent diminishes the

nonstationarity effect in the learning process of the other agents.

In this way, it is not necessary to model constraints directly in the rewards. However, it is
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still ensured that DWL4-ST-VSL operates according to the advised safety rules on maximum

allowable speed limit changes.

As in the case of DWL2-ST-VSL, the constraints on the spatial difference of speed limit values

between two adjacent VSL zones on the motorway are not explicitly considered in the DWL4-

ST-VSL setup. It is assumed that agents communicate information about congestion intensity

and locations via remote policies. Thus, the difference in spatial speed limits should be reason-

able in terms of optimal traffic flow control. This is also aided by DWL’s ability to implement

two sets of speed limits with different granularity simultaneously. Action set (6.10) is for agents

A1 and A2, which are closer to the bottleneck. The finer action set (6.11) is for upstream agents

A3 and A4. The more precise actions aim to slightly adjust the speeds of the arriving vehicles be-

fore they enter the VSL application areas controlled by downstream agents. In this way, agents

smooth out the incoming traffic towards the congestion point, thus, avoiding the undesirable

sudden deceleration of vehicles and effects such as shockwaves.

Reward Function

The T T S as an objective was successfully used in the previous setup, and is, therefore, also

used in the setup of rewards for DWL4-ST-VSL. As in the previous case, each agent must learn

to strike a balance between two conflicting policies. In the case of an inactive bottleneck, the

penalty for a higher speed limit will be lower. On the other hand, if congestion occurs, the

speed limit must be gradually lowered in the upstream sections to control the incoming traffic

toward the bottleneck and, thus, maintain the operating capacity of the bottleneck at the highest

possible level.

Modeling local and remote policies

According to the defined reward functions, each agent’s policy tries to optimize its goal as

follows.

Local policy for stable-flow control

The local policy LPi1 of an agent Ai aims to learn the speed limit to ensure a reduction of T T S

by promoting, when possible, higher traveling speeds in stable-flow conditions. To achieve this

goal, the LPi1 reward is:

rLPi1,t+1 =

0, if min
{

v̄n,t+1 |n = i, i−1
}
≥ 102

−T T Sn,t+1, n = i otherwise
, (6.12)

thereby favoring average vehicle speeds above 102 [km/h].
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In a certain percentage, LPi1 is activated in saturated flow during the transition from free-flow to

congested flow and vice versa. Therefore, it prepares traffic for the second policy (LPi2), which

dominates in oversaturated (congested) conditions. After congestion has started to resolve by

deploying LPi2, and the congestion intensity reduces to a certain level, LPi1 helps restore traffic

to free flow (higher traveling speeds) as soon as possible by gradually increasing the speed limit.

Thus, LPi1 seeks to reduce traffic recovery time. Finally, the states perceived by LPi1 satisfy the

minimum requirements to determine whether the flow in the agent’s neighborhood is a stable

flow or deviating from it. Consequently, the agent can recognize when the higher speed limits

for free-flow can be implemented or not.

Local policy for congested traffic control

Local policy LPi2 aims to reduce T T S in the downstream motorway section in the case of an

active bottleneck. Thus, an agent must learn and apply appropriate speed limits to restrict the

inflow into the bottleneck until the discharge capacity is restored. If not, congestion will grow,

and, consequently, it will increase its penalty in proportion to:

rLPi2,t+1 =−βT T Sn,t+1, n = i−1, (6.13)

where coefficient β controls the agent’s sensitivity to congestion. Instead of using only down-

stream congestion information, LPi2 uses information about the upcoming traffic flow (current

speed and density) from the section Sn,n = i. This can be considered a prediction of the forth-

coming traffic flow (how fast and with what volume it will arrive) into the downstream con-

gested section Sn,n = i−1. In this way, the description of traffic conditions (states) is extended

to include more unique traffic characteristics for more efficient congestion control.

Remote policies

Same as DWL2-ST-VSL, in DWL4-ST-VSL, an agent Ai learns additional remote policies

(RPi j1, . . . ,RPi jr) that complement its neighboring agent’s local policies. In order to know how

Ai’s local actions at affect the neighbors’ states, the agent updates the remote policies by the

information it receives about its neighbors’ current states and the rewards that neighbor agents

have received (Figure 6.7). The performed experiments suggest that agents’ communication is

perfect (no loss of information and no breakdown of agents is assumed).

Winner action

In DWL4-ST-VSL, the action selection process is the same as in the case of DWL2-ST-VSL.

Thus, an agent Ai’s experiences for each policy are respectively stored in Qik matrices. In the

case of agents A1 and A4 (k=1, . . . ,4), while for A2 and A3 (k=1, . . . ,6).
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6.3.3 Simulation setup

To evaluate whether the dynamic assignment of VSL zones and cooperation between agents

with DWL have an advantage over static VSL zones with non-cooperative agents, DWL4-ST-

VSL is compared with WL-VSL [71]. To verify the advantages of learning approaches over

classical VSL control, DWL4-ST-VSL is also compared with previously described SPSC [109].

It is important to note that the calibration procedure of the simulated motorway section is not

included because a synthetic model with different traffic loads was used for this analysis. The

objective of this simulation experiment is to evaluate the impact of dynamically adjusting the

VSL zone configurations and the different number of agents in DWL-ST-VSL on the optimiza-

tion of traffic flow within an active bottleneck and the motorway as a whole.

Simulation model

The used simulation framework consists of the microscopic simulator SUMO (version 1.8.0)

and the Python programming environment. Here, the software version is important because

the simulation output in the new SUMO version may slightly differ from the simulation in the

previous version, as the simulator source code is constantly being improved and updated.

The motorway model is based on the model used in [26]. It is divided into 5 main sections,

Sn,n= 0,1,2,3,4. To ensure all combinations of VSL zones (see Figure 6.7) and to measure

spatiotemporal characteristics of the traffic flow under the impact of dynamic VSL zones, in

these experiments, the entire simulation model is divided into smaller links (each 50 meters

long). The speed limit is simulated along with the computed configuration of the VSL zones

for the chosen control time by directly assigning the allowed speeds to the corresponding links.

The new speed limit and the configuration of the VSL zones are, thus, calculated by agents for

each control time step Tc = 150 [s] that is chosen from multiple tests [26]. The used Tc value

is in the range of the foremost values found by the sensitivity analysis of control cycle lengths

performed in [56]. The bottleneck is generated on the motorway section S0. Each simulation

lasts 1.5 hours, and all learning-based VSL approaches were trained in 14,000 simulations.

Traffic scenarios

To evaluate the DWL4-ST-VSL control solution’s feasibility and behavior, and to determine

whether agent cooperation and dynamic VSL zones allocation with DWL have advantages over

VSL control approaches with static VSL zone configuration (WL-VSL and SPSC), the testing

was done under medium and high traffic loads. The input traffic data used were synthetic data,

and the calibration process of the simulated model is not within the scope of this analysis.

Therefore, the driver behavior and vehicle characteristics were modeled using the Krauss car-

following model with the default settings in SUMO [31].
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Medium traffic load

In the downstream section S0 (Figure 6.7), a bottleneck is induced by an increase in traffic

demand at the on-ramp R0. The generated bottleneck is the primary test for DWL4-ST-VSL with

dynamic VSL zone allocation. In this traffic scenario, the demand at on-ramp R0 changes over

time (see Figure 6.8). For the highest demand at on-ramp R0, 1,315 [veh/h], slower vehicles

entering the motorway interact with the mainstream traffic in the merge area. Consequently,

this causes disturbances, which trigger the activation of the bottleneck, and congestion appears.

Traffic flow at ramps R1 and R2 remain constant for both traffic scenarios, with the flow of 385

and 230 [veh/h], respectively. The mainstream flow entering the bottleneck area has a constant

rate of 1,385 [veh/h/lane]. The traffic flow consists of 94% cars, 3% buses and 3% trucks.

High traffic load

The induced congestion is much more significant in this traffic scenario than in the medium

scenario. In particular, an increase is generated by a 7.22% higher traffic mainstream demand

entering the bottleneck area relative to the medium traffic scenario. This is the test for DWL4-

ST-VSL emphasizing the dynamic adjustment of VSL zones. Since the congestion tail propa-

gates much more upstream through the motorway, it can be expected that different VSL zone

configurations will be used compared to the medium traffic scenario.
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Figure 6.8: Tested traffic scenarios

Baselines of SPSC and WL-VSL

In the case of baselines, the best static VSL zone configuration S2,(2L)+S1,(1R) (see Figure 6.6)

and parameters were selected from several tests conducted for the medium traffic load. In the

case of SPSC [109], the gain Kv = 4.5 and activation threshold of 23 [veh/km/lane] were

selected from several tests.

The same best static VSL configuration is also used for the WL-VSL case. In WL-VSL, two

local policies were used. Local policy LP1 aims to maintain a higher speed on controlled mo-

torway sections, while LP2 aims to reduce congestion in the presence of an active bottleneck.
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The observed state variables for LP1 are densities within sections S1 and S2,(2L), and for LP2

densities within sections S0 and S1, the bottleneck region. Each element of the action set con-

tains two variables (the section S1 and S2,(2L) speed limits). In this way, the winning policy will

set speed limits for both sections [71]. The two rewards associated with the mentioned policies

were modeled as follows:

rLP1,t+1 =

0, if min
{

v̄n,t+1 |n = 0,1,2
}
≥ 100

−0.4(T T S1,(1R),t+1 +2T T S2,(2L),t+1) otherwise
, (6.14)

rLP2,t+1 =−T T S0,t+1. (6.15)

DWL-ST-VSL parameters

For both DWL2 and DWL4-ST-VSL and WL-VSL the learning Q (somewhat) before learning

W scheme [55] is used, controlled by αW (1−αQ)
ω part in (6.1), where αQ= 1

n(s,a) and αW = 1
n(s)

depend on the number of visits to Qi(s,a). Thus, the weight is larger when an agent is sure of

what it does in a given state. This is indicated by a higher frequency of nominating a particular

action based on the highest Q-value. The parameter ω = 1.5 controls how fast W converges and

was selected from multiple tests. The author of WL [55], in his demonstrated example, used

ω = 3. The parameter γ =0.8 was chosen from [71]. The exploration probability is decreased

by the parameter ε =exp −ln(20)N
6000 , which diminishes with the number of simulation runs N [26].

In the DWL-ST-VSL nomination process (6.2), the cooperation between agents is controlled

by remote policies (RPi) via a cooperation coefficient C. The cooperation levels tested are

C ∈
{

0,0.25,0.5,0.75,1
}

.

DWL2-ST-VSL parameters

To keep the W-values of the local policies comparable to the W-values of the remote policies,

the reward function (6.13) is scaled by the factor β = 0.75 in the case of agents A2 and for agent

A1 β = 1.25. This is necessary because sections (Sn,n=1,2) are longer than S0, which affects

the final comparison in choosing the winning action since the W-values are bounded by Qmax

and Qmin. The bounds on the Q-values depend on the reward values rmin and rmax [55].

DWL4-ST-VSL parameters

Similarly, to keep the W-values of local policies comparable to the W-values of remote policies

in the case of DWL4-ST-VSL, the reward function (6.13) is scaled by a factor β = 0.75 for the

case of agents (Ai, i=2,3,4) and for agent A1 β = 1.25.
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6.3.4 Simulation results

The VSL strategies are evaluated using the overall T T S measured on the entire simulated motor-

way segment (including ramps). Traffic parameters, average speed and density are measured in

the bottleneck area (section S0). The results presented in Figures 6.9–6.12 are from the exploita-

tion phase. The specific response behavior of the allocation of dynamic VSL zones compared

to the case of static zones was analyzed. The space-time congestion analysis is used to ana-

lyze the spatiotemporal behavior of dynamic VSL zone allocation and its impact on traffic flow

control. To assess the benefits of cooperation between agents using DWL’s remote policies, the

impact of the cooperation coefficient on agent performance is also evaluated. As a measure of

the learning rate of proposed agent-based learning VSL approaches, the convergence curves of

overall motorway T T S during the training (learning) process are shown in Figure 6.13.

It is important to note that the purpose of this experiment is not to show the extent to which

DWL4-ST-VSL can improve traffic but to investigate how the dynamic (spatiotemporal) adap-

tation of VSL zone configurations and the increased number of learning agents affect the traffic

control optimization problem. Thus, an improvement over baseline should be considered pri-

marily as a comparative measure between two different VSL approaches, the commonly used

static VSL zones and the new paradigm with the dynamic adaptation of VSL zones, rather than

as an absolute measure of performance.

Comparison of dynamic VSL zones allocation and static VSL zones

Note that the baselines use the best static VSL zone configuration found for a medium traffic

load. Using a medium and a high traffic load in the experimental setup enables a simulation

of significant differences in the spatial displacement of the congestion tail. In this way, the

benefits and necessity of continuous spatiotemporal adaptive VSL control with dynamic VSL

zones adaptation are demonstrated. Different VSL zone configurations per traffic scenario are

learned without requiring manual setup, i.e., they are dynamically assigned using DWL4-ST-

VSL to better respond to the different spatial distribution of traffic congestion caused by the

bottleneck. At the same time, the experiment has highlighted the weaknesses of the static VSL

zone configuration, which performs suboptimally under high traffic load. Therefore, VSL zones

in VSL with the static VSL zone configuration need to be set up manually every time the traffic

pattern changes, which is not practical and, therefore, justifies the foundation of a new concept

of VSL control modeling based on dynamic VSL zone adaptation.

Medium traffic load

The performed simulations show that the best combination for establishing static VSL zones is

S2,(2L)+ S1,(1R). In this case, VSL is able to control congestion in the case of medium traffic
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6.3. Modeling spatiotemporal VSL as distributed W-learning problem

load. In DWL2-ST-VSL, by additionally activating VSL zones within the S2 section during

the highest congestion peak (around t = 1 [h]), the agent A2 helps its downstream neighbor

A1, which contributes to an even more effective congestion resolution than the baselines (SPSC

and WL-VSL) with static VSL zones. In DWL4-ST-VSL, the agents closest to the congestion

(A1 and A2) are assisted by upstream agents (A3 and A4) that activate additional VSL zones

within S3 and S4 just before the highest congestion peak (t = 1 [h]) (for a shorter period than

DWL2-ST-VSL). In this way, agents A3 and A4 help their downstream neighbors.
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Figure 6.9: Space-time diagrams for simulated scenarios with static VSL zones
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Figure 6.10: Space-time diagrams for simulated scenarios with multi-agent dynamic VSL
zones

High traffic load

The performed simulations indicate that the static VSL zones perform suboptimally in a high

traffic scenario. By applying different VSL zone configurations during the simulation within

Sn,n= 1,2 by DWL2-ST-VSL, and within sections Sn,n= 1,2,3,4 in the case of DWL4-ST-

VSL, they contribute more significantly to congestion clearing than baselines, which results

from the gradual adjustment of the VSL application area. In the DWL2-ST-VSL case, agents

started with stronger activation of the speed limits and VSL zones in section S1 at the beginning
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6.3. Modeling spatiotemporal VSL as distributed W-learning problem

of the congestion. Over time, the congestion starts to propagate upstream through the motorway.

The agents begin to use the VSL zones principally in sections S1 and S2, while finally, for the

highest congestion peak, the VSL zones are primarily activated in section S2.

In the case of DWL4-ST-VSL, VSL zones are activated mainly in all VSL sections at the onset

of congestion (somewhat more sparsely for agent A3, while agent A4 was almost not activated

at all). Agents A1 and A2 preferred a shorter VSL zone configuration, while A3 preferred a

longer one. The application of shorter VSL zones in the downstream sections S1 and S2 could

be due to the additional support provided by the upstream agents, particularly the speed limits

applied by agent A3, which reduced the need for longer VSL zones and sudden decreases of

the speed limit. As congestion increases, it can be seen in Figure 6.10 that the area of inactive

VSL zones increases between upstream and downstream controlled sections, primarily due to

the use of shorter VSL zones by agent A3 and sparsely activated VSL zones by A2. After

t = 0.75 [h], agent A2 starts applying speed limits again in response to the sudden increase

of the queue ahead of the bottleneck (faster propagation of the congestion upstream through

the motorway). As congestion intensity approaches its peak, agent A2 promotes a longer VSL

zone, including lower speed limits. Agent A1 is mostly inactive during this time period, thus,

forming an additional valuable acceleration area (transition zone [29]) between the active VSL

application area and the congestion tail. A somewhat unexpected behavior during the highest

congestion peak is observed for agent A4, which did not apply speed limits below 120 [km/h]

while A3 was not active for 3 control steps (Figure 6.10). In the next section, some arguments

that are believed to help explain this unexpected behavior of the agents will be given.

Nevertheless, both DWL2-ST-VSL and DWL4-ST-VSL adjusted the VSL zones to the spa-

tially moving tail of the resulting congestion. This control strategy is more pronounced in the

case of the high congestion scenario, in which agents attempt to create an additional artificial

moving bottleneck to reduce the outflow from it and, thus, relieve the congested area. From

Figure 6.10, it can be seen that the agents aim to create such a VSL configuration that ensures

additional space (without speed limit) between the VSL zones and the congested tail. This can

be viewed as an acceleration zone after the VSL zone, allowing vehicles to accelerate to vcr

(at which capacity is reached) before entering the congestion tail, as indicated in [28]. This

feature of DWL-ST-VSL is very useful compared to the static VSL zone (fixed configuration)

and confirms the findings that the higher the speed limit, the farther the VSL application zone

should be from the bottleneck, which has been recently demonstrated in [29].

Space-time congestion analysis

Space-time diagrams are interesting for visualizing how traffic conditions evolve along the ob-

served motorway segment. The on-ramp R0 in S0 is located at x = 5.3 [km]. DWL2-ST-VSL
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6. Cooperative multi-agent learning VSL control system

ranges from x= 3 to x= 5 [km], while DWL4-ST-VSL ranges from s= 1 to x= 5 [km]. The best

configuration of the static VSL zones (WL-VSL, SPSC) ranges from x = 3.5 to x = 5 [km]. The

initial acceleration (transition) area [29] after the VSL zone starts at x = 5 [km] to the on-ramp

R0 and can be changed if the configuration of the VSL zones changes during agents’ operations

in DWL-ST-VSL.

Medium traffic load

In Figures 6.9 and 6.10, the mixed shades of red and orange correspond to congestion where

vehicles are traveling at low speeds. The patterns of red stripes represent the propagation of

the shock wave upstream through the motorway. Congestion begins at about t = 0.4 [h] in the

bottleneck area and propagates upstream. After the demand on the on-ramp R0 decreases, the

congestion decreases and finally dissipates at t = 1.25 [h].

In both DWL-ST-VSL control strategies, the congestion (red) area is much smaller than in the

baseline cases. The mixed shades of yellow-green-light blue in front of the congestion area

correspond to the speed of vehicles obeying the speed limits (60− 100 [km/h]) within active

VSL zones. Such an artificially generated moving bottleneck (adaptive VSL application area)

with a significantly higher average traveling speed than the one measured in the congestion area

still reduces inflow into the congestion area, which helps to resolve congestion more efficiently

than baselines. In response to spatially varying congestion, both DWL-ST-VSL produce more

stable downstream flow than the best baselines with static VSL zones. In the medium load

scenario, congestion propagates upstream from the bottleneck to location x = 4.4 [km]. In the

case of DWL2-ST-VSL and DWL4-ST-VSL, the propagation is approximately reduced to x=5

[km], which is an improvement of 66.7% compared to NO-VSL. Finally, the average density

in the congested area (bottleneck S0 and directly affected upstream section S1) is reduced from

26.0 in NO-VSL to 20.0 [veh/km/lane] in the case of DWL2-ST-VSL, an improvement of

23.1%. The improvement for simulated DWL4-ST-VSL is 20.8%.

High traffic load

Again, for both DWL2-ST-VSL and DWL4-ST-VSL, the congestion area is smaller than for

baselines. During the simulated scenario, different combinations of VSL zones were applied to

respond to the changing congestion intensities and moving congestion tails. In this way, DWL2-

ST-VSL and DWL4-ST-VSL are able to reduce the congestion area much more effectively than

the baselines with static VSL zones. In the case of NO-VSL for the high-load scenario, the

congestion spreads upstream from the bottleneck to the location x = 3.8 [km]. When DWL2-

ST-VSL is applied, the propagation is reduced to near x= 4.4 [km], an improvement of 40%.

Using the extended version with four agents (DWL4-ST-VSL), propagation is reduced to about
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x=4.2 [km], an improvement of 26.7%. Finally, the average traffic density in the congested area

(S0 and S1) is reduced from the original 34.1 to 28,7 [veh/km/lane] by using DWL2-ST-VSL,

an improvement of 15.8%. In the case of DWL4-ST-VSL, the improvement achieved is 14.7%.

Just for comparison, in the case of WL-VSL with static zones, the congestion propagates near

x = 4 [km], resulting in negligible improvement. Similar behavior is observed in the case of

SPSC, eventually degrading the system performance.

Level of cooperation analysis

To evaluate the benefits of cooperation between agents using the DWL’s concept of remote

policies, the effects of the cooperation coefficient on agent performance are also assessed. The

effects of different levels of agent cooperation on system performance are presented in Fig-

ures 6.11 and 6.12.

Medium traffic load

It can be seen that all DWL-based approaches outperform the baselines used in the experiment.

The lowest T T S value is obtained with DWL4-ST-VSL and is 427.2 [veh · h] for C = 0.25.

Compared to the NO-VSL case, (T T S = 455.2 [veh · h]), a reduction of 6.2% (Figure 6.11a).

The best density is 23.4 [veh/km/lane] for C = 0.5 in the case of DWL2-ST-VSL, while it

is 33.6 for the case of NO-VSL, an improvement of 30.4% (Figure 6.11b). In particular, the

average vehicle speed for C = 1 in the case of DWL2-ST-VSL is 85.8 [km/h], while the speed

in the case of NO-VSL is 73.3 [km/h], an improvement of 17.1% (Figure 6.11c).

High traffic load

Similar results were obtained in the high traffic load experiment, where both DWL-ST-VSL

configurations outperformed the baseline controllers. The lowest T T S value in the cooperative

agent case in DWL4-ST-VSL is 501.0 [veh · h] for C = 0.25. Compared to the NO-VSL case,

(T T S = 524.8 [veh · h]); this is an improvement of 4.5% (Figure 6.12a). The density is 34.0

[veh/km/lane] for DWL2-ST-VSL (C = 1), while in the case of NO-VSL it is 38.5, a reduction

of 11.7%. The density is reduced by 7.8% by using DWL4-ST-VSL (Figure 6.12b). In particu-

lar, in case of DWL2-ST-VSL, the average vehicle speed for C = 1 is 73.8 [km/h], while in case

of NO-VSL, the speed is 67.8 [km/h], an improvement of 8.8% (Figure 6.12c). In the case of

DWL4-ST-VSL, the average speed is 10.9% higher (for C = 1).
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Figure 6.11: Traffic parameters for different levels of cooperation for the medium traffic load
scenario
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Figure 6.12: Traffic parameters for different levels of cooperation for the high traffic load
scenario

Convergence of TTS during the training process

A comparison of the convergence of T T S measured per training episode (episode ≡ one sim-

ulation) during the learning process is shown in Figure 6.13. The graphs are created using the

moving average over 10 episodes, while T T S was measured in the entire motorway network

(including all on- and off-ramps). At the beginning of the learning process, all agent-based

VSL approaches performed inferiorly compared to NO-VSL, since agents explore the environ-

ment by executing random actions with high probability. As simulations progress, the number
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Figure 6.13: The convergence of TTS during the training process

of random actions taken reduces, and the exploitation of learned experiences increases. Con-

sequently, T T S decreases, indicating progress in learning. Due to the different complexities of

proposed MARL-based VSL controllers, the different decrease rates of T T S can be observed

throughout the learning process. From Figure 6.13a, it can be seen that all approaches have

stable decreasing learning curves; generally, DWL4-ST-VSL leads in T T S reduction over other

strategies in the medium traffic scenario.

For the high traffic scenario (Figure 6.13b), the static VSL zones used in WL-VSL are prone

to performing poorly compared to the dynamic VSL zones. Cases with dynamic VSL zone

allocation via DWL2-ST-VSL and DWL4-ST-VSL need a higher number of training episodes

to approach lower T T S values. As the learning process approaches 14,000 episodes, T T S in the

case of DWL2-ST-VSL and DWL4-ST-VSL converges moderately towards and below the T T S

value obtained in NO-VSL. Eventually, compared with the starting values, the overall T T S is

gradually improved for all agent-based VSL strategies, favoring the learning rate of DWL4-ST-

VSL in both traffic scenarios.

In the case of the high traffic scenario (Figure 6.13b), it can be seen that DWL4-ST-VSL needs a

slightly longer time, i.e., higher number of training episodes (around 11,000) to reduce T T S be-

low the value obtained by NO-VSL. Nevertheless, when converted in real time, it takes roughly

90 [h] of training in a simulator (on an Intel(R) Core(TM) i7-10750H CPU processor). Thus, if

the traffic pattern changes significantly and, for example, in a real application the performance

of DWL4-ST-VSL becomes poor, it can be retrained offline (on simulations) and deployed in a

real application in a short time. Thus, DWL4-ST-VSL can be retrained offline to deal with traffic

changes in the operating environment to ensure good performance in the newly observed traf-

fic scenarios (similar to the continuous learning scheme for Q-Learning based VSL suggested

in [20]).

The longer time needed to reach the favorable T T S level may be directly linked to the larger

number of agents. They eventually need more training episodes to become aware of the inter-
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6.3. Modeling spatiotemporal VSL as distributed W-learning problem

ference they cause by their actions on their immediate neighbors and the controlled motorway

system as a whole.

In the second half of the learning process, the oscillations in T T S are more pronounced. The

possible contribution to this might be delaying W ’s convergence until Q is well known (see

section 6.3.3). Thus, W-values are more altered as Q-values are more learned. Consequently,

this influences the policies’ nomination (6.2) in the DWL process and eventually influences

the cooperation strategies between agents. As a result, it might cause a change in a learned

set of optimal policies, thus, resulting in different system responses during the second half of

the learning process. The new policy can induce new rarely seen system states that have not

been encountered before, thus, affecting agents’ poor decisions. Nevertheless, the function ap-

proximation techniques can address this problem by ensuring better generalization (reasonable

outputs) for rarely seen states, consequently, stabilizing the learning process.

6.3.5 Discussion

The outermost agents (A3 and A4) do not perceive congestion directly and, therefore, tend to

exploit local stable traffic conditions by promoting higher speed limits and, in particular, favor-

ing their local policy LPi1. As a result, for small values of the cooperation coefficient C, they

do not fully contribute to helping downstream agents to eliminate the congestion. This raises

the question of whether C should be scaled differently depending on the spatial location of the

agents rather than using uniformly distributed equal values for all agents. It might make sense

to increase the coefficients of C the farther agents are from the location of the bottleneck so

that they are more sensitive to the preferences of downstream agents and, therefore, give more

priority to remote policies in the case of active congestion. The question then arises: to what

extent?

The converse is also true since the actions of the downstream agents affect the state variables (in

particular, the measured average vehicle speed) of the upstream agents. The upstream agents

always observe the average speed in their immediate downstream area (in the case of local

policy LPi1) and, possibly, the actions performed by the downstream agents (lower speed limits)

reduce the chance of winning the LPi1. Therefore, a penalty by the measured T T S is more

likely, even if the local environment is in free-flow conditions. This dependence is implicitly

communicated to the downstream neighboring agent A j in the form of a higher W-value for

remote policy RPji1, which complements the local policy LPi1 of the upstream agents Ai.

The above observation shows the possible trade-off in choosing optimal values for C. A feasible

solution to make the cooperation coefficient C adaptive is to use a scaling scheme as in (6.1)

learning Q (somewhat) before learning W [55]. In this scheme, the updates of W-values are

weighted differently. The weighting is higher when an agent is sure of what it does in a given
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state. Given that the underlying DWL process (WL algorithm) is considered as a fair resolution

of competition, this leads to the question: can the W-values of local policies, together with

the probability of nominating a particular action in a given state, be communicated between

neighbors and used as input to change the prior belief about good C, thus making C adaptive?

Obviously, further research on the adaptive cooperation coefficient C is desirable.

Furthermore, the overlapping states of the environment, including the downstream neighbor-

hood (see Figure 6.7), have positive and negative effects on the agent’s learning behavior. The

negative effect arises from the nonstationarity caused by the neighbors’ actions, resulting in a

moving learning target (particularly during the exploration phase in the training process) since

agents are learning simultaneously. Thus, each time, Ai’s policy changes might cause other

agents’ policies to change, too [126]. The positive effect is the agent’s ability to detect and re-

spond to the early impulse of congestion in downstream traffic. All learning-based approaches

were trained with the same number of simulations. However, due to nonstationarity, DWL4-

ST-VSL may require more simulations to converge to better control policies for a given traffic

scenario due to a higher number of agents. Therefore, DWL4-ST-VSL (and the final results)

may be in a slightly unfavorable position compared to DWL2-ST-VSL.

In the performed experiments, it is assumed that all measurements (traffic data) are perfect.

In reality, sensors are not ideal, and raw sensor data need to be analyzed and filtered before

being used for traffic state estimation. Thus, accurate traffic states are important for real-time

traffic control. Raw traffic flow data collected from sensors might be contaminated by different

noises caused by the imperfection or damage of sensors. In [127], the authors introduced data

denoising schemes to suppress the potential data outliers from raw traffic data for accurate traffic

state estimation and prediction. This presents an open question for further research.

Additionally, the efficiency of DWL-ST-VSL is highly dependent on the learning process per-

formed in traffic simulations. Since simulations themselves depend on the given initial parame-

ters, not all possible relevant traffic conditions can be covered. A possible direction to improve

the training process of DWL-ST-VSL by ensuring that all relevant traffic scenarios are covered

is to use the idea of structured simulations. Originally proposed in [128], structured simulations

are intended for testing the behavior of complex adaptive systems in general by changing the

inputs into the simulations in a structured way. Such a framework might augment existing traf-

fic scenarios (real or synthetic) with unprecedented scenarios that evoke or replicate important

aspects of real traffic, such as rarely-seen traffic states in which VSL agents performed poorly.

Thus, a structured simulations approach can enrich the training data set and consequently min-

imize unexpected behavior of the RL-VSL controller in practice.

Even under a medium load scenario, the resulting congestion on the motorway can be classified

as a serious traffic problem. However, it has been shown that DWL2-ST-VSL and DWL4-
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ST-VSL can effectively resolve the congestion in this scenario due to their added ability to

dynamically adjust the VSL zone configurations. Since the DWL agents could not fully handle

the congestion in the high load scenario (even when using four agents), it might be useful to ex-

tend the DWL4-ST-VSL control, e.g., by integrating it with the merge control (ramp metering)

using the DWL multi-agent framework.

Experimental results confirmed the usefulness of using dynamic VSL zone allocation (the ca-

pability to adapt the VSL application area) while optimizing speed limits in traffic conditions

with varying congestion. Similarly, in [56], a VSL strategy able to adjust each traffic controller

cycle’s length (duration) online, given the changes in traffic conditions, was shown to be su-

perior compared to a fixed cycle length. Thus, integrating dynamic VSL zone allocation and

dynamic control cycles can make VSL more adaptive, making VSL’s performance more robust

when operating in a nonstationary environment like a motorway. To accomplish the full ben-

efits of adaptivity, the principal time constants of the system should be long enough for the

system to ignore false disturbances and yet short enough to respond to indicative changes in the

environment (the stability-plasticity dilemma) [129].

The VSL control approaches with static VSL zone configuration performed more poorly in high

traffic scenarios than those with dynamic VSL zone allocation. Thus, results strongly indicate

the need for an adaptive speed limit system in the speed limit, length, and position of VSL

zones to efficiently cope with the unpredictable spatiotemporal varying congestion, which is

more likely to be the case in real traffic scenarios on motorways.

6.4 Concluding remarks

This chapter presents DWL-ST-VSL, a MARL-based VSL control approach for the dynamic

adaptation of VSL zones and speed limits. It has also been proven that an extended version

with four cooperative agents is suitable to control four segments on a simulated motorway net-

work in front of a congested area using the DWL4-ST-VSL algorithm. The simulations show

that DWL4-ST-VSL and the DWL2-ST-VSL consistently perform better than the used base-

lines WL-VSL and SPSC. The results do not differ significantly between DWL2-ST-VSL and

DWL4-ST-VSL in terms of bottleneck parameters. In terms of system travel time, DWL4-ST-

VSL gives better results. VSL control is improved by simultaneously adjusting speed limit

values and VSL zone configuration in response to spatiotemporal changes in congestion inten-

sity and congestion’s moving tails. In addition, the performance is improved by DWL’s ability

to implement multiple different policies simultaneously and to use two sets of actions with dif-

ferent speed limit granularity, as well as by the cooperation between agents via remote policies.

Accordingly, the results have confirmed the hypothesis defined in the introductory chapter re-
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garding the expected benefits of using adaptive VSL zones along with speed limit adjustment

and validated the ability of the learning, multi-agent controller to be used for VSL control on

a wider motorway section. Therefore, in the next chapter DWL-ST-VSL concept will be inte-

grated with the DT-GM to verify its performance in real-traffic scenarios.
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Chapter 7

Testing VSL using the Geneva motorway
digital twin

In this chapter, the functional integration of DT-GM and DWL-ST-VSL is described. DT-GM as

a real-time virtual representation of physical motorway dynamics is used to test the previously

proposed DWL-ST-VSL and evaluate its ability to set speed limits and adjust VSL zones in such

a realistic environment. Thus, the main objective of this experiment is to provide insight into

the use of DT-GM and its potential foundation in the development and evaluation of adaptive

VSL controllers. Therefore, in the following part of the paper, it will be demonstrated how the

DT technology can be used to create, update, evaluate, and deploy a digital twin-based VSL

controller on a motorway.

7.1 Traffic and geometry characteristics of DT-DWL-ST-VSL

experiment

Geometric characteristics

Taking into account the Y shape of the motorway geometry and mainly the similar traffic inten-

sity from the direction of areas A1 and A2 (see Figure 7.1a), it can be assumed that the problem

at hand possesses a symmetry property. Therefore, unlike the experiment in section 6.3.2, this

experiment, based on symmetry property, uses a ring-cooperation structure (see Figure 7.2a) in

modeling DWL-ST-VSL agents. For the sake of unambiguity, an agent Ai is abbreviated with a

subscript letter, as usual, while the areas acted upon by the agents are designated without sub-

script letters to make the difference in the designation of agents or areas clear. The presented

cooperative structure could be useful, in cases when, for example, agent A3 is not able to solve

the bottleneck problem alone. Thus, it is likely that the weaknesses of A3 will be communicated
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7. Testing VSL using the Geneva motorway digital twin

implicitly (via RPs) to the upstream agents A1 and A2. Accordingly, the agents A1 and A2 can

simultaneously help the agent A3. Moreover, by the ring-cooperation scheme, they can under-

stand its mutual reactions even better and respond to spatiotemporal traffic changes efficiently

by the ability to adapt (activate) a higher number of different VSL zones combinations.

As noticed from Figure 7.1a, the VSL between areas A1, A2, and A3 has not been applied due

to the fact that this region mainly consists of the network topology with grade-separated inter-

sections with noticeable curvature. Thus, lower fixed speed limits in this region are assumed.

As can be seen, the scope of VSL is to optimize the bottleneck region (mainly counting for seg-

ments a and A3) that are in proximity to the border crossing. In order to optimize the bottleneck,

VSL application areas labeled as A1, A2, and A3, within which different VSL zones (VSL1 and

VSL2) can be activated, are located upstream of the bottleneck, thus, controlling the flow rate

going in the direction to south (Figures 7.1a and 7.1b).

Traffic characteristics

As pointed out in chapter 3, the most prominent occurrence of congestion is present during

the morning and the afternoon rush hours (weekday traffic characteristic). For the evaluation

process of DWL-ST-VSL and its performance analysis in this experiment, the focus is on the

southern region between Switzerland and the French border. Despite the fact that the passage

is free (no stopping), vehicles need to slow down when passing this area. In peak periods, this

presents a severe capacity drop. Consequently, qdown
cap becomes lower than the peak hour traffic

volume q5 arriving in the bottleneck area. Therefore, the main objective of VSL is to optimize

the traffic flow during the afternoon period going in the direction of the Swiss-France border.
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(b) Abstraction of the motorway model and DWL-ST-VSL agents locations

Figure 7.1: Real motorway and its abstract representation

Figure 7.2b provides a more detailed view (i.e., one level deeper) of the agents’ cooperation

scheme. It, thus, provides the cooperation aspect of agents and the relations between LPs and

RPs. This part is particularly on the scale of technicality for those who would like to use the

model in the future and, thus, achieve a better understanding of the VSL controller’s program

code.
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Figure 7.2: Agents cooperation scheme

7.2 Modeling DT-GM as DWL-ST-VSL control problem

Here, necessary definitions of agent environments are introduced, e.g., what part of the network

is observed by them and what actions and signals (rewards) are used to optimize traffic in

DT-GM. To distinguish between experiments and setups already performed, the integration of

DT-GM with DWL-ST-VSL is abbreviated as DT-DWL-ST-VSL.

7.2.1 State definition

To make the agents’ state space definition more explainable four regions of interest are defined.

Following labels in Figure 7.1b the bottleneck occurs at the border crossing area, as previously

described. Thus, by applying VSL control in shaded areas A1, A2, and A3 additional storage

is created that will reduce the flow rate q5 and release the bottleneck. Particularly, the classical

approach here is not suitable since congestion becomes too strong and propagates much more

upstream through the network (see Figure 3.9). Thus, region A3 (VSL application areas: VSL1
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and VSL2) is not sufficient. Therefore, two additional VSL agents A1 and A2 are added to help

agent A3 in bottleneck resolving.

Similar to agents from the previous chapter, in this experiment A1’s local policy LP11 at time t

senses state s=(a1,t−1,Va+A3,ρA1,ρa+A3), while LP12 s=(a1,t−1,VA1,ρA1,ρa+A3). Here a1,t−1

is the previous action executed by an agent. Va+A3 is the normalized speed measured in areas a

and A3. Similarly, ρA1 is density in area A1 while ρa+A3 is density in areas a+A3. Unlike in

LP11, the normalized speed is measured in area A1 and labeled as VA1. A2’s LP21 senses state

s=(a2,t−1,Va+A3,ρA2,ρa+A3,), while LP22 senses state s=(a2,t−1,VA2,ρA2,ρa+A3). In case of

A3, LP31 senses state s=(a3,t−1,Va,ρA3,ρa,), while LP32 senses s=(a3,t−1,VA3,ρA3,ρa). Due

to agent A3 proximity to the bottleneck, the small area a is chosen as an early indicator for the

formation of congestion that signals the agent that speed limits and/or VSL zones configuration

might require recomputation. This warning and A3 activation can also trigger the A1 and A2

activation via RPs. Therefore, the general conceptual state definition slightly differs from the

concept for example used in the sections 6.3.1 and 6.3.2. The state parameters measured in the

downstream section a+A3 are spatially dislocated to agents A1 and A2.

Traffic flow speed Vn is described as the normalized mean speed value due to the fact that each

area may contain multiple edges (motorway sections) and some of them may have different

nominal speed limits. Thus, if the flow speed on each section is maintained close to the nominal

speed limits, Vn will be closer to the value of one while during the congested period or under

the VSL application with imposed lower speed limits, Vn would have a value lower than one.

Assuming m edges the equation for computing the normalized average speed is as follows:

Vn=

vi
vi,nominal

+ · · ·+ vm
vm,nominal

m
. (7.1)

Speeds are encoded in the variable Vn, which corresponds to the measured average vehicle speed

v̄n,t at time t in motorway section Sn (n=A1,A2,A3,a+A3), as shown in Figure 7.1b. Similarly

to bounds used in section 6.3.2, in this experiment, each normalized speed measurement can fall

into one of four normalized intervals defined with boundary points v1,norm = 50.4
v f ree

, v2,norm = 75.6
v f ree

,

v3,norm = 97.2
v f ree

, where v f ree = 120 [km/h], while speeds 50.4,75.6 and 97.2 [km/h] are used as

bounds. In this way, the lowest speed interval is associated with strong congestion. As the speed

increases, the closer the traffic is to free flow conditions that are characterized by traffic flow

speed above 97.2 [km/h]. In this way, the state space variable Vn across the areas A1,A2, A3,

and a is uniquely described.

Similarly, due to different lane numbers of particular sections for traffic density ρ , a lane-

weighted number of vehicles expressed as an equivalent number of vehicles per kilometer per
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lane computed by the formula below is used:

ρ=
1000

∑ei,length
∑

ei,N

ei,lanes
, (7.2)

where ei,length stands for length of edge ei, ei,lanes is the number of lanes on particular edge,

while ei,N represents the number of vehicles on a particular edge. All edges’ IDs can be found

in the model on the GitHub repository mentioned in chapter 1.

Current traffic density ρ̄n,t measured in the motorway section n, is stored in the variable ρn.

Each density measurement can fall into one of twelve intervals defined by the boundary points

15, 20, 23, 26, 29, 32, 35, 37, 45, 55, 65 [veh/km/lane].

7.2.2 Action space

Again, the same rules defined and explained in chapter 6 apply to this experiment. Thus, each

element in the action sets (7.3) and (7.4) consists of two variables. The upper numeric value

represents the speed limit [km/h], while the lower represents an active VSL zone in which

the speed limit should be deployed according to the given index (see Figure 7.1b). Agent A1

controls the speed limit and the length of the VSL zone in its VSL area A1, while A2 controls

area A2, and A3 in area A3. The denoted variables NOM12 and NOM3 encode the nominal

speed limit on corresponding VSL application areas. Accordingly, NOM12 defines nominal

speed limits of 120 [km/h] across A1 and A2 areas while NOM3 defines speed limit in area A3

as follows. In VSL1, the nominal speed limit is 100 [km/h] due to the proximity of the border

and, thus, vehicles are obliged to gradually decrease the traveling speed, while VSL2’s nominal

speed limit is 120 [km/h].

A12 =

{
80

V SL1

 ,


80

V SL2

 ,


80

V SL12

 ,


100

V SL1

 ,


100

V SL2

 ,


100

V SL12

 ,


NOM12

V SL12


}

(7.3)

A3 =

{
60

V SL1

 ,


60

V SL2

 ,


60

V SL12

 ,


80

V SL1

 ,


80

V SL2

 ,


80

V SL12

 ,


100

V SL2

 ,


NOM3

V SL12


}

(7.4)

It can be noticed that the value sets used by agents A1 and A2 differ from the action set of

agent A3. The agent A3 may reduce the speed limit to lower values (minimum speed limit is 60

[km/h]). This is done under the assumption of agent A3 proximity to the bottleneck that allows

for stronger flow reduction in case of bottleneck activation.
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7.2.3 Reward function

The same concept from section 6.3.2 is used in the LPs modeling and, therefore, in the modeling

of reward functions. Thus, some notations are not explained twice to keep the focus on the

newly introduced ones. Similarly to the state definition of this experiment, the concept of

normalized speeds introduced above as well as in the definition of reward functions is used so

as to ensure a better agent interpretation of state and rewards signals correlations. Therefore,

the reward function is defined as explained in continuation.

Agent A1 and A2 reward function

For LPi1 agent’s policy, the next reward function is defined:

rA1,LPi1,t+1 =

0, if min
{

v̄e,t+1 | e ∈ Ā1,a
}
≥ 114

v f ree
= 0.95

−αA12 ∑e∈A1,A3,a T T S(e, t +1) otherwise
, (7.5)

where Ā1,a defines all motorway segments, including the starting point of area A1 and including

area a, as well as all segments between them. In this way, notation in summation is maintained

clear for reading. In the case of e ∈ A1,A3,a, the term e represents motorway segments in areas

A1,A3,a. Particularly the term edge e is used since SUMO internal road network modeling

contains edges and nodes that connect them to the structure of the road network and they follow

mainly the topology attributes of the real roads. For example, A3 area is represented by multiple

connected edges where not all edges have the same number of traffic lanes. Nonetheless, this

is a rather technical detail yet it is defined to make the controllers’ program code logic and

developed DT-GM model understandable for further users. The number 0.95 represents the 95

% of free-flow speed as a threshold for maximal reward.

For LPi2 policy the reward is defined as follows:

rA1,LPi2,t+1 =−βA12 ∑
e∈A3,a

T T S(e, t +1). (7.6)

In both cases, αA12 and βA12 are scaling factors that define how sensitive the agent is to conges-

tion. Particularly, terms A12 means that both agents A1, and A2 are using the same parameters

due to the symmetry property of DT-GM in the observed region.

A similar methodology for agent A2 is used to set up its rewarding function.
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Agent A3 reward function

Similarly, for agent A3 the reward function in case of LPi1 is as follows:

rA3,LPi1,t+1 =

0, if min
{

v̄e,t+1 | e ∈ Ā3,a
}
≥ 114

v f ree
= 0.95

−αA3 ∑e∈A3,a T T S(e, t +1) otherwise
, (7.7)

while LPi2’s policy reward is defined as follows:

rA3,LPi2,t+1 =−βA3 ∑
e∈a

T T S(e, t +1). (7.8)

7.3 Functional integration of DT-GM and DWL-ST-VSL

As already pointed out, two parts of the framework must be integrated and run in parallel.

Technically, the main part of integrating DT-GM and DWL-ST-VSL is to provide connectivity

and parallel execution of both programs, as well as synchronization at run-time. The explanation

of this functionality can be found in Algorithm 7.1. First, all parameters of the two algorithms

must be initialized. Then, DT-GM starts processing the traffic data streams received from the

motorway traffic counters, i.e., DT-GM is calibrated online (see Algorithm 3.1). For every

t = 150 [s], the program part of DWL-ST-VSL is executed (for details see Algorithm 6.1). In

this part of the code, the VSL agents are trained in the initial phase, while in the final phase,

their acquired knowledge is used for traffic control in the running DT-GM replica of the physical

motorway system. The training process is generally repeated until the expected satisfactory

control objective level is reached. However, this process is generally limited by execution time,

as agents perform training on simulations that run in real time as traffic evolves on a motorway.

This can potentially be overcome by introducing the concept of parallelism in simulations e.g.,

the DTI concept introduced in chapter 3, which can accelerate the training process by having

DWL-ST-VSL train on multiple preferably randomized simulation partitions at each stage, and,

thus, allowing for training the DWL-ST-VSL in real time on actual traffic data using the DT-

GM.
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Algorithm 7.1 DT-DWL-ST-VSL at each simulation step

// Set DWL-ST-VSL parameters and run DT-GM model
Init S⃗, C⃗, P⃗, q⃗, v⃗, v⃗type, X⃗ , X⃗ f ree, X⃗ f ree−des

for each simulation step
if simulation time % 60 [s] == 0 then

Get new actual traffic data via ODPMS: q⃗, v⃗, v⃗type
// DFC computations
For given X⃗ f ree−des and q⃗ calculate X⃗ f ree and X⃗ (see (3.2))
Update calibrators C⃗ and routes distributions P⃗ using X⃗
// DWL-ST-VSL traffic control during DT-GM run-time
if simulation time % 150 [s] == 0 then

// Update Q’s and W ’s and execute actions
for each Ai in A

for each LPil in LPi
Get LPil’s traffic states, sil,t
Get rewards from Ai’s environment
Update QLPil(sil,t−1,ail,t−1) for LPil
Update WLPil(sil,t−1)
Nominate action ail,t with max QLPil for sil,t
Get WLPil(sil,t)

end for
// Get nomination by remote policies
for each RPi jr in RPi

Get RPi jr’s traffic states, si jr,t
Get rewards for si jr from A j’s environment
Update QRPi jr(si jr,t−1,ai jr,t−1) for RPi jr
Update WRPi jr(si jr,t−1)
Nominate action ai jr,t with max QRPi jr for si jr,t
Get WRPi jr(si jr,t)

end for
// Select and perform action
Compute and execute winning action ak (using formula ( 6.2))

end for
end if

end if
Calibrate and update simulation scenario

end for
Save DT-GM simulation state, DWL-ST-VSL’s parameters and close simulation

7.4 Experimental setting

This sections mainly distinguish between parameters set up among agents and the baselines’

configurations used in comparative analysis. Additionally, it presents the traffic flow character-

istic that is used in the testing phase comprising real-time actual traffic from the motorway in

the region of Geneva that is being used for testing of the proposed DT-DWL-ST-VSL controller.
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7. Testing VSL using the Geneva motorway digital twin

Since the DWL-ST-VSL performances are verified in detail earlier in this thesis on the synthetic

motorway model, a comparison with all baselines presented in chapter 6 is not performed again.

Instead, the goal is to assess whether the dynamic adaptation of VSL zones and cooperation

between agents have an advantage over static VSL zones and non-cooperative agents and to

which extent in the context of the DT microsimulation environment. For that, the proposed

system is tested in realistic motorway traffic conditions that are reflected very accurately by

the proposed DT-GM. Thus, for comparison and analysis purposes, the following baselines

are used: No-VSL case, cooperating agents with different cooperation levels, non-cooperating

agents (cases with a level of cooperation C = 0 that may be seen as WL-VSL introduced earlier),

and VSL with fixed zones. Therefore, the training and evaluation processes are performed on

the real traffic scenario analyzed in chapter 3.

DT-GM parameters

In the training phase, all DT-GM parameters are kept as described in the introduction part of

DT-GM. However, an additional noise in simulations is introduced by random simulation seeds.

DT-DWL-ST-VSL parameters

With regard to different time scope analyses (24-hour long simulation scenario) and different

network topologies, some parameters were adjusted following mostly the same logic that is ex-

plained in chapter 6. The ones that are not mentioned remain the same as in chapter 6. Since

the simulation (one episode) in this analysis lasts for 24 [h], the exploration probability is re-

computed using the modified exponential decrease as follows: ε = exp −ln(20)N
50 . This approach

decreases the exploration probability with the number of simulation runs N. However, one

simulation takes approximately 1.5 [h] in a simulator. Since the longer duration of one simula-

tion run in testing the DT-DWL-ST-VSL nomination process, the cooperation levels tested are

C ∈
{

0,0.5,1
}

.

Comparability of LPs and RPs is ensured by properly scaling the rewards functions. In the

case of agents A1 and A2, the reward function (7.5) is scaled by the factor αA12 = 0.6 and

reward function (7.6) by the factor βA12 = 0.245. Similarly, for agent A3 the scaling factors are

αA3 = 1 and βA3 = 1, regarding the reward functions (7.7) and (7.8) respectively. The same

procedure is used as before, i.e., scaling down rewards reasonably to make policies in DWL

comparable. Particularly scaling is based on the section lengths with which agents’ reward

functions are associated. One has to bear in mind that in this experiment, the mainstream model

is not uniform in the number of lanes. Thus, an absolute measure of lanes-length of the section

is used instead of just taking section length to scale properly the T T S part of rewards. Thus, the

scaling factors mainly maintain the proportions as in DWL-ST-VSL in section 6.3.2.
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7.5 Results and analysis

The analysis is divided into two parts. The first part refers to the training phase, where the

results are presented and analyzed in terms of the controller’s learning behavior from the point

of view of nonstationarity introduced by the DWL and DT simulation environment.

The second part focuses more on the possibility of using the new DT-GM microscopic simu-

lation paradigm in the development and evaluation of VSL controllers by evaluating the pro-

posed adaptive VSL controller using different DWL settings. In general, it provides data-based

evidence for the use of DT-GM in the training and evaluation process of the DWL-ST-VSL

controller and how such an environment, which is not necessarily predictable but reflects real

motorway traffic well, affects the controller’s policies. This is evaluated against the performance

and behavior of the adaptive VSL controller by analyzing the dynamic adaptation of VSL zones

and speed limits in the context of optimizing the examined bottleneck and motorway network

performance.

7.5.1 Learning performances of DWL-ST-VSL controller

To evaluate the learning performance of DT-DWL-ST-VSL, T T S (particularly T T S conver-

gence rate) is analyzed as the main objective of the VSL controllers. To get a complete picture

of VSL performance, it is important to note that this analysis represents the T T S of the system

measured in the whole simulated motorway network. Each measurement in Figure 7.3 corre-

sponds to T T S accumulated during 24-hour-long traffic simulation (episode). In this way, the

global impact of the agents on traffic performance is captured.

TTS convergence

Before commenting on T T S results, the sources of randomness that are present in the performed

simulation experiments are also worth mentioning. The first one is related to MARL nonsta-

tionarity, i.e., the interference that agents cause when executing actions. This is particularly

pronounced in a decentralized MARL, especially in the case of the underlying WL algorithm

(by the nature of policy selection) that is at the core of DWL. In addition, the randomness is

produced by RL itself due to the exploration/exploitation mechanism. It is also used in the ini-

tialization of objective function coefficients in Simplex while solving flow balance equations in

the DT-GM model (see section 3.4.1). Moreover, it has been decided to introduce randomness

in simulations by the author. Particularly, the use of random seeds in each episode (simula-

tion) is allowed, which makes things closer to reality rather than using fixed simulation seed as

was the case with the deterministic environment in the analysis of DWL-ST-VSL in chapter 6.

Under that assumption, the weekday traffic scenarios (randomized by different seeds) based on
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7. Testing VSL using the Geneva motorway digital twin

the weekday traffic presented in chapter 3 are used as a basis for the training and evaluation

process. Accordingly, better generality and robustness of the controller can be expected in the

final application in controlling stochastic processes, i.e., while applied to control new weekday

traffic scenarios that were not seen by the controller before.

7800

8000

8200

8400

TT
S 

[v
eh

⋅ h
]

a)

mean
sigma
VSL explotation avg.
No-VSL avg.

0 50 100 150 200 250 300
Number of episods (simulations)

0.0

0.5

1.0

ε 
- p

ar
am

et
er b)

Figure 7.3: Overall network’s TTS behavior during the training phase in fully randomized
DT-GM simulations

Accordingly, the above-mentioned randomness may be seen as the reason for the less notable

convergence of T T S in Figure 7.3 compared to the four and two agents DWL-ST-VSL design in

chapter 6. However, to bound the experiment, one can, for example, select a few seeds and run

each of them per episode and, thus, use their average result per episode for which similar con-

vergence performances are expected to be achieved. Since simulational proof of DWL-ST-VSL

convergence has been given earlier in this thesis, this chapter is oriented to generate an experi-

ment that closely reflects real traffic and its inherent stochastic characteristics using DT technol-

ogy. As such, the goal is to emphasize the ability to use DT in the training process of adaptive

control systems that mimic an environment that closely reflects real traffic nature rather than

using a simulation environment with deterministic properties. Such simulations, thus, provide

an adequate test for dynamic VSL zones adaptation controlled by DWL-ST-VSL. Nonetheless,

it is obvious from Figure 7.3a that DT-DWL-ST-VSL extended in the ring-oriented cooperation

structure learns and, thus, improves (reduces) the objectives over time as episodes run (337
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episodes in total) despite the mentioned nonstationarity. In order to have a reference point for

comparison of T T S convergence rate, in Figure 7.3a, two additional measurements (averages

obtained without VSL control and one obtained under VSL control) are shown together with the

T T S curve. As can be seen, the DT-DWL-ST-VSL outperforms the case without VSL control

(No-VSL). T T S = 8,179.86 [veh ·h] for No-VSL is obtained as an average of several simulation

runs using random seeds. The same is done for DT-DWL-ST-VSL (with C = 0.5) that gives an

average T T S = 7,873.97 [veh ·h], while the T T S curve and associated standard deviation (the

shaded region around T T S curve) are computed using the moving average over 10 episodes.

According to the presented results, DT-DWL-ST-VSL, after being trained, is able to (on aver-

age) reduce T T S for 3.74 % per simulated daily traffic scenario with a noticeable reduction in

variation of T T S.

It is worth mentioning that the ε-parameter used for the exploration/exploitation phase is illus-

trated in Figure 7.3b. Accordingly, a strong exploration phase is at the beginning of the training

process. With the increase in simulation runs, it exponentially decays. After approximately

100 episodes, ε leans toward the zero value. Therefore, after a certain number of simula-

tion episodes, randomness in choosing actions is reduced. Therefore, further DWL-ST-VSL’s

action selection relies on gained knowledge. However, it should be pointed out that the learn-

ing process is not completely done. This is the case due to the nature of the WL algorithm

(see section 6.3.3) that uses a mechanism that allows for learning Q-function somewhat be-

fore W -values. Thus, during the entire training process agents are allowed to learn W -values.

This mechanism, as presented by the author of the WL algorithm, ensures that Ws will settle

down with the agent’s visits of state-action pairs. Thus, among other randomness listed above,

changes in the T T S curve might be influenced by switching between the agent’s winner poli-

cies determined by Ws. However, the updates of Ws might be, for example, stopped by simply

defining the thresholds of T T S in the learning phase but it is not considered in this experiment.

7.5.2 Spatiotemporal analysis of dynamic VSL zones adaptation

Space-time speed limit diagrams are useful for visualizing traffic-responsive VSL operation

regarding the speed limit computation together with VSL zone adaptation. Particularly in the

context of the performed experiment, it helps to interpret how the VSL control process develops

along with the evolving traffic in the proximity of the bottleneck (area a+A3). According to the

best achieved performance, in Figure 7.4 the representative traffic scenario controlled by DT-

DWL-ST-VSL with cooperation coefficient C = 0.5 is used for analysis. Figures 7.4 a, b, and

c show three VSL areas A1, A2, A3, and the corresponding VSL1 and VSL2 zones activation

and their speed limit values. As an indicator for traffic state, traffic density and traffic speed,

along with controller responses are depicted in Figures 7.4 d and e.
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7. Testing VSL using the Geneva motorway digital twin

The mixed colors of red to yellow and blue in Figures 7.4 a, b, and c correspond to speed limits

(60− 100 [km/h]) within active VSL zones (in VSL1 or VSL2 or in both zones). It is worth

noting that light blue in the case of VSL1 in area A3 corresponds to the nominal speed limit on

this section, which is set at 100 [km/h] due to the proximity of the border crossing and the need

to smoothly slow down vehicles to safely adjust speed for passing the border.

Notably, the entire 24 [h] simulation results are shown to highlight the controller’s ability not

only to respond appropriately during the congestion period (between 5 and 9 pm) but also to

allow vehicles to travel at maximum speed when there is no congestion. This is desirable

controller behavior, especially for adaptive controllers that are designed to handle and adapt

control policies to different traffic situations. A closer look at traffic-responsive DT-DWL-ST-

VSL performance is given in Figure 7.5.
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Figure 7.4: Speed limit space-time diagram (a) of area A1, (b) area A2, and (c) area A3 and (d)
traffic density, and (e) traffic speed measured in the proximity of the bottleneck (area a+A3)

The first activation of the VSL occurs in VSL areas A1 and A3. This can be seen as an early

proactive control response aimed at preventing possible adverse traffic conditions to evolve fur-

ther that could lead to severe congestion since the VSL agents have acquired knowledge about

traffic characteristics that are likely to lead to unstable traffic through training on real-time fine-
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grained traffic data with randomized traffic simulation scenarios that comprise a variety of traffic

patterns and traffic state modalities. Thus, VSL agents are able to recognize the predecessors

that indicate the bottleneck activation and proactively react. The reason for the earlier proactive

activation of agent A1 could be that agent A1 is facing an increased traffic flow from the east,

which may not bother it locally, but it has been learned that the approaching traffic wave may be

critical for downstream agent A3, which is operating near the bottleneck, and, therefore, agent

A3 needs additional help from upstream agents. Consequently, agent A3 may implicitly ask for

help via RPs, which is detected by agent A1, who activates VSL and helps reduce the flow to

the south. Noticeable VSL activation begins approximately at 5:30 pm when traffic density in-

creases near the bottleneck. It is evident that during the peak traffic period, different VSL zones

configurations have been implemented along with different speed limits. As a result, the traffic

density is kept at much lower values compared to the case without control (No VSL). At the

same time, the traffic speed is also higher.

The simulation-based DT-DWL-ST-VSL performance evaluation in DT-GM on actual fine-

grained real traffic data shows that agents are able to activate additional VSL zones within

all available VSL application areas (A1, A2, and A3) during the highest congestion peak (be-

tween 7:00 and 8:30 pm). It is evident that agents A1 and A2 assist their downstream neighbor

A3. This contributes to an even more effective congestion resolution than a case with nonco-

operative agents. Moreover, with dynamic VSL zones adaptation, an improvement is generally

achieved over static VSL zones as summarized by average results presented in Table 7.1.
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Figure 7.5: Closer look on dynamic VSL zones adaptation

7.5.3 Level of cooperation analysis

To evaluate the benefits of cooperation between agents using the DWL concept of remote poli-

cies, the effects of the cooperation coefficient on agent performance are also assessed. The in-

fluence of different levels of agent cooperation on system performance are shown in Table 7.1.

The absolute improvement or deterioration in traffic performance is expressed based on the

value obtained without VSL control. The measurements for speed and density are expressed as

the 24-hour average of several random simulation runs. The T T S is obtained using the proce-

dure explained in section 7.5.1.

Note that for a comparison between static and dynamic VSL zones, the initial VSL application

domains are the same in both cases. It goes without saying that in the VSL experiment with

static zones, the speed limit computed by VSL is implemented in both zones (VSL1 and VSL2).

Consequently, the static VSL zone is guaranteed. However, with dynamic VSL zones, the agents

can switch between activating the VSL zones during operation and thus adjust the different VSL

zones with possibly different speed limits over time. In this way, agents can collectively define

multiple VSL zone configurations that result in significant differences in VSL performance

compared to static VSL zones. Accordingly, agents with dynamic VSL zone adaptation are
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Table 7.1: AVERAGE PERFORMANCE STATISTICS OF TESTED APPROACHES IN DT-GM
ENVIRONMENT

Case TTS [veh·h] Imp. % Speed [km/h] Imp % ρ [veh/km/lane] Imp. %

No VSL 8179.9 94.12 9.57

DT-DWL-ST-VSL C=0 8039.2 1.72 93.50 -0.65 8.31 13.11

DT-DWL-ST-VSL C=0.5 7874.0 3.74 95.02 0.96 6.85 28.43

DT-DWL-ST-VSL C=1 7961.6 2.67 94.11 -0.01 7.42 22.46

DT-DWL-ST-VSL-static C=0 8018.2 1.98 94.85 0.78 7.63 20.25

DT-DWL-ST-VSL-static C=0.5 7968.8 2.58 94.43 0.33 7.78 18.62

DT-DWL-ST-VSL-static C=1 7905.7 3.35 94.74 0.66 7.10 25.77

generally able to respond to spatial shifts in traffic congestion. The benefits and necessity of

adaptive spatiotemporal VSL control are summarized in the results presented in Table 7.1 and

previously visualized in Figures 7.5 a, b and c. Thus, different VSL zone configurations per

traffic scenario are learned (without requiring manual setup) and dynamically assigned to better

respond to spatially propagating traffic congestion on the motorway in the Geneva region.

It can be seen that the DT-DWL-ST-VSL approach with dynamic VSL zones adaptation out-

performs other approaches. The lowest T T S value is 7,874.0 [veh · h] for C = 0.5. Compared

to the No VSL case, (T T S = 8,179.9 [veh · h]), representing a reduction of 3.74%. The best

average density in the area (a+A3) is 6.85 [veh/km/lane] for C = 0.5, while it is 9.57 for the

case of No VSL, which is an improvement of 28.43%. In particular, the average vehicle speed

for C = 0.5 in the case of DT-DWL-ST-VSL is 95.02 [km/h], while the speed in the case of

No VSL is 94.12 [km/h], which is an improvement of 0.96%. Although the improvements may

seem small at first, they represent a significant cumulative improvement in traffic performance

over the year.

7.6 Discussion

The presented results of the above experiment prove that the proposed DT-GM, calibrated in

real time, can be integrated into learning-based traffic control systems and used for their train-

ing/evaluation. Moreover, it is shown that DWL-ST-VSL with a dynamic VSL zones adaptation

model is able to cope with the uncertainties introduced into the control process by using fine-

grained actual traffic data from the real motorway in the Geneva region in DT-GM.

With respect to the results presented, it is a reasonable assumption that, for example, after a

longer period of time (e.g., 24 [h]) all vehicles will have passed the measurement point and,

thus, the same cumulative throughput will be achieved, either under the VSL application or

without control measures. However, improving the operating capacity at critical moments over

a shorter period implies the elimination or reduction of congestion, i.e., the minimization of
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T T S, which implies a reduction of traffic density and an increase of speed in critical motorway

areas on finer time scale resolutions, which is confirmed by the obtained simulation results.

In general, the results summarize all relevant aspects of the presented controller designs and

their impact on traffic. Accordingly, the capability of the proposed dynamic VSL zone adapta-

tion model driven by cooperative learning-based DWL agents is able to provide an improvement

over the VSL control case with static VSL zones and, of course, over the case without VSL con-

trol.

However, the best improvement in VSL control performance with dynamic VSL zones is no-

ticeable for the cooperation coefficient C = 0.5. This indicates that the main advantage of

cooperation in the presence of high traffic load is that the actions nominated by the neighbors

are performed only when the action performed is really important for them. It is also observed

that for other tested levels, the non-cooperative (C = 0) scenario is the worst cooperation level,

while for the full cooperation C = 1 the results differ from those obtained with the C = 0.5 level.

This highlights the importance of DWL’s ability to enable agents to engage in different levels

of cooperation, as controlled by the cooperation coefficient since neither fully cooperative nor

fully non-cooperative scenarios yield the best results.

However, due to the sparse granularity of the cooperation coefficient, it is generally not pos-

sible to definitively answer whether one cooperation setup is better than the other. Instead, in

the context of this experiment, this comparison aims to shed light on the similarities and differ-

ences between the two VSL control designs tested (static and dynamic zones), especially when

considering the thresholds for cooperation (C = 0 and C = 1). Thus, it may be that finer control

of the cooperation level is needed.

7.7 Concluding remarks

This chapter presented the functional integration of DT-GM and DWL-ST-VSL called DT-

DWL-ST-VSL. It, thus, provided a simulation-based proof of the practical use and potential

of DT simulations in the development and rigorous evaluation of learning traffic control sys-

tems. The results of the conducted experiment proved that the proposed DT-GM, which was

calibrated in real time with fine-grained real traffic data, can be integrated with DWL-ST-VSL

and used as a framework for training and evaluating DWL-ST-VSL. Moreover, it was shown

that DWL-ST-VSL is able to deal with uncertainties in real traffic by appropriately controlling

real traffic on the Geneva motorway simulated via DT-GM.
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Chapter 8

Conclusion and future work

This thesis has addressed the problem of advancing motorway traffic flow optimization through

the new concept of dynamic adaptation of VSL zones based on cooperative learning agents,

thus, dynamic VSL zones configuration selection is learned rather than manually designed.

Moreover, the concept of a microsimulation-based DT for motorways has been proposed, which

extends the online simulation-based learning process and analytics of MARL-VSL agents by

introducing traffic uncertainty mapped to the running simulation process directly from the real

motorway in real time. Contributions of this thesis along with the perspectives for future re-

search are, thus, summarized in continuation.

Contributions of the thesis

The efficiency of learning traffic controllers depends heavily on the training process performed

in the simulations. Therefore, this thesis proposed for the first time the DT paradigm for motor-

way traffic simulation modeling. That is, methodological steps were presented for the functional

integration of actual fine-grained traffic data received in real time from the physical sensors on

the Geneva motorway with an ongoing microscopic simulation, i.e., an online calibration pro-

cess of the microscopic traffic simulation using actual traffic data streams is proposed. As

shown, the proposed DT-GM model is able to accurately reflect the traffic dynamics of its phys-

ical motorway counterpart in real time.

Moreover, the necessity of spatiotemporal dynamic adjustment of VSL zones was analyzed.

This assumption is based on the fact that the intensity and area of congestion on motorways are

not stationary, i.e., they can change in time and space, and, therefore, it is necessary to adjust

the positions of VSL zones to respond appropriately to congestion. To explain the need for

dynamic VSL zones and for a model to dynamically adjust VSL zones, the nondeterministic

properties of motorway capacity are considered, as well as the fact that capacity is not constant
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but changes with position and time. This phenomenon is used to justify the need for dynamic

VSL zones. On this basis, a model for dynamic spatiotemporal adjustment of VSL zones is

proposed as a new concept for VSL on motorways. It is shown that dynamic adaptation of

VSL zones, together with speed limit adaptation, outperforms the prevailing VSL with static

VSL zones. Specifically, it has been shown that dynamic adaptation of the VSL application

area upstream of the congestion region can further increase the operational capacity of active

motorway bottlenecks without violating upstream traffic conditions.

To enable spatiotemporal adaptation of VSL zones and simultaneous control of speed limit,

the DWL-ST-VSL, a distributed multi-agent multi-policy RL-based VSL controller has been

proposed. First, the DWL-ST-VSL approach was analyzed in a traffic simulation scenario on

an urban motorway, where cooperative agents learned to jointly control multiple adaptive VSL

zones ahead of a congested area using the DWL-based control algorithm. The simulations show

that DWL-ST-VSL consistently performs better than the baseline solutions used with static

VSL zones. The results show that DWL-ST-VSL improves the VSL control by simultaneously

adjusting the speed limit values and the VSL zones configurations in response to spatiotemporal

changes in the prevailing congestion characteristics. The VSL control performance is enhanced

by DWL’s inherent ability to implement multiple heterogeneous control policies simultaneously,

along with heterogeneous action sets (e.g., different speed limit granularity per agent), which

enables smoother spatial speed control of vehicles on motorway sections. In addition, VSL

control performance (and overall motorway performance) is improved by cooperation between

VSL agents along the motorway corridor via DWL’s remote policies.

Finally, this thesis has also provided simulation-based evidence of the practical use and potential

of DT simulations in the development and rigorous evaluation of learning-based traffic control

systems. For this purpose, the functional integration of DT-GM and DWL-ST-VSL has been

proposed. The presented results of this experiment have proved that the proposed DT-GM,

calibrated in real-time with actual traffic data, can be integrated with and used as a framework

for the training and evaluation of DWL-ST-VSL. By doing so, it has been shown that DWL-ST-

VSL is able to cope with uncertainties in real traffic by appropriately controlling real traffic on

the Geneva motorway simulated by DT-GM.

Although this thesis is a fairly comprehensive study, the work is based on some assumptions

that might affect the run-time DT-GM microscopic simulation results and tested DWL-ST-VSL.

One important factor is the limited number of traffic counters on the observed real motorway

segment used for modeling DT-GM. This is partially overcome with the traffic flow conserva-

tion model explained in the digital-twin chapter, which in general approximates missing traffic

data for particular locations in the DT-GM model. Another important factor appears to be the

evolving traffic on the motorway network, which is likely to be affected by the introduction
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of VSL. Since no information is available on unregulated or regulated traffic using the VSL

system, the DT-DWL-ST-VSL experiment is based on the assumption that nominal (maximum

allowable) speed limits are used on Swiss motorways. Another important simplification is that

the DWL-ST-VSL optimization process, i.e., the objectives of the agent’s control policies, and

the presented multi-objective analysis of the optimal allocation of VSL zones do not explicitly

consider safety aspects as optimization criteria. Thus, further studies taking into account both

traffic performance and safety criteria as objectives are desired.

Perspectives for future research

One of the main research questions related to the dynamic adaptation of VSL zones is to pro-

vide a formal model that can be used as a guideline for the design of VSL zones in general. De-

spite the fact that DWL-ST-VSL is able to extract useful features about the controlled process

from sequences of traffic states (and their patterns), and, accordingly, make proactive traffic-

responsive decisions about optimal VSL zones adjustment, it would be useful to perform induc-

tive backward reasoning based on the results in order to obtain more explainable conclusions

and arguments on the optimal adaptation of VSL zones and to provide a more formal procedure

for the a prior design of VSL zones in general. Thus, this thesis posits the research direction

that needs to be explored in order to provide a formal proof of the proposed conjecture about

the dynamic adaptation of VSL zones as a function of probabilistic capacity, i.e., based on the

fact that capacity is not constant along the motorway and taking into account the spatial and

temporal variations of traffic congestion characteristics on motorways. Therefore, it would be

beneficial to provide a general physics-based model for optimal VSL zone setup, rather than us-

ing only the data-driven machine learning-based approach as in DWL-ST-VSL. This is desirable

because it could further simplify and accelerate the learning process in DWL-ST-VSL (making

it more scalable) and generally enable the improvement of other VSL control approaches, es-

pecially those based on, e.g., classical feedback control. It would also help practitioners in

implementing VSL control strategies.

Besides, the perspective of heterogeneity of DWL policies with different spatial and temporal

scopes makes it possible to complement DWL-ST-VSL by simultaneously controlling traffic

flow entering the motorway via ramp metering control. Before doing so, however, it would

be beneficial to investigate how and to what extent ramp metering control affects the optimal

allocation of the VSL application area.

Given changing traffic conditions, it may be useful to also consider the adaptive control cycle

of DWL-ST-VSL. Thus, by including dynamic VSL zones and dynamic control cycles, the

VSL can become more adaptive, which makes the performance of the VSL more robust when

operating in a nonstationary environment. However, to take full advantage of adaptability, the
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8. Conclusion and future work

system’s time constants should be long enough for it to ignore false disturbances but short

enough to respond to indicative changes in the environment. Particularly, the introduction of

an adaptive control cycle in DWL-ST-VSL will require a different paradigm for modeling the

control process. For example, semi-Markov decision processes that allow the use of actions that

are not of equal duration can be used for this purpose. Thus, further research in this direction

is desirable, as is a sensitivity analysis of the DWL-ST-VSL control cycle duration. This will

allow for further advancement of the VSL system towards instantaneous speed control in the

presence of emerging vehicle-to-infrastructure technologies.

Due to RL-VSL agents interacting with a stateful environment via their actions, another inter-

esting equation arises. For a good control system, one must accurately estimate the current

controller process state in order to come up with an appropriate decision. In the case of apply-

ing DWL-ST-VSL on motorways, the motorway segment is divided into smaller homogeneous

sections where agents observe the traffic state. This raises a new question about the optimal sec-

tion length when considering, for example, the density field. If the sample length is too short,

a so-called microscopic uncertainty can occur, and if the length is too long, a macroscopic un-

certainty will appear in the measurements (e.g., an analogy from fluid mechanics). Thus, the

general belief that the shorter the observed motorway sections, the more accurate the state esti-

mation and the better the decision-making of the learning controller, may not be the case. As a

result, increasing the resolution of the state description may potentially lead to an exponential

increase in the computational complexity of agents rather than significantly improving the con-

trol process. To preserve the continuum property of traffic flow measurements between agents

and, thus, between dynamic VSL zones, the range of appropriate section lengths within which

sample measurements are desirable should be systematically defined. Further research on this

topic is, therefore, desirable.

In general, the analysis of DWL-ST-VSL suggests that there may be multiple local optima for

different levels of cooperation coefficients, which requires further sensitivity analysis of this

parameter. The question of how resilient the learning system is to the loss of information ex-

change when one or more agents fail, which is common in a real-world scenario where sensors

and equipment are imperfect and can fail, also highlights open research directions. This raises

the question of whether VSL agents can learn the most appropriate cooperation coefficient per

pair of agents and learn the size and scope of the group of agents with whom it is beneficial to

cooperate. This can be particularly useful when the control process is not symmetric, e.g., in

the case of asymmetric road topology and/or traffic demand, to avoid manual planning of agent

cooperation level. For example, in the case of traffic on an urban motorway, agent cooperation

level during morning rush hour may not be appropriate for afternoon rush traffic, etc.

In addition, to ensure wider applicability of DWL-ST-VSL and better generalization of the con-
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troller in nonlinear dynamical systems, an extension of the underlying RL algorithm in DWL-

ST-VSL to the continuous state-action space along with the nonlinear function approximation

technique for the Q-function approximation also represent an interesting future research contri-

bution.

As for DT-GM, a further granularity of traffic data, which may be feasible in the foreseeable fu-

ture, would provide the basis for generating instantaneous (ideally event-based) traffic demand

inputs to the running microscopic traffic simulation. This would, theoretically, allow accurate

quantification of traffic uncertainties, i.e., estimation of the natural distribution of traffic flow

during system run-time, so that the DT-GM would behave as an accurate mirror of its physical

correspondence. In addition, this information could enable the online calculation (and even

calibration) of a variety of parameters, such as the distribution of headways, which are impor-

tant parameters in microscopic traffic models but have not yet been estimated/calibrated online

during system run-time.

The current implementation of DT-GM allows for the parallelization of simulations, i.e., the

creation of multiple virtual environments that can be used for confident simulation-based eval-

uation of control strategies during system run-time. While this has been integrated into the

conceptual DTI framework and partially demonstrated by wiring DT-GM and DWL-ST-VSL,

it has yet to be implemented and tested in real time. Future work will, therefore, explore the

potential of applying DT-GM to traffic optimization in a safety-critical decision context. The fo-

cus will be on conceptual modeling of the bidirectional interaction between the DT simulations

and the physical traffic system, i.e., closing the information loop between DT and the physical

world to achieve digital-physical convergence. Future plans also include adding real-time ana-

lytics to the DT-DWL-ST-VSL control system to detect significant changes in the environment

e.g., changes in the mean and variance of traffic data streams. Accordingly, DT-GM (and DTI)

can serve as a virtual framework in which DWL-ST-VSL can be retrained during system run-

time to provide a continuous learning scheme and enable DWL-ST-VSL continuously adapt to

changes in a nonstationary environment. Besides, transfer learning, where a previously trained

machine learning model can be reused for a new problem, and enhancing social skills of VSL

agents taking into account coordination and negotiation between agents are also open research

areas in the MARL-VSL environment in general.

Therefore, further research on the application and potential of DT in the field of adaptive trans-

port systems and learning-based traffic control, but also for real-time traffic prediction and ana-

lytics in general, is desirable.
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[65] Huzjan, B., Šoštarić, M., Mandžuka, S., “Analysis of speed limit obedience on croatian

highways - technical report”, available at: https://cordis.europa.eu/project/id/317671
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son of Controllers for Variable Speed Limit Using Realistic Traffic Scenarios. Proceed-

ings of 60th International Symposium ELMAR-2018 / Muštra, Mario; Grgić, Mislav;
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Reliable Learning-based Controllers and How Structured Simulation is a Path towards

Them Proceedings of the 5th International Conference on Advances in Signal Processing

and Artificial Intelligence Yurish, Sergey Y. (ur.). Tenerife, Španjolska, 2023. str. 268-

274

2. Kusic, Kresimir; Schumann, Rene; Ivanjko, Edouard, Building a Motorway Digital Twin

in SUMO: Real-Time Simulation of Continuous Data Stream from Traffic Counters. Pro-

ceedings of ELMAR-2022 / Muštra, Mario; Zovko-Cihlar, Branka; Vuković, Josip (ur.).
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