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SOLVING THE ELECTRIC VEHICLE ROUTING
PROBLEM USING A HYBRID ADAPTIVE LARGE

NEIGHBORHOOD SEARCH METHOD

DOCTORAL THESIS

Zagreb, 2021





University of Zagreb

FACULTY OF TRANSPORT AND TRAFFIC SCIENCES

Tomislav Erdelić

SOLVING THE ELECTRIC VEHICLE ROUTING
PROBLEM USING A HYBRID ADAPTIVE LARGE

NEIGHBORHOOD SEARCH METHOD

DOCTORAL THESIS

Supervisor: Professor Tonči Carić, Ph.D.
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Zagreb, 2021.





Doctoral thesis has been made at the University of Zagreb, Faculty of Transport and Traf-

fic Sciences, Department of Intelligent Transport Systems, Chair of Applied Computing.

Mentor: Professor Tonči Carić, Ph.D.
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Abstract

In order to perform a high-quality and on-time delivery in logistic systems, it is necessary to

efficiently manage a delivery fleet. Nowadays, due to the new policies and regulations related to

greenhouse gas emission in the transport sector, logistic companies are paying higher penalties

for each emission gram of CO2/km. With Electric Vehicle (EV) market penetration, many

companies have started to evaluate the integration of EVs in their fleet, as EVs do not have

local greenhouse gas emission, produce minimal noise, and are independent of the fluctuating

oil price. Well-researched Vehicle Routing Problem (VRP) is extended to the Electric Vehicle

Routing Problem (EVRP), which takes into account specific characteristics of EVs. EVRP

aims to determine a set of least-cost electric vehicle delivery routes from a depot to a set of

geographically scattered customers, subject to side constraints. As VRP is an NP-hard problem,

the EVRP is also an NP-hard problem, which incurs the use of heuristic and metaheuristic

procedures to solve the problem. Over the years, various heuristic procedures were applied

to solve the VRP problem. In the last several years, these procedures were modified for the

application on the EVRP problem. In the literature, for each problem variant of the EVRP, i.e.,

time windows, partial recharging, full recharge, different charging stations, etc., a specifically

designed metaheuristic procedure is proposed.

The main objective of this thesis is to develop a Hybrid Adaptive Large Neighborhood

Search (HALNS) method for solving different variants of the EVRP problem. The proposed

method includes a local search for improving the solution and exact procedure for optimal

Charging Station (CS) placement. In the first part of the thesis, the proposed hybrid method

was implemented and compared to the non-hybrid method used for solving the EVRP problem.

Also, the advantages of the metaheuristic methods were highlighted in comparison to the exact

method for solving the problem defined as a mixed integer linear program. The developed

hybrid method was applied to solve different EVRP variants. In the end of the first part of

the thesis, the results were analyzed and compared to the so-far best-known solutions. In the

second part, the new time-dependent EVRP problem with time windows and charging time

dependent on the state-of-charge was presented. The problem considers temporal changes in

the traffic network while routing EVs, which are usually caused by congestion. In the last

part, the adapted delivery problem of a Croatian company was modeled as EVRP problem and

solved by the HALNS method. Instead of using conventional vehicles, the fleet of EVs with

equal vehicle characteristics (load and battery capacity) was considered.

Keywords: electric vehicles, electric vehicle routing problem, hybrid metaheuristic, heuris-

tics, exact procedures, dynamic programming, time-dependent routing, logistic





Prošireni sažetak

Rješavanje problema usmjeravanja električnih vozila metodom
hibridnoga adaptivnoga pretraživanja velikoga susjedstva

Uvod

Problem usmjeravanja vozila (eng. Vehicle Routing Problem, VRP) je NP-težak optimizacijski

problem koji nastoji odrediti skup dostavnih ruta od skladišta do geografski raspršenih koris-

nika uz odred̄ena ograničenja. S dolaskom električnih vozila (eng. Electric Vehicle, EV) na

tržište, mnoge logističke tvrtke evaluirale su uvod̄enje električnih vozila u svoju flotu vozila

kako bi smanjili emisiju stakleničkih plinova, a time i naknade koje moraju plaćati za svaki

ispušteni gram CO2/km. EV vozila imaju nekoliko prednosti u odnosu na vozila s motorima na

unutarnje izgaranje (eng. Internal Combustion Engine Vehicle, ICEV): nemaju lokalnu emisiju

stakleničkih plinova, stvaraju minimalnu buku, mogu se napajati električnom energijom do-

bivenom iz obnovljivih izvora energije, te su neovisni o promjenjivoj cijeni nafte i politički

nestabilnim zemljama koji proizvode naftu. Postoje dvije osnovne izvedbe EV-a: baterijska

električna vozila (eng. Battery Electric Vehicles, BEV), koja se napajaju isključivo iz baterija

ugrad̄enih u vozilo, i plug-in hibridna električna vozila (eng. Plug-in Hybrid Electric Vehicle,

PHEV) koja se napajaju integracijom baterija i drugih izvora energije, npr. motora s unutarnjim

izgaranjem. U ovoj disertaciji se razmatraju BEV vozila, koja se suočavaju sa dva problema:

ograničeni domet vožnje i potrebna infrastruktura za punjenje. Zbog ograničenog kapaciteta

baterije, domet koji mogu postići dostavna BEV vozila s baterijom napunjenom do kraja znatno

je manji od dometa ICEV vozila. Zbog toga, BEV vozila moraju češće posjetiti stanicu za pun-

jenje kako bi obnovila energiju, što se može postići zamjenom baterija ili punjenjem u stanici

za punjenje.

Uvod̄enje BEV vozila u logističke procese dostave dovelo je do definiranja problema us-

mjeravanja električnih vozila (eng. Electric Vehicle Routing Problem, EVRP). Inačice EVRP

problema mogu uzeti u obzir neka dobro poznata ograničenja VRP problema: teretni kapacitet

vozila, vremenski prozori korisnika, radno vrijeme i dr. Dodatno, EVRP problemi moraju uzeti

u obzir i ograničeni domet BEV vozila, koji se odražava u potrebi za punjenjem vozila u stanici

za punjenje. Stanica za punjenje može biti smještena na zasebnoj lokaciji ili na nekoj od lokacija

korisnika. Općenito u VRP-u primarni je cilj minimizacija broja korištenih vozila, a sekundarni

cilj minimizacija udaljenosti, vremena, emisije i sl., jer se veće uštede mogu postići s man-

jim brojem vozila (trošak vozila, plaća vozača i dr.). U posljednjih nekoliko godina s pojavom

električnih vozila na tržištu, istraživači su se usmjerili na rješavanje različitih inačica EVRP

problema koje najčešće uključuju: heterogenu flotu BEV i ICEV vozila, parcijalno punjenje,



različite vrste stanica za punjenje, nelinearnu karakteristika punjenja, zamjenu baterija, istovre-

meno usmjeravanje vozila i postavljanje stanica za punjenje, i dr. Iako je već istraženo mnogo

inačica problema, pojedine bitne izmjene problema još nisu razmatrane: vremenski ovisno puto-

vanje na prometnoj mreži, različite vrste stanica za punjenje s punjenjem do kraja, mogućnosti

ograničavanja na samo jedno punjenje u ruti vozila i sl.

Budući da je VRP NP-težak problem, egzaktne metode mogu riješiti probleme koji se sas-

toje od relativno malog broja korisnika, primjerice, od 50 do 100 korisnika za VRP problem s

vremenskim prozorima. Zbog navedenog je kroz godine razvijen veliki broj heurističkih i meta-

heurističkih metoda za rješavanje problema, koje su većinom, uz izmjene primijenjene na EVRP

inačice. Zbog navedenih izmjena koje se odnose na potrebu za punjenjem u stanici za punjenje,

EVRP problem teže je riješiti u odnosu na izvorni VRP problem. Prema tome, za rješavanje

pojedinih inačica EVRP problema većinom su predložene posebno dizajnirane metaheuristike i

heuristike, koje osim što se ističu u svojoj raznolikosti, često imaju i zahtjevnu implementaciju.

U području istraživanja nedostaje primjena općenite heuristike koja će uspješno riješiti različite

inačice EVRP problema.

Motivacija

Glavna motivacija disertacije jest ostvariti nove znanstvene doprinose u području usmjeravanja

električnih vozila koji do sada u postojećoj literaturi nisu bili dovoljno istraženi. Područja

koja su razmatrana u ovoj disertaciji su: razvoj hibridne metaheuristike sposobne za rješavanje

različitih postojećih inačica problema usmjeravanja električnih vozila i razvoj novog problema

vremenski ovisnog usmjeravanja električnih vozila.

Problem usmjeravanja vozila jedan je od osnovnih problema koji je doveo do značajnog

razvoja optimizacijskih metoda. Zbog NP-težine problema, egzaktne metode sposobne su ri-

ješiti problem za relativno mali broj korisnika te istraživači najčešće primjenjuju heurističke

postupke zasnovane na iskustvu, koje su u kratkom vremenu sposobne pronaći zadovoljava-

juće rješenje. No heuristički postupci zbog uskog područja pretraživanja, često završavaju u

lokalnom optimumu te se za bijeg iz lokalnog optimuma i pretraživanje većeg prostora rješenja

najčešće primjenjuju metaheuristički postupci. U posljednjem desetljeću, s obzirom na ve-

liki broj inačica osnovnog VRP problema, istraživači su usmjerili svoje napore na razvijanje

općenite metaheuristike/heuristike koja će dovoljno dobro riješiti različite inačice problema. Is-

tovremeno, s dolaskom električnih vozila, pojavio se problem usmjeravanja električnih vozila,

što je utjecalo na eksponencijalni rast istraživanja vezanih uz usmjeravanje električnih vozila

te pojavu različitih inačica EVRP problema. Na osnovu pregleda literature, može se uvidjeti

da je za rješavanje svake od inačica predložena specijalna metaheuristika ili heuristika. Nave-

deno značajno utječe na mogućnosti implementacije na različite inačice problema, te se javlja

potreba za razvojem općenite metaheuristike koja će efikasno riješiti različite inačice problema.



Za razliku od VRP problema, u EVRP problemu, raspored stanica za punjenje značajno utječe

na kvalitetu rješenja. Većina istraživanja predlažu pojedine specijalne heurističke postupke koji

će odrediti raspored stanica punjenje u ruti vozila i iznos punjenja u stanici za punjenje. S

obzirom na složenost odred̄ivanja navedenog rasporeda, u ovoj disertaciji će se koristiti egzak-

tna metoda za odred̄ivanje rasporeda stanica za punjenje u ruti i iznos punjenja, što zajedno s

korištenom metaheuristikom čini hibridni postupak. Osim navedenog, u pregledu literature, po-

jedini specijalno razvijeni postupci rješavanja često imaju veliku složenost i daju suboptimalna

rješenja, čime se ostavlja prostor za pronalazak jednostavnijih postupaka koji bi mogli polučiti

vrlo dobre rezultate.

Većina istraživača u EVRP području razmatralo je osnovne inačice EVRP problema, poput

parcijalnog punjenja, punjenja do kraja, različitih stanica za punjenje i heterogene flote vozila.

Navedene inačice problema, razmatraju statično stanje prometne mreže, odnosno vremenski

neovisno usmjeravanje vozila. U stvarnom svijetu dobro je poznato da se vrijeme putovanja na

prometnoj mreži mijenja ovisno o trenutku polaska. Primjerice u gradskim područjima mogu

se odrediti vršni sati u kojima se dogad̄aju prometne gužve, koje značajno povećavaju vrijeme

putovanja. U literaturi se mogu pronaći radovi vezani uz osnovni VRP problem koji se bave vre-

menski ovisnim usmjeravanjem, ali vremenski ovisno usmjeravanje električnih vozila još nije

razmatrano. Uzimanje u obzir vremenski ovisnog putovanja mrežom može značajno promijen-

iti raspored korisnika i stanica za punjenje u ruti vozila, s obzirom da se primjerice može više

isplatiti punjenje vozila u stanici za punjenje za vrijeme vršnih sati. Takod̄er, iako su već dobro

istražene osnove inačice EVRP problema, postoji prostor za razmatranjem dodatnih karakter-

istika postojećih problema poput: višestrukog ili jednog punjenja u stanici za punjenje u ruti,

punjenje do kraja u problemima s različitim stanicama za punjenje i sl.

U EVRP problemu razmatra se hijerarhijska funkcija optimizacije koja prvotno uključuje

minimizaciju broja vozila te potom minimizaciju odred̄ene specijalne funkcije koja je u većini

istraživanja ukupna prijed̄ena udaljenost vozila ili ukupni troškovi punjenja. Prema tome javlja

se potreba za razmatranjem različitih kriterija sekundarne minimizacije, poput vremena puto-

vanja, ukupnog vremena putovanja, ukupne potrošnje energije i sl.

Pregled disertacije

Disertacija je podijeljena na sedam poglavlja, pri čemu prva tri poglavlja daju uvod i motivaciju

za izradu metode hibridnoga adaptivnog pretraživanja velikoga susjedstva (eng. Hybrid Adap-

tive Large Neighborhood Search, HALNS) i novog vremenski ovisnog problema usmjeravanja

električnih vozila, dok iduća dva poglavlja opisuju dobivene rezultate i ostvarene znanstvene

doprinose. U šestom poglavlju opisana je primjena metode na adaptirani problem dostave iz re-

alnog svijeta. U posljednjem poglavlju dan je zaključak o provedenom istraživanju te smjernice

za buduća istraživanja.



Prvo poglavlje daje uvod u disertaciju, poglavito uvod u područje zelene logistike koja raz-

matra probleme usmjeravanja električnih vozila. U uvodnom poglavlju su naglašeni prednosti

i nedostaci korištenja električnih vozila prilikom njihovog usmjeravanja, te osnovne inačice

električnih vozila. Takod̄er, naglašene su prednosti korištenja metaheurističkih postupaka za

rješavanje VRP problema. U poglavlju je dan i pregled izvornih znanstvenih doprinosa koji su

ostvareni u sklopu disertacije. Na kraju poglavlja dan je pregled disertacije.

U drugom poglavlju dan je detaljan uvod u područje usmjeravanja vozila, s naglaskom na

električna vozila. Opisana je kombinatorna eksplozija mogućih rješenja problema, te je dan pre-

gled karakteristika i primjena električnih vozila u dostavnim procesima. U poglavlju je definiran

osnovni EVRP problem - problem usmjeravanja električnih vozila s vremenskim prozorima i

punjenjem do kraja, zajedno s pregledom testnih instanci i matematičkom formulacijom prob-

lema. Potom je dan detaljan pregled osnovnih inačica problema, od kojih su neki razmatrani u

disertaciji, i kratak pregled preostalih inačica problema.

Treće poglavlje opisuje postupke rješavanja VRP i EVRP problema, s naglaskom na meta-

heurističke postupke. U poglavlju su opisane najčešće korištene heuristike za konstrukciju

početnog rješenja, kao i najčešće primijenjeni operatori lokalne pretrage za poboljšavanje rješenja

problema. Nadalje, dan je pregled metaheurističkih postupaka primijenjenih za rješavanje prob-

lema. Na kraju poglavlja opisana je važnost razmatranja funkcije cilja s penalima za preko-

račenja ograničenja problema i važnost evaluacije osnovnih promjena u konfiguraciji rješenja

problema.

U četvrtom poglavlju dan je detaljan opis razvijene HALNS metode. Poglavlje započinje s

opisom generalnog okvira metode i potom opisom pojedinih dijelova metode. Prvo je opisana

metoda korištena za konstruiranje početnog rješenja EVRP problema. Potom su opisane funkcije

i varijable korištene za evaluaciju različitih inačica EVRP problema koji se razmatraju: (i) EVRP

s vremenskim prozorima i parcijalnim punjenjem, (ii) EVRP s vremenskim prozorima i punjen-

jem do kraja, (iii) EVRP s vremenskim prozorima, punjenjem do kraja i različitim punjačima

u stanici za punjenje, i (iv) EVRP s vremenskim prozorima, parcijalnim punjenjem i različitim

punjačima u stanici za punjenje. Nakon toga, opisani su korišteni operatori za izbacivanje i

ubacivanje korisnika, stanica za punjenje i cijelih ruta vozila, te su dodatno opisani i preostali

operatori koji su razmatrani prilikom razvijanja metode. Nakon toga su navedeni korišteni

operatori lokalne pretrage, te je prikazan postupak odabira operatora i njihovog redoslijeda

izvod̄enja. Nakon lokalne pretrage, opisan je postupak optimalnog postavljanja stanica za pun-

jenje u ruti vozila koristeći egzaktne metode. Potom su opisani korišteni postupci za ubrzavanje

izvod̄enja metode te je provedena optimizacija parametara metode. Na kraju četvrtog poglavlja

prikazani su rezultati primjene metode na malim i velikim testnim problemima te su uspored̄eni

s: (i) egzaktnom metodom, (ii) implementiranom metodom adaptivnog pretraživanja velikog

susjedstva (eng. Adaptive Large Neighborhood Search, ALNS) bez postupaka poboljšavanja



rješenja prezentirana u radu [1], (iii) najbolje objavljenim rezultatima na nekoliko inačica EVRP

problema, i (iv) postojećim problemima s drugačijom sekundarnom funkcijom cilja.

Peto poglavlje započinje s uvodom u vremenski ovisan problem usmjeravanja vozila i daje

motivaciju za razvoj novog problema vremenski ovisnog usmjeravanja električnih vozila. Po-

tom su opisane osnovne karakteristike vremenski ovisnog problema usmjeravanja vozila koje

uključuju način izračuna vremena putovanja i osiguranja svojstva ne-pretjecanja. U petom

poglavlju je dana matematička formulacija problema kao mješovitog programa cjelobrojnog

programiranja. Potom je u petom poglavlju, testirana razvijena HALNS metoda na srodnim

problemima vremenski ovisnog usmjeravanja vozila s ICEV vozilima. Na kraju petog poglavlja

dani su rezultati primjene metode na instancama novo-razvijenog problema.

Šesto poglavlje prikazuje primjenu razvijene metode na prilagod̄enom dostavnom problemu

iz stvarnoga svijeta. Konkretan dostavni problem je prilagod̄en na način da su uključene stanice

za punjenje u problem te je razmatrana dostava električnim vozilima. U rezultatima je raz-

matrano rješavanje različitih inačica problema usmjeravanja vozila s različitim sekundarnim

funkcijama cilja.

U sedmom poglavlju dan je zaključak disertacije te su istaknuti izvorni znanstveni dopri-

nosi koji su ostvareni kroz disertaciju. Nadalje, dan je pregled tema za buduće istraživanje u

području usmjeravanja električnih vozila, kao što su primjena razvijene metode na probleme s

heterogenom flotom vozila koja uključuje i ICEV i EV vozila, ili izrada središnjeg sustava za

prikupljanje najbolje objavljenih rezultata u EVRP području.

Zaključak

Glavni cilj istraživanja ove disertacije je: (i) razviti hibridnu metodu adaptivnoga pretraživanja

velikog susjedstva za rješavanje različitih inačica postojećih EVRP problema i (ii) predložiti

novi model vremenski ovisnog usmjeravanja električnih vozila te na njemu primijeniti razvijenu

metodu. U sklopu disertacije ostvarena su sljedeća tri izvorna znanstvena doprinosa:

• razvoj hibridne ALNS metode za rješavanje postojećih inačica problema usmjeravanja

električnih vozila;

• razvoj modela vremenski ovisnog usmjeravanja električnih vozila s vremenskim pro-

zorima i pripadnog mješovitog cjelobrojnog programa;

• rješavanje razvijenog modela problema vremenski ovisnog usmjeravanja električnih vozila

s vremenskim prozorima prilagod̄enom hibridnom ALNS metodom.

Kroz postignute rezultate može se zaključiti kako je predložena HALNS metoda sposobna

učinkovito riješiti različite postojeće inačice EVRP problema, prema različitim kriterijima min-

imizacije. Na skoro svim testiranim testnim problemima, metoda je pronašla nekoliko, do sada

neobjavljenih, najbolje ostvarenih rezultata, čime se najbolje ukazuje na učinkovito rješavanje

EVRP problema. Istovremeno predložena metoda ima vrijeme izvršavanja kraće od većine



drugih metoda primijenjenih za rješavanje EVRP problema. Razvijeni novi problem vremen-

ski ovisnog EVRP-a nastoji uzeti u obzir vremenski promjenjivo stanje prometne mreže, i kao

rezultat izbjegavati kretanje vozila po zagušenim prometnicama, te ako postoji koristiti vremen-

ski brži put. Na taj način može se uštedjeti na vremenu putovanja, na uštrb povećanja prijed̄ene

udaljenosti. Za rješavanje problema predložena HALNS metoda modificirana je s dijelovima

za izračun vremenski ovisnog vremena putovanja. Rezultati na srodnim problemima ukazuju

da se predložena metoda može primijeniti za rješavanje vremenski ovisnog VRP problema.

Ostvareni rezultati disertacije pokazuju veliki potencijal za provod̄enje daljnjeg istraživanja u

području usmjeravanja električnih vozila.

Ključne riječi: električna vozila, problem usmjeravanja električnih vozila, hibridna meta-

heuristika, heuristika, egzaktne metode, dinamičko programiranje, vremenski ovisno usmjera-

vanje, logistika
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Chapter 1

Introduction

The Vehicle Routing Problem (VRP) is an NP-hard optimization problem that aims to determine

a set of least-cost delivery routes from a depot to a set of geographically scattered customers,

subject to side constraints [2]. The problem is a generalization of the well-known Traveling

Salesman Problem (TSP), which aims to design one least-cost route to visit all customers subject

to side constraints. The problem has application in several real-life optimization problems,

which has led to the definition of many problem variants over the years [3, 4].

In the past decade, the European Union (EU) has announced many new actions and reg-

ulations related to Greenhouse Gas (GHG) emissions in the transport sector [5]. External

factors, such as polices and incentives, and the rise of social and ecological awareness have

prompted green initiatives in many companies. Conventional Internal Combustion Engine Ve-

hicles (ICEVs), which depend on limited fossil fuels, severely pollute the environment, espe-

cially in congested urban areas. The EU tends to decrease GHG emissions by 40% by 2030 [6].

This led to the definition of the green logistics research field [7], which deals with the sustain-

ability of delivery processes by taking into account environmental and social factors. With the

Electric Vehicle (EV) market penetration, many logistic companies evaluated the use of EVs

in their vehicle fleet in order to decrease GHG emissions, and therefore to reduce the charges

for every emission gram of CO2/km. EVs have several advantages compared to ICEVs: (i) do

not have local GHG emissions; (ii) produce minimal noise; (iii) can be powered from renew-

able energy sources; and (iv) are independent of the fluctuating oil price [8, 9]. There are two

basic configurations of EVs: the Battery Electric Vehicle (BEV), which is exclusively powered

from batteries mounted inside the vehicle; and the Hybrid Electric Vehicle (HEV), which can be

powered from batteries inside the vehicle or by other energy sources, most commonly internal

combustion engine. The Plug-in HEV (PHEV) can be recharged by connecting the plug to the

electric power source. In this thesis, only BEVs for logistic purposes are considered, where two

main problems come to the fore: limited driving range and the need for additional recharging

1



1. Introduction

infrastructure.

Due to the limited battery capacity, the range that delivery BEVs can achieve with a fully

charged battery is 160-240 km [10], which is much lower than the 480-650 km range of ICEVs

[11]. To achieve a similar driving range as ICEVs, BEVs have to visit Charging Stations (CSs)

more frequently. Today, there is still a lack of CSs in the road network infrastructure. Their

locations and energy demand should be planned in future infrastructural plans. For an empty

BEV to become operable again, battery energy has to be renewed at CS. This can be performed

in two ways: (i) by swapping empty batteries with fully charged ones at a Battery Swapping

Station (BSS); or (ii) by charging at CS [12, 13]. The former process can be performed in a

time comparable to the refueling time of ICEVs. In the latter process, BEVs recharge their

batteries at CSs by plugging into the electric power source. The recharge time depends on the

State of Charge (SoC) level when entering CS, the desired SoC level when leaving CS, and the

CS charging function characteristic.

With BEVs penetration in logistic distribution processes, a problem of routing a fleet of

BEVs has emerged: the Electric Vehicle Routing Problem (EVRP). The EVRP aims to design

least-cost BEV routes in order to serve a set of customers by taking into account often used

constraints: vehicle load capacity, customer time windows, working hours, etc. [4, 14]. Ad-

ditionally, BEVs have a limited driving range, which directly corresponds to more frequent

recharging events at CSs. A CS can be built at separate location as a public CS or mounted

at customer location as a private CS. The time needed to travel to a CS as well as recharg-

ing time are important aspects of fleet routing, especially if customer time windows are taken

into account. In the last few years, several variants of EVRP emerged that most often include:

heterogeneous fleet of BEVs and ICEVs, partial recharging, different CSs, nonlinear charging

characteristic etc. Although several variants have already been proposed, some problem variants

have not been addressed: time-dependent travel time, different CSs with full recharge option,

single or multiple recharge per route, etc.

Due to the NP-hardness of the problem, exact procedures are only capable of optimally

solving small-sized problems: up to 360 customers for Capacitated Vehicle Routing Prob-

lme (CVRP) [15], and 50-100 customers for Vehicle Routing Problem with Time Windows

(VRPTW) [16]. Over the years, a vast number of heuristic, metaheuristic, and hybrid proce-

dures were proposed for solving different VRP problems. Most of them are with some mod-

ifications applied to solve EVRP problems. Due to the additional modifications of charging

requests, the EVRP problem is harder to solve than the similar VRP problem. Therefore, to

solve different EVRP variants, researchers usually proposed specially designed metaheuristic

and heuristic procedures, which not only differ in their versatility but are also often hard to

implement. Therefore, the research field lacks the application of a general heuristic, which will

successfully solve several different EVRP variants.

2



1.1. Research motivations

1.1 Research motivations

The main motivation of this dissertation is to give new scientific contributions in the field of

electric vehicle routing, which have not been sufficiently researched in the existing literature

so far. The research fields considered in this dissertation are: (i) the development of a hybrid

metaheuristic capable of solving different existing variants of the EVRP problem, and (ii) the

development of a new problem variant - the time-dependent EVRP.

The VRP is one of the basic optimization problems that has led to the significant develop-

ment of optimization methods [4]. Due to the NP-hardness of the problem, exact methods can

solve problems with a relatively small number of customers. Thus, researchers usually apply

heuristic procedures based on their experience, that are able to find an acceptable solution on

larger problems in reasonable computation time. The heuristic procedures, due to the narrow

search space, often end up in local optima. In such cases, metaheuristic procedures are applied

to escape the local optima and to search a larger solution space [3]. Given a large number of

VRP variants, in the last decade, researchers have focused on developing a general heuristic

that will efficiently solve different variants of the problem [17]. At the same time, with electric

vehicle market penetration, the EVRP problem emerged [18], which incurred the exponential

growth of research papers dealing with electric vehicle routing [1, 19, 20, 21, 22]. Based on the

literature review, it can be seen that effective special metaheuristic or heuristic procedures have

been proposed to address each of the EVRP variant [21]. This significantly affects the imple-

mentation possibilities for different variants of the problem and opens a gap for the development

of a more general metaheuristic that will efficiently solve different EVRP variants.

In the EVRP problem, the schedule of CSs in route significantly affects the solution qual-

ity. Most of the researchers suggest special heuristic procedures for determining the schedule

of CSs, as well as the recharging amount [1, 23]. Such heuristic procedures do not guaran-

tee optimality and can produce solutions far from the optimal one. To increase the solution

quality, in this thesis, the exact procedure was used to determine the optimal CS schedule. As

this procedure is time-consuming, it is important to balance its calls within the metaheuristic

procedure.

Most of the researchers in the EVRP field considered basic variants of the EVRP problem,

such as partial charging, full charging, different CSs, and a heterogeneous vehicle fleet [1, 19,

20, 21, 22]. These variants of the EVRP problem consider static traffic network, i.e., time-

independent routing. In the real world, it is a well known fact, that the travel time on the

traffic network changes depending on the departure time [24, 25]. For example, in urban areas,

during rush hours, when traffic jams usually occur, travel time increases significantly. In the

literature, there are papers that dealt with time-dependent routing in VRP [25, 26, 27], but the

time-dependent routing of electric vehicles has not yet been addressed. Taking into account
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1. Introduction

time-dependent travel time can significantly change the schedule of customers and CSs in te

vehicle route. For example, it can be cost-effective to charge vehicles in CSs during peak

hours and not to waste time traveling in such traffic conditions. Although, the basic variants

of the EVRP problem have already been well-researched, some additional characteristics of

the existing problems have still not been addressed: multiple or single charging in route, full

charging in problems with different CSs, the limited capacity of CSs, waiting times at CSs,

public or private CS property, energy network load, depot charge scheduling, etc. [28].

In EVRP, a hierarchical optimization function is considered, which first minimizes the num-

ber of vehicles and then minimizes total routing costs, most often consisting of the total traveled

distance [1, 18, 29]. Therefore, there is a need to consider different criteria for secondary mini-

mization such as total travel time, total time, total energy consumption, recharging costs, etc.

1.2 Major contributions of the thesis

The first objective of the thesis is to develop the HALNS method for solving different existing

EVRP variants. The aim is to develop an effective method in terms of both solution quality and

execution time that will be able to solve different existing EVRP variants with consideration of

different secondary minimization objectives. The most important parts of the method that have

not been addressed in such way are: (i) penalty functions, variables and concatenation oper-

ators, (ii) exact procedure to solve the CS placement problem, and (iii) vehicle route removal

algorithms. The main goal in this part is to validate and compare the results of the proposed

method to the other methods in the literature. For that purpose, the benchmark instances and

Best-Known Solutions (BKSs) are used [1, 18].

The second objective of the thesis is to formulate a new time-dependent electric vehicle

routing problem with time windows (TD-EVRPTW) as a mathematical mixed integer program.

This is an important goal, as such a problem has not yet been addressed in the literature. The

mixed integer formulation is commonly used in the VRP research field when a new problem is

introduced. The linear mixed integer programs can be solved by various available solvers based

on the exact procedures to find an optimal solution. As the formulated problem is not linear, the

linearization of the problem will be provided to obtain a mixed integer linear program.

The third objective of the thesis is to apply the developed HALNS method to solve a newly

defined problem. To apply the method on the newly-defined problem, several modifications of

the proposed method are performed, mostly related to the computation of travel times and to the

ensurance of a non-passing property. To test whether HALNS is able to solve such a problem

efficiently, the proposed method is used to solve similar time-dependent VRP problems. The

test results are used to adjust HALNS parameters. The results are compared to the case without

the time-dependent travel time to indicate how much the consideration of time-dependent travel
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times affects the total travel time and total traveled distance.

Based on the previous description, the major contributions of this thesis can be summarized

through the following three points:

1. hybrid ALNS method development for solving different existing variants of the electric

vehicle routing problem;

2. development of the mixed integer program based model for time-dependent electric vehi-

cle routing problem with time windows;

3. solving the developed model of time-dependent electric vehicle routing problem with

time windows using adapted hybrid ALNS method.

1.3 Outline of the thesis

The dissertation is divided into seven chapters, with the first three chapters providing an intro-

duction and motivation for the development of the HALNS method and a new time-dependent

EVRP problem. The next two chapters describe the obtained results and scientific contribu-

tions. The sixth chapter presents the application case of the method on the adapted problem

of real-world delivery. The last chapter provides a conclusion on the conducted research and

guidelines for future research.

Chapter 1 provides an introduction to the dissertation, especially an introduction to the field

of green logistics, which considers the problem of routing a fleet of electric vehicles. The first

introduction chapter highlights the advantages and disadvantages of using electric vehicles in a

delivery fleet and gives an overview of basic EV variants. Additionally, the advantages of using

a metaheuristic approach to solve the VRP problem are highlighted. The first introductory

chapter also provides an overview of the original scientific contributions made as a part of this

thesis.

Chapter 2 provides a detailed introduction to the VRP field, with an emphasis on EVs. The

combinatorial explosion of the VRP problem is described, and an overview of the characteristics

and applications of EVs in delivery processes is given. The second chapter defines the basic

variant of the EVRP problem - the EVRP with time windows and full recharge, along with an

overview of the test instances and a mathematical formulation of the problem. Then, a detailed

overview of the basic variants of the problem is given, together with a brief overview of the

remaining problem variants which are not considered within this thesis.

Chapter 3 describes the procedures applied to solve VRP and EVRP problems, with an

emphasis on metaheuristic procedures. The third chapter describes the most commonly used

heuristic procedures for the construction of the initial solution, as well as the most commonly

used local search operators to improve the solution. Further on, an overview of the metaheuristic

procedures applied to solve the EVRP problem is given. At the end of the third chapter, the
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importance of considering the objective function with penalties for the constraints violations

and the technique for solution evaluation are discussed.

In chapter 4, a detailed description of the developed HALNS method is given. The fourth

chapter begins with a description of the general framework of the HALNS method. Afterward,

the descriptions of the individual parts of the HALNS method are presented. First, the method

used to construct an initial solution of the EVRP problem with time windows and full recharge

is described. Then, the functions and variables used to evaluate the different variants of the

EVRP problem are described: (i) EVRP with time windows and partial recharge, (ii) EVRP

with time windows and full recharge, (iii) EVRP with time windows, full recharge and different

charger types in CSs, and (iv) EVRP with time windows, partial recharge and different charger

types in CSs. Afterwards, the fourth chapter describes the operators used to remove and insert

customers, CSs, entire vehicle routes, and additionally describes the remaining operators that

were considered during the development phase. Next, local search operators are selected based

on their performance, together with the determination of their execution order. After the local

search, the exact procedure for optimal CS placement in a fixed vehicle route is described. Prior

to the results, the used speed-up techniques and tuned HALNS parameters are outlined. At the

end of the fourth chapter, the results of the HALNS method on small and large test problems

are presented and compared with: (i) exact method, (ii) implemented ALNS method without

problem improvement procedures presented by Keskin et al. [1], (iii) best published solutions

on several problem variants, and (iv) existing problems with different secondary objective func-

tions.

Chapter 5 begins with an introduction to the time-dependent VRP problem and provides

motivation for the development of a new time-dependent EVRP problem. Then, the basic char-

acteristics of time-dependent routing are described, which include the method for travel time

computation and insurance of the no-passing property. The chapter presents a mathematical

formulation of the problem as a mixed integer program. The developed HALNS method is

tested on related time-dependent VRP problems. At the end of the fifth chapter, the results of

the HALNS method on a newly developed problem instances are presented.

Chapter 6 presents the application of the developed HALNS method on the adapted real-

world delivery problem. The delivery problem is modified in such a way that CSs and BEVs

are included. The results cover solving different versions of the VRP and EVRP problems with

different secondary objective functions.

In the final chapter 7, the conclusion of the thesis is given, and the original scientific con-

tributions that were achieved throughout the thesis are highlighted. Furthermore, an overview

of topics for future research in the field of EVRP is presented, such as applying the developed

HALNS method on heterogeneous vehicle fleet problems involving both ICEVs and EVs or

developing a central system for the collection of the best published results in the EVRP field.
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Chapter 2

Electric vehicle routing problem

The electric vehicle routing problem is a special case of a more general VRP problem where

EVs perform the delivery of goods to customers. VRP is one of the most important problems

in logistic distribution. The VRP problem was first defined as a truck dispatching problem [30].

The basic VRP problem consists of a depot, geographically scattered customers, and a set of

delivery vehicles positioned at the depot. Each customer has to be visited only once, and in the

end, all vehicles have to return to the depot. Meanwhile, the goal is to minimize overall routing

costs, which includes minimization of vehicle number and specific vehicle routing costs. The

real-world application has led to many different variants of the basic VRP problem. Here the

most important ones are listed:

• Capacitated Vehicle Routing Problem (CVRP) [4] - each customer has a demand - a quan-

tity representing the amount of goods that need to be delivered to the respective customer,

and each vehicle has a limited load (cargo) capacity, usually expressed in volume or mass

unit,

• Vehicle Routing Problem With Time Windows (VRPTW) [31] - each customer has to be

visited within its time window (early and late time of the service start time),

• Multi-Depot Vehicle Routing Problem (MDVRP) [4] - multiple depots where the start

and end depot do not have to be the same,

• Vehicle Routing Problem with Pickup and Delivery (VRPPD) [32] - each customer has a

request for pickup and delivery (drop-off), and each request must be handled by the same

vehicle,

• Heterogenous or Mix Fleet Vehicle Routing Problem (MFVRP) [33] - vehicles have dif-

ferent load capacities,

• Time-Dependent Vehicle Routing Problem (TD-VRP) [25] - travel time between cus-

tomers depends on the departure time.

In the VRP, often the primary objective is to minimize the total number of vehicles used
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2. Electric vehicle routing problem

and then to minimize the total traveled distance or some other objective function [34]. The total

vehicle number is a primary objective as generally greater savings can be achieved with fewer

vehicles (vehicle fixed costs, labor cost, maintenance cost). Such an objective is contradictory

as with fewer vehicles, total traveled distance increases, and vice versa. By taking into account

BEVs high purchase price, such a hierarchical objective seems even more reasonable in BEV

routing applications [18, 35].

In EVRP problem, the objective functions can be complex with simultaneous minimization

of: vehicle number, total traveled distance [1], total travel times [36], total routing cost and

planning horizon [9, 20, 29, 35], GHG emission [37, 38], energy consumption [39, 40, 41],

recharging cost [22], etc. Total routing costs of BEVs usually consist of acquisition cost, circu-

lation tax, maintenance, costs related to the energy consumption (electric energy price), cost of

battery pack renewal after its lifetime, labor costs, etc. Instead of a single-objective function,

some researchers use a multi-objective function, i.e., fuel consumption and total driving time

[42], fuel consumption and route cost [43], battery swapping and charge scheduling [44], etc.

The VRP problem can be modeled on a complete directed or undirected graph, where cus-

tomers are modeled as graph vertices, and paths between customers are modeled as graph arcs.

Most of the VRP variants consider undirected graphs, meaning that the path between customers

is the same in both directions. To better model a real traffic network, the directed graph can be

used in cases when the path between customers changes depending on the direction or in the

cases of one-way roads and forbidden turns.

The important aspect of all VRP problems is the combinatorial explosion, which happens

due to the NP-hardness of the VRP problem. For example, for a basic TSP problem without

capacity or time-window constraints, humans are only capable of sub-optimally solving prob-

lems with a small number of customers, up to 15, depending on the spatial distribution of the

customers. Figure 2.1a presents an example of an instance with 15 customers, where the purple

square is the depot and the black circles are the customers. The Euclidean distance measure is

used. Based on the intuition, humans would usually connect customers near each other to form

the route, and in most cases, end up in a sub-optimal solution as in Figure 2.1b, with the total

traveled distance of 105.9. Also, for two presented solutions such as those in figures 2.1b and

(a) Instance with 15 customers (b) D = 105.9 (c) D = 100.89

Figure 2.1: Examples of TSP instance with 15 customers
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2.1c, for humans without the measure value, it is visually hard to determine which solution is

better. The decisions get much harder for a larger number of customers as in Figure 2.2 or if

additional constraints are included. The TSP can be considered as a special case of VRP, which

is harder to solve than TSP.

To solve larger instances, the advantages of computer resources can be used, which are

able to perform a lot more operations than humans in the same unit of time. But still, even

with the use of computers, this basic TSP problem is hard to solve. For example, let there be

50 customers without a depot, in the asymmetric TSP problem. The goal is to go through all

possible combinations to find the optimal solution - the so-called brute force approach. For 50

customers there are 50! = 3.04 ·1064 permutations of customers schedule. If assumed, that the

check of one combination can be performed in the smallest ever possible measured time called

Planck Time tp = 5.39 ·10−44 (best modern computers perform 2.36 ·1012 instructions per s→
4.24 · 10−13 s per instruction), then the time to check all combinations would be 1.64 · 1021 s.

To put into the real context, the estimated age of the universe is 13.7 · 109 years = 4.32 · 1017

s. This shows that solving a TSP problem with a brute force algorithm is impossible, and some

other techniques need to be used.

In the rest of this chapter, first, the characteristic of BEVs are described. Then in the fol-

lowing sections, different EVRP variants are described, with the notation of the variables used

in mathematical problem formulations presented in Table 2.1.

(a) Instance with 100 customers (b) D = 655.06

Figure 2.2: Examples of TSP instance with 100 customers

9



2. Electric vehicle routing problem

2.1 Battery electric vehicles in routing problems

The major problem that BEVs in delivery processes face is the limited driving range. Grunditz

et al. [45] analyzed over 40 globally available BEVs, which can be categorized into small,

medium-large, high-performing, and sport cars. Most of the BEV models utilize lithium-based

batteries, especially lithium-ion [46], with battery capacity and distance varying between 12-

90 kWh and 85-528 km, respectively. An average medium-sized personal BEV has a battery

capacity of 30 kWh, which is enough to travel 250 km. In the delivery processes, mostly light

vans and freight BEVs are used, which have a shorter driving range (160-240 km) compared to

the driving range of ICEVs (480-650 km) [11, 47, 48]. The main reason for the shorter driving

range is that the battery has a lower specific energy (130 Wh/kg) than the fossil oil (1233

Wh/kg). Batteries mounted in BEVs are mostly the main cause of high acquisition costs and

technical limitations, as the battery degrades over time, resulting in decreased capacity. There

are also other factors that influence such battery degradation: overcharging, overdischarging,

high and low temperatures, high SoC during storage, large depth of discharge, etc. Usually, the

battery should be replaced after five to ten years or after 1000 to 2000 cycles with large SoC

variations [49].

BEVs are more likely to be used on short distances or in urban areas where they are more

effective than ICEVs due to the low driving speed, low noise production, frequent stops, and

financial incentives. In cases when the average route length is short, such as the average FedEx

route length in the USA, which is 68 km [10], BEVs can be applied directly, and recharging can

be performed on the return to the depot. BEVs are already being applied in such occasions in

companies like: DHL, UPS, FedEx, and Coca-Cola [50, 51], use BEVs mostly for the last-mile

delivery as distances are shorter and vehicle loads are lower. Many companies are performing

case studies of integrating BEVs in their delivery fleet, but are still cautious, because the use

of BEVs in time-precise deliveries causes hard completion of an on-time delivery, which then

significantly increases the overall routing costs [52]. Some authors also reported that BEVs

are not competitive if the solution to the same problem results in a higher number of BEVs

than the number of ICEVs [47]. There are several key elements for BEVs to be competitive:

daily traveled distance close to the maximum BEV driving range, low speeds and congestions,

frequent customer stops, the decrease of a BEV’s purchase cost by tax incentives or technology

development, and long planning horizon [8]. On the other hand, several researchers conducted

case studies of using freight BEVs for delivery and point out that there are no operational

limitations when using BEVs compared to ICEVs, as the used number of vehicles and total

traveled distance are competitive, and at the same time, the overall costs are lower with almost

25% less CO2 emission [35]. To fully assess the integration of BEVs in logistic processes,

there are three key elements: solution to the problem in terms of the used number of CSs and

10



2.2. Electric vehicle routing problem with time windows and full recharge

BEVs, future CO2 emission policies, and future technology development (battery capacity and

charging infrastructure) [9].

2.2 Electric vehicle routing problem with time windows and

full recharge

The Electric Vehicle Routing Problem with Time Windows and Full Recharge (EVRPTW-FR)

proposed by Schneider et al. [18] is the first researched problem that considers routing of a

BEV fleet, possible visits to CSs, and charging time dependent on the SoC level. The prob-

lem considers a set of homogeneous BEVs with equal load and battery capacities and a set of

customers with demands and time windows. The constraints of the problem are:

(i) each customer is visited exactly once, by only one vehicle,

(ii) each vehicle starts and ends in a depot,

(iii) the sum of demand of customers in a vehicle does not exceed vehicle load capacity,

(iv) the SoC level never drops below 0,

(v) full charging at CS does not exceed vehicle battery capacity,

(vi) each customer is visited within its time window,

(vii) the total vehicle time does not exceed depot working hours.

The problem can be formulated as a Mixed Integer Linear Program (MILP) on the complete

directed graph G where customers are modeled as graph vertices, and paths between customers

are modeled as graph arcs. The variables used to model the EVRPTW-FR problem are presented

in Table 2.1.

Let V = {1, . . . ,N} be a set of geographically scattered customers that need to be served,

and let F be a set of CSs. In order to allow multiple visits to same CS, a virtual set of CSs

F ′ is defined, where β represents the maximal number of virtual CSs (visits) to a single CS.

Vertices 0 and N + 1 denote the depot instances, and every route begins at vertex 0, and ends

at vertex N + 1 (V0,N+1 =V ∪{0}∪{N +1}). Graph G is defined as G = (V0,N+1 ∪ F ′,A),

where A is the set of arcs A = {(i, j)|i, j ∈ V0,N+1∪F ′, i 6= j}. The binary variable xi j ∈ {0,1}
(equation 2.1) is equal to 1 if arc (i, j) is traversed in the solution, and 0 otherwise. The arc

value di j represents the arc distance, ti j represents the time needed to traverse the arc, and ei j the

energy consumption on the arc. The distance matrix representing the shortest path between each

vertex is computed in advance in the preprocessing step. The hierarchical objective function

consists, first of vehicle number minimization (equation 2.2), and then the total traveled distance

minimization (equation 2.3). Each BEV has a load capacity C and battery capacity Q. Recharge

time is computed as linear function value of recharged capacity with recharge rate g. The energy

consumption on the arc is computed as linear function value of arc distance, ei j = rdi j, where r

is the energy consumption rate. Each vertex i (customer, station or depot - further on referred
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Table 2.1: Notation used in EVRP problems

Notation Description
V Set of customers
F Set of CSs
F ′ Set of CSs with dummy vertices
β Number of dummy vertices

0, N +1, (DD,AD) Depot beginning and ending instances
xi j Binary variable for arc (i, j)
di j Arc distance
ti j Arc travel time

ti j(δi) Arc travel time function depending on the departure time δi at user i
ei j Arc energy consumption
C Vehicle load capacity
Q Vehicle battery capacity
r Energy consumption rate
si Service time at user i
ei Early time window at user i
li Late time window at user i
qi Load demand of user i
τi Earliest begin time at user i
ui Remaining vehicle load capacity at user i
yi Remaining battery capacity at user i
Yi Remaining battery capacity at the departure from CS i

g, gm Energy recharge rate of charger type m
cm Charging cost of charger type m

ai, bi Binary variables for determining charger type at CS i
θ m

i Amount of energy recharged at CS i using charger type m
ct Route duration cost
cd Route distance cost
K Maximum number of vehicles

as user) has a service time si, load demand qi and time window [ei, li], while CSs and depots

have the time window [e0, l0] i.e. working hours. Beside the xi j decision variable, three more

decision variables for vertices i ∈ V0,N+1 ∪F ′, are used: τi - begin time, ui - remaining load

capacity, and yi - remaining battery capacity.

Equation 2.4 ensures the arc connectivity of customers, meaning that each customer can

have only one exit arc to a customer or CS. Equation 2.5 ensures the arc connectivity of CSs,

meaning that each virtual CS can have at maximum one exit arc to either a customer or another

CS. Thus, there is also a possibility of no exit arc if a CS is not visited. Equation 2.6 for each

user ensures that the number of entry arcs is the same as the number of exit arcs, which together

with 2.4 and 2.5 ensure that each customer is visited exactly once, and that each virtual CS

if visited, has only one entry and exit arc. Equation 2.7 ensures travel time feasibility of arcs

between customer i and user j, which can be a customer or CS. If arc (i, j) is traversed, then
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the begin time at user j has to be equal to or greater than the sum of begin time at customer

i, travel time between i and j, and service time of customer i. Otherwise, if arc (i, j) is not

traversed, then the difference between begin times at users i and j has to be lower than the

depot working hours. This is done in order to reduce the search space. Equation 2.8 ensures

travel time feasibility of arcs between CS i and user j. If arc (i, j) is traversed, then the begin

time at vertex j has to be equal to or greater than the sum of begin time at CS i, travel time

between users i and j, and recharging time at CS i. Otherwise, the search space is reduced

in a similar way as in equation 2.7. Equation 2.9 ensures the travel time feasibility of a user,

meaning that the begin time has to be within the user’s time window. Equations 2.10, 2.12 and

2.13 ensure arcs load and battery capacity, in similar way as equations 2.7 and 2.8. Equation

2.11 ensures that the leaving depot instance has a remaining load capacity equal to the vehicle

load capacity C.

xi j ∈ {0,1}, ∀i ∈V0∪F ′, j ∈VN+1∪F ′, i 6= j (2.1)

min ∑
j∈V∪F ′

x0 j (2.2)

min ∑
i∈V0∪F ′

∑
j∈VN+1∪F ′,i6= j

di jxi j (2.3)

∑
j∈VN+1∪F ′,i 6= j

xi j = 1, i ∈V (2.4)

∑
j∈VN+1∪F ′,i 6= j

xi j ≤ 1, i ∈ F ′ (2.5)

∑
i∈VN+1∪F ′,i 6= j

x ji− ∑
i∈V0∪F ′,i6= j

xi j = 0, j ∈V ∪F ′ (2.6)

τi +(ti j + si)xi j− l0 · (1− xi j)≤ τ j,∀i ∈V0,∀ j ∈VN+1∪F ′, i 6= j (2.7)

τi +g(Q− yi)+ xi jti j− (l0 +gQ)(1− xi j)≤ τ j, ∀i ∈ F ′,∀ j ∈VN+1∪F ′, i 6= j (2.8)

e j ≤ τ j ≤ l j,∀ j ∈V0,N+1∪F ′ (2.9)

0≤ u j ≤ ui− xi j(qi +C)+C, ∀i ∈V0∪F ′,∀ j ∈VN+1∪F ′, i 6= j (2.10)

13



2. Electric vehicle routing problem

u0 =C (2.11)

0≤ y j ≤ yi− (ei j +Q)xi j +Q,∀ j ∈VN+1∪F ′,∀i ∈V, i 6= j (2.12)

0≤ y j ≤ Q− ei jxi j,∀ j ∈VN+1∪F ′,∀i ∈ 0∪F ′, i 6= j (2.13)

Beside the distance minimization for the secondary objective, the other objectives can be

considered:

• Travel time:

min ∑
i∈V0∪F ′

∑
j∈VN+1∪F ′,i 6= j

ti jxi j, (2.14)

• Energy consumption:

min ∑
i∈V0∪F ′

∑
j∈VN+1∪F ′,i 6= j

ei jxi j, (2.15)

• Total time (requires several instances of end depot (AD) to track begin time):

min ∑
i∈V∪F ′

∑
j∈AD

xi j(τ j− e0). (2.16)

For problems with load capacity, the theoretical lower bound on the number of vehicles can

be determined by equation 2.17, as the ceiling integer value of the sum of customers demand qi

divided by the vehicle load capacity C.

nmin
v =

⌈
∑i∈V qi

C

⌉
(2.17)

Schneider et al. [18] were the first one to propose the test instances for the Electric Vehicle

Routing With Time Windows (EVRPTW), which are widely used in the research community

for testing various procedures applied to solve the problem [1, 20, 23, 29, 53, 54, 55]. The au-

thors created two sets of benchmark instances: (i) 56 large instances, each with 100 customers

and 21 CSs, and (ii) 36 small instances, with 5, 10 and 15 customers per instance. All instances

are created based on the well-known Solomon benchmark instances for VRPTW problem [31].

Small instances are usually used to compare exact and metheuristic procedures applied to solve

the problem [1, 18, 20]. The instances are divided into three groups, depending on the geo-

graphical distribution of the customers: clustered customer distribution (C) (example in Figure

2.3a), random customer distribution (R) (example in Figure 2.3b), and a mixture of both (RC)

(example in Figure 2.3c). Additionally, the instances are also divided into two groups based

on the scheduling horizon: short scheduling horizon with narrow time windows (1), and long

scheduling horizon with wide time windows (2). As a result, there are in total six instance types.
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(a) C101 (b) R201

(c) RC101

Figure 2.3: Examples of EVRPTW instances

In all of the instances, the Eucledian distance is considered for distance computation, given by

equation 2.18. The instances were created in such way, that each customer is directly reachable

from the depot regarding time windows, while regarding the energy feasibility, at maximum

two CS are needed to visit the customer. The locations of customers in instances are the same

as in Solomon instances [31], but the time window values were relaxed in EVRPTW instances,

as some instances were infeasible in the original Solomon instances if BEVs were included, due

to the charging time at CSs.

d(T1(x1,y1),T2(x2,y2)) =
√
(x1− x2)2 +(y1− y2)2 (2.18)

Three examples of different instances are presented in Figure 2.3. For example, in instance

RC101, RC represents the geographical distribution, the first value afterward represents the

scheduling horizon of type 1, and the last two numbers represent the instance number. In this

thesis, in all figures related to the EVRP, the customers are represented as filled circles which

have two attributes: (i) size, which represents the demand of a customer - the greater the demand

is, the larger the circle is, and (ii) color from red to green, with red representing customers that

close sooner (need to be visited sooner) and green representing customers that close later, and

thus can be visited later in the route. The depot is represented with the purple rectangle, while

the CSs are represented with blue triangles.
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2. Electric vehicle routing problem

Table 2.2: EVRPTW instances - group values

C1 C2 R1 R2 RC1 RC2
Q 79.69 [117.66,118.31] [62.14,67.15] [181.23,267.18] 79.69 [159.68,273.13]
C 200 700 200 1000 200 1000
r 1 1 1 1 1 1
g 3.39 [2.28,2.29] [0.45,0.48] [0.11,0.17] 0.38 [0.11,0.19]

Vehicle battery capacity Q, vehicle load capacity C, energy consumption rate r, and recharge

rate g per instance types are presented in Table 2.2. It can be seen that instance types with wider

time windows have larger vehicle load and battery capacities, which results in a lower number

of vehicles per instance.

Figure 2.4 presents BKS for the EVRPTW-FR problem on the instance C101. In total, there

are 12 vehicles, each represented with a different color. The total traveled distance is 1053.83,

while the total time is 12904.61.

Figure 2.4: C101: EVRPTW-FR, BKS

2.3 Electric traveling salesman problem with time windows

As VRP is a generalization of the TSP, the EVRP is closely related to the Electric Traveling

Salesman Problem (ETSP), in which a set of customers has to be served by only one BEV [56].

There exist only a few variants of the ETSP problem: (i) hybrid TSP, in which hybrid vehicles

with four operating modes are used [57], and (ii) EV touring problem in which BSSs are used

and the total travel time is minimized [48]. Here, the Electric Traveling Salesman Problem

with Time Windows and Full Recharge (ETSPTW-FR) is observed in which customers have

no demand, and only the battery capacity of the vehicle is considered. The example of the
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2.4. Electric vehicle routing problem with time windows and partial recharging

ETSPTW-FR optimal solution for instance C202-15 is presented in Figure 2.5. The general

ETSP can be modeled as a compact MILP program, in the same way as the EVRPTW-FR in

section 2.2. Here only the differences are highlighted. Equation 2.2 is omitted, as only one

vehicle is used, as well as equations 2.10 and 2.11 for tracking the remaining vehicle load

capacity.

Figure 2.5: C202-15: ETSPTW-FR, optimal

2.4 Electric vehicle routing problem with time windows and

partial recharging

The full recharge strategy can be time-consuming because, depending on the SoC level, avail-

able charging technology, and battery capacity, the vehicle can charge from five minutes to eight

hours [13]. In real-world applications, the battery should be charged enough to complete the

whole route or to surpass a fear that the vehicle range will not be enough to perform designated

tasks, the so-called range anxiety [58]. The benefits of a partial recharging strategy are partic-

ularly visible on customers with narrow time windows, where efficient charge scheduling can

enable the feasibility of the route, which would be infeasible with a full recharge strategy. Ad-

ditionally, partial recharge strategy generally reduces routing costs by roughly 3.80% compared

to the full recharge strategy [55]. On the economic side, significant savings can be achieved by

partial recharging as a minimal amount of energy could be recharged during the day, when the

electricity cost and energy network load are higher, and the rest of the energy could be replen-

ished during the night [23, 59]. In some cases, it is natural to maintain the energy reserve. This

can be done by SoC limitation, i.e., in [20,95]% range [59, 60, 61]. Having an energy reserve

seems even more important if energy consumption and range anxiety are taken into account

because up to 30% of the consumed energy can be spent on BEV’s auxiliary devices [62]. Lim-
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2. Electric vehicle routing problem

iting SoC value also helps to preserve the battery, as battery capacity decreases by overcharging

and over-discharging [49]. This all led to the definition of Electric Vehicle Routing Problem

with Time Windows and Partial Recharging (EVRPTW-PR) [1, 23, 36, 63].

The EVRPTW-PR can be modeled as a compact MILP program, the same as EVRPTW-FR

in section 2.2. The used variables are presented in Table 2.1. Here, only the differences between

the models are highlighted. First of all, a new decision variable Yi is added, which represents the

remaining battery capacity on the departure from CS i, given by equation 2.19. The remaining

battery capacity after recharging Yi has to be, somewhere in between the remaining battery

capacity without charging yi and full recharge capacity Q. The equations that changed are the

equations for CSs exit arc travel feasibility and battery feasibility ensurance (2.8 and 2.13), and

are replaced with equations 2.20 and 2.21. The only change is that instead of charging to the

full capacity Q, the vehicle is charged up to the decision variable Yi.

yi ≤ Yi ≤ Q, ∀i ∈ F ′0, (2.19)

τi +g(Yi− yi)+ xi jti j− (l0 +gQ)(1− xi j)≤ τ j, ∀i ∈ F ′0,∀ j ∈VN+1∪F ′, i 6= j (2.20)

0≤ y j ≤ Yi− (ei j +Q)xi j +Q,∀i ∈ F ′0,∀ j ∈VN+1∪F ′, i 6= j (2.21)

Figure 2.6 presents BKS for EVRPTW-PR problem on the instance C101. It can be seen that

the total traveled distance decreased compared to the full recharge strategy, while the number

of vehicles remained the same.

Figure 2.6: C101: EVRPTW-PR, BKS
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2.5. Electric vehicle routing problem with different charging stations

2.5 Electric vehicle routing problem with different charging

stations

Today, multiple charging technologies are present: (i) slow - 3 kW (6-8 h); (ii) fast - 7-43 kW

(1-2 h); and (iii) rapid - 50-250 kW (5-30 min) [13, 64]. To better control the charging time

when routing BEVs, the selection of possible charging technology could also be optimized. This

could make some customers who have narrow time windows more accessible by fast charging

at previous CSs, or if the time windows are wide, an economically better approach could be

slow charging. Such problem could be extended by taking into account CS working hours,

time-dependent charging costs, number of available chargers, compatibility of chargers with

BEVs, power grid load, charger power, etc. [23, 59, 61, 65, 66, 67, 68, 69].

The use of only rapid charging option can reduce the fleet size and decrease the total energy

consumption, but it can increase the overall routing costs as the rapid charging option is the

most expensive one [70]. The lowest overall routing cost can be obtained if joint technologies

are used [23]. Keskin et al. [22] formulated the Electric Vehicle Routing Problem with Time

Windows and Fast Charging (EVRPTW-FC), in which different charger types in CSs and dif-

ferent charging costs are considered. The authors considered partial recharging and formulated

the problem as an MILP model. To ease the understanding of the observed problems, in this

thesis, this problem will be named Electric Vehicle Routing Problem with Time Windows, Dif-

ferent Charging Stations and Partial Recharging (EVRPTWDCS-PR), where the term "different

charging stations" refers to different charger types used in CSs. The natural extension of the

EVRPTW-PR problem to EVRPTWDCS-PR problem would be to replicate each CS for each

different CS technology. As pointed by Keskin et al. [22] such model is inferior in both exe-

cution time and solution quality compared to the model in which each CSs can have different

charging technology, and binary variables are used for the decision of the technology used.

The EVRPTWDCS-PR can be modeled as an MILP program, similar as the MILP program

for EVRPTW-PR problem presented in section 2.4. Variables used for the formulation of the

problem are presented in Table 2.1. To keep track of BEV’s energy consumption, the authors

created several copies of depot instances: DD set for leaving depot instances at the beginning

of the route, and AD set for arrival depot instances at the end of the route. The customer

and CS sets are changed to include those instances, i.e. VDD,AD = V ∪{DD}∪ {AD}. Graph

G is defined as G = (VDD,AD ∪F ′,A), where A is the set of arcs A = {(i, j)|i ∈ VDD ∪F ′, j ∈
VAD∪F ′, i 6= j}. Additionally, binary decision variables ai and bi (equation 2.43) are added to

each CS i ∈ F ′ to determine which charging technology is used to charge the vehicle. Only

one charging technology can be used per visited CS. If rapid charging technology is used then

ai = 1 and bi = 0, if fast charging technology is used then ai = 0 and bi = 1, and if slow

charging technology is used then ai = 0 and bi = 0. The battery recharging rate and unit energy
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2. Electric vehicle routing problem

cost depend on the charger type m ∈M and are referred to as gm and cm, respectively. Set M =

{1,2,3} contains three charging technologies, where 1 represents rapid charging technology, 2

fast charging technology, and 3 slow charging technology. The decision variable θ m
i is added

to determine the amount of energy recharged at CS i using charger type m. The minimization

of the vehicle number is given by equation 2.22, while the minimization of the total recharging

costs is given by equation 2.23. The recharging costs consist of the recharging costs produced

in CSs (first part) and the recharging costs corresponding to the amount of the energy spent

from the starting full battery charged at depot with the slow charger (second part). Due to the

new depot instances equations 2.27-2.29 are added to allow at maximum one exit arc for DD

set and one entry arc for AD set. The sum of charging amount per technology must be equal

to the difference of vehicle battery capacity after charging and vehicle battery capacity before

charging (equation 2.39). This charging amount is then used in equation 2.31 as a replacement

for charging up to a certain threshold. Equations 2.37, 2.38, and 2.40-2.42 limit the remaining

battery capacity before and after charging, and charging amount to maximum battery capacity

Q. The rest of the equations are similar to the MILPs for EVRPTW-FR and EVRPTW-PR, with

the only difference that DD and AD sets are used.

min ∑
i∈DD

∑
j∈V∪F ′

xi j (2.22)

min ∑
i∈F ′

∑
m∈M

cm
θ

m
i + c3

(
Q ∑

i∈DD
∑

j∈V∪F ′
xi j− ∑

i∈AD
yi

)
(2.23)

∑
j∈VAD∪F ′,i6= j

xi j = 1, i ∈V (2.24)

∑
j∈VAD,i 6= j

xi j ≤ 1, i ∈ F ′ (2.25)

∑
i∈VAD∪F ′,i 6= j

x ji− ∑
i∈VDD∪F ′,i 6= j

xi j = 0, j ∈V ∪F ′ (2.26)

∑
j∈V∪F ′,i 6= j

xi j ≤ 1, i ∈ DD (2.27)

∑
i∈V∪F ′,i6= j

xi j ≤ 1, j ∈ AD (2.28)

∑
i∈DD

∑
j∈V∪F ′

xi j = ∑
i∈AD

∑
j∈V∪F ′

x ji (2.29)
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2.5. Electric vehicle routing problem with different charging stations

τi +(ti j + si)xi j− l0 · (1− xi j)≤ τ j,∀i ∈VDD,∀ j ∈VAD∪F ′, i 6= j (2.30)

τi + ∑
m∈M

gm
θ

m
i + xi jti j− (l0 +g3Q)(1− xi j)≤ τ j, ∀i ∈ F ′,∀ j ∈VAD, i 6= j (2.31)

e j ≤ τ j ≤ l j,∀ j ∈VDD,AD∪F ′ (2.32)

0≤ u j ≤ ui− xi j(qi +C)+C, ∀i ∈VDD∪F ′,∀ j ∈VAD∪F ′, i 6= j (2.33)

0≤ ui ≤C, ∀i ∈ DD (2.34)

0≤ y j ≤ yi− (ei j +Q)xi j +Q,∀ j ∈VAD∪F ′,∀i ∈V, i 6= j (2.35)

0≤ y j ≤ Yi− ei jxi j +Q(1− xi j),∀ j ∈VAD,∀i ∈ DD∪F ′, i 6= j (2.36)

0≤ y j ≤ Yi ≤ Q,∀i ∈ DD∪F ′ (2.37)

Yi = Q,∀i ∈ DD (2.38)

Yi− yi = ∑
m∈M

θ
m
i , ∀i ∈ F ′ (2.39)

0≤ θ
1
i ≤ Qai, ∀i ∈ F ′ (2.40)

0≤ θ
2
i ≤ Qbi, ∀i ∈ F ′ (2.41)

0≤ θ
3
i ≤ Q(1−ai−bi), ∀i ∈ F ′ (2.42)

ai,bi ∈ {0,1}, ∀i ∈ F ′ (2.43)

xi j ∈ {0,1}, ∀i ∈VDD∪F ′,∀ j ∈VAD∪F ′, i 6= j (2.44)
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The BKS for EVRPTWDCS-PR problem on instance R101 is presented in Figure 2.7. The

total charging cost is 1686.77, with the utilization of 10 fast charges and 22 slow chargers.

Figure 2.7: R101: EVRPTWDCS-PR, BKS

2.6 Time-dependent vehicle routing problem

Most of the researchers in VRP and EVRP field consider static traffic conditions on the road

network. But, the traffic conditions change recurrently, depending on the time of the day, day

of the week, and season; or non-recurrently when a traffic incident occurs, such as an accident

[71, 72, 73]. Neglecting congestion and time-varying speeds in logistic operations can lead

to an increased value of travel time and vehicle operating costs consisting of increased wages,

higher prices, and penalties for late deliveries. Kellner et al. [74] reported that regular traffic

congestion increases total logistic transportation costs by 3% and travel time by 5.5%. Inte-

grating congestion in logistic operations led to the definition of the Time-Dependent Vehicle

Routing Problem with Time Windows (TD-VRPTW) [25, 75, 76].

The TD-VRPTW problem can be formulated as a Mixed Integer Program (MIP) [77], in

a similar way as MILP for the EVRPTW-FR presented in section 2.2. The MIP formulation

instead of the MILP formulation is used as the problem considers travel times that are nonlinear.

The variables used in the formulation are presented in Table 2.1. Here, the MIP formulation of

Figliozzi [25] is presented, although a stronger MIP formulation can be achieved. The graph

is defined without the set of CSs, G = (V0,N+1,A), where A is the set of arcs A = {(i, j)|i, j ∈
V0,N+1, i 6= j}. The set of available vehicles located at depot is denoted as K. Instead of a

constant arc travel time value, each arc has a travel time ti j(δi) expressed as a function of

the departure time δi from customer i. The cost per unit of route duration is denoted as ct ,
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2.6. Time-dependent vehicle routing problem

while the cost per unit distance traveled is denoted as cd . The xk
i j (equation 2.45) is a binary

decision variable that indicates whether vehicle k travels between customers i and j. The τk
i

variable indicates the begin time at customer i, which is served by vehicle k. The primary

objective function of the TD-VRPTW is the minimization of vehicle number (2.46), and the

secondary objective is the minimization of total time costs and total traveled distance costs

(2.47). Equation 2.48 ensures that vehicle load capacity is not violated. Equations 2.49-2.53

ensure arc connectivity, while equations 2.54 and 2.55 ensure that each customer is visited

within its time window. Equation 2.56 ensures arc travel time feasibility, where arc travel time

depends on the departure time.

xk
i j ∈ {0,1}, ∀i ∈V0,∀ j ∈VN+1, i 6= j,∀k ∈ K (2.45)

min ∑
k∈K

∑
j∈V

xk
0 j (2.46)

mincd ∑
k∈K

∑
i∈V0

∑
j∈VN+1,i 6= j

di jxk
i j + ct ∑

k∈K
∑
j∈V

(τk
N+1− τ

k
0)x

k
0 j (2.47)

∑
i∈V

qi ∑
j∈V0,N+1,i6= j

xk
i j ≤C, ∀k ∈ K (2.48)

∑
k∈K

∑
j∈V0,N+1,i 6= j

xk
i j = 1, ∀i ∈V (2.49)

∑
j∈V0,N+1,i 6= j

xk
ji− ∑

j∈V0,N+1,i 6= j
xk

i j = 0, ∀i ∈V,∀k ∈ K (2.50)

xk
i0 = 0,xN+1i = 0, ∀i ∈V0,N+1,∀k ∈ K (2.51)

∑
j∈V0,N+1

xk
0 j = 1, ∀k ∈ K (2.52)

∑
j∈V0,N+1

xk
j,N+1 = 1, ∀k ∈ K (2.53)

ei ∑
j∈V0,N+1,i 6= j

xk
i j ≤ τ

k
i , ∀i ∈V0,N+1,∀k ∈ K (2.54)

li ∑
j∈V0,N+1,i6= j

xk
i j ≥ τ

k
i , ∀i ∈V0,N+1,∀k ∈ K (2.55)
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xk
i j(τ

k
i + si + ti j(τ

k
i + si))≤ τ

k
j , ∀i ∈V0,∀ j ∈VN+1, i 6= j,∀k ∈ K (2.56)

As presented in [25, 26], sometimes, the better secondary objective is to minimize total

traveled distance 2.57, total traveled time 2.58 or total time 2.59.

min ∑
k∈K

∑
i∈V0

∑
j∈VN+1,i 6= j

di jxk
i j (2.57)

min ∑
k∈K

∑
i∈V0

∑
j∈VN+1,i6= j

ti jxk
i j (2.58)

min ∑
k∈K

∑
j∈V

(τk
N+1− τ

k
0)x

k
0 j (2.59)

Figliozzi [25] proposed test instances for the TD-VRPTW problem. The TD-VRPTW test

instances are based on the Solomon instances for the VRPTW [31], but include different travel

speeds per discretized time intervals. As Solomon instances have narrow time windows, a

small decrease in travel speed could result in infeasible solution. Thus, higher travel speeds

were introduced, as speed values in the original Solomon problems were set to one. The ratio

in travel speeds is set in [1,2.5] range. The depot working time [ean0, l0] is discretizied into five

time buckets of equal duration. The time buckets and all 12 sets of travel speeds are presented

in Table 2.3. The travel speed sets are divided into four groups:

(A) - higher travel speeds are found in the rush hour periods,

(B) - higher travel speeds are found at the extremes of the working day,

(C) - higher travel speeds are found at the beginning of the working day,

(D) - higher travel speeds are found at the end of the working day.

Table 2.3: Figliozzi speeds in time buckets

Set
Time buckets

[0,0.2l0〉 [0.2l0,0.4l0〉 [0.4l0,0.6l0〉 [0.6l0,0.8l0〉 [0.8l0, l0]
A1 1.00 1.60 1.05 1.60 1.00
A2 1.00 2.00 1.50 2.00 1.00
A3 1.00 2.50 1.75 2.50 1.00
B1 1.60 1.00 1.05 1.00 1.60
B2 2.00 1.00 1.50 1.00 2.00
B3 2.50 1.00 1.75 1.00 2.50
C1 1.60 1.60 1.05 1.00 1.00
C2 2.00 2.00 1.50 1.00 1.00
C3 2.50 2.50 1.75 1.00 1.00
D1 1.00 1.00 1.05 1.60 1.60
D2 1.00 1.00 1.50 2.00 2.00
D3 1.00 1.00 1.75 2.50 2.50
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The example of BKSs for TD-VRPTW on the instance R101 for two different sets A3 and

B3 are presented in Figure 2.8. As set A3 has higher travel speeds during the middle of the

day, total travel time is lower compared to the total travel time of set B3. The same goes for

the total time value and total traveled distance. Additionally, it can be seen that lower speeds

significantly increase the total vehicle number in the solution.

(a) A3

(b) B3

Figure 2.8: R101: TD-VRPTW, BKSs

Only one research considered time-dependent travel time in EVRP field and named the prob-

lem Electric Vehicle Routing Problem with Charging Time and Variable Travel Time (EVRP-

CTVTT) [78]. The problem considers fixed recharging time to charge the vehicle to maximum,

which is a significant simplification of the model. The proposed research lacks mathematical

formulation of the problem, as well as an efficient method to solve the problem.
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2.7 Hybrid and mixed fleet electric vehicle routing problem

As a compensation for the limited driving range of BEVs, HEVs, which have both an internal

combustion engine and an electric engine, have been developed. Two main types of HEVs are

present on the market: (i) the series hybrid, in which only the electric motor drives the vehicle,

and the internal combustion engine is used to recharge the batteries, and (ii) the parallel hybrid,

which uses both internal combustion engine and electric engine to drive the vehicle, where the

electric engine is more efficient in stop-and-go activities, and the internal combustion engine

is more efficient at high speeds. The HEVs have an option to decide during the route to either

run on the electric energy or the fossil oil. This enables the service of customers far from the

depot with no need for a refuel. As HEVs have two engines, their load is heavier than BEVs

and ICEVs, and therefore they have a higher energy consumption rate. However, the time spent

on the delivery is shorter, which makes it easier to achieve time-precise deliveries and to reduce

recharging costs at the expense of higher traveling costs due to the fossil oil consumption.

The main problem can be defined as Hybrid Vehicle Routing Problem (HVRP) [79]. The

objective of the proposed problem is to minimize the routing costs on the internal combustion

engine while satisfying the demand and time window constraints. Usually, the following four

working modes can be utilized when routing HEVs: combustion-only, electric-only, charging

mode, and the boost mode when the combined internal combustion engine and electric engine

are used. Several variants of the HVRP problem depending on the HEVs vehicle types and

objective function have been proposed [54, 57, 79, 80, 81].

In today’s vehicle fleets, mostly conventional ICEVs are present. Transition to an exclu-

sively electric fleet is a very challenging economic task. Therefore, most companies are gradu-

ally integrating BEVs into their existing ICEV fleet. This led to the definition of Electric Vehicle

Routing Problem with Time Windows and Mixed Fleet (EVRPTWMF) [20, 29, 54, 59, 82]. The

problem considers different vehicle types (BEVs, ICEVs, and PHEVs), with each vehicle type

having either equal or different load and battery capacities. A comprehensive case study regard-

ing different vehicle types was conducted by Lebeau et al. [82], where the authors defined seven

groups of vehicle types that could be used for the delivery, from small vans and quadricycles,

through diesel- and electric-only groups, to a group of all vehicle types. Results showed the

following aspects: (i) the fleet with different vehicle types reduced the total routing costs the

most; (ii) in the large van group, ICEVs outperformed BEVs; and (iii) HEVs showed a great

application in deliveries solely made by trucks. Solving the EVRPTW instances with different

vehicle types indicated that BEVs are preferred for clustered instances, ICEVs for randomly

distributed instances, and PHEVs for randomly clustered instances [54].
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2.8 Electric vehicle routing problem with nonlinear charging

functions

In most of the EVRP related literature, either linear or constant charging time is considered.

Most of the BEVs have lithium-ion batteries installed, which are often charged in constant-

current constant-voltage (CC-CV) phases: first by constant current until approx. 80% of the

SoC value and then by a constant voltage. In the CC phase, SoC increases linearly, and in

the CV phase, the current drops exponentially, and SoC increases nonlineary, which prolongs

charging time [46, 49]. This led to the definition of the Electric Vehicle Routing Problem

with NonLinear charging functions (EVRP-NL) [83]. The nonlinear charging time in EVRP-

NL is either linearized per segments or estimated by data-driven approaches [67, 69, 83, 84,

85]. Montoya et al. [83] point out that neglecting the nonlinear charging process can lead

to infeasible or overly expensive solutions: 12% of the routes in good EVRP-NL solutions

recharged the battery in the nonlinear part, after 80% of the SoC value.

2.9 Electric location routing problem and battery swap sta-

tions

Due to the currently low BEV market share, the number of CSs installed in the road infrastruc-

ture is also relatively low. Therefore, great potential lies in the simultaneous decision-making of

CS locations and BEV routes. Classic Location Routing Problem (LRP) consists of determining

the locations of the depots and vehicle routes supplying customers from these depots [86]. A

modification of the LRP that deals with CSs is formulated as Electric Location Routing Prob-

lem (ELRP) [9, 35, 53, 87]. Several conducted case studies indicated the viability of combining

CS sitting and BEV routing for specific cases when a delivery range is not far from the depot

[9, 35]. It is also important to note that if CS can be located at a customer location, the service

time can be used for recharging. The comparison of ELRP and EVRP solutions on EVRPTW

instances [87], indicated that ELRP produced an equal or better solution on all instances, as

charging while serving and no need to visit separately located CS, reduce the overall routing

costs. If routing is not considered, then the problem considers only the determination of CS

locations [88].

Instead of charging at CS, at specially designed BSS, an empty or nearly empty battery can

be replaced with a fully charged one [12]. The main advantages of such procedure are the fast

swapping time and reduced costs from charging the batteries during the lower energy network

load. A whole replacement procedure could last less than ten minutes, which is competitive to

the refueling time of ICEVs, and much faster than one of the fastest BEV charging technologies.
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The drawbacks of such procedure are the non-standardized batteries and their complex instal-

lation in BEVs. In EVRP with BSSs the locations of BSS are usually determined in advance

[89], but they have can also be determined simultanously with BEV routing decisions [90, 91].

2.10 Other variants of the electric vehicle routing problem

Beside the previously described EVRP variants, which are in the main focus of the research field

of this thesis, there are also many other variants that try to model real-world delivery constraints.

The Green Vehicle Routing Problem (GVRP) [38, 43, 92, 93] focuses on the reduction of

routing pollution on the environment by the use of alternative fuel vehicles powered by bio-

diesel, ethanol, hydrogen, methanol, natural gas or electricity. Vehicles refuel at separately

located stations, with fixed refueling time. The main idea is to promote the use of sustainable

energy sources and minimize overall vehicle emissions. As BEVs have no local CO2 emission,

the EVRP is closely related to the minimization of GHG emission, where a problem-specific

GVRP variant called the Pollution Routing Problem (PRP) emerged [37, 94]. The main objec-

tive in PRP problem is the optimization of vehicle speeds and minimization of GHG emissions.

In Electric Two-Echelon Vehicle Routing Problem (E2EVRP) [95, 96], goods are trans-

ported in two echelons. In the first echelon, goods are transported by conventional freight vehi-

cles from the depot to the satellite facilities. In the second echelon, goods are transported from

the satellite facilities to the customers by light BEVs. Thus, two vehicle types are observed in

the problem: ICEVs with higher load capacity located at the depot and BEVs with lower load

capacity located at the satellite facilities. BEVs are used for last-mile delivery due to the lower

pollution, noise reduction, and smaller size.

Many companies that use BEVs prefer charging the vehicles in their own facilities to charge

the vehicles between the delivery routes or during the specific periods in day. In such occa-

sions, there is usually a limited number of chargers at the depot, typically fewer than the fleet

size, and charging schedule has to be determined. Such problem is called the Electric Freight

Vehicle Charge Scheduling Problem (EFV-CSP) [39, 67]. It includes multiple charging tech-

nologies, realistic charging process (piecewise linearization of nonlinear charging function),

time-dependent charging costs, grid power restriction, battery degradation costs (cyclic and cal-

endar aging), and facility-related demand charges representing the maximal demand registered

over the billing period. A comprehensive case study was performed by Pelletier et al. [67] with

the following conclusions: (i) model tries to keep the SoC lower when battery degradation costs

are included; (ii) in summer, vehicles are rarely charged in peak hours, which results in more

vehicles charging simultaneously or the use of fast chargers that retrieve more power from the

grid in non-peak hours but incur higher facility-related demand charges; (iii) to avoid cycling

in high SoC values, it is preferable to split the long routes into smaller ones; (iv) fast chargers
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are heavily used in a high BEV utilization scenarios; (v) grid power restriction increases over-

all energy costs, especially in summer months, and leads to infeasible solutions - limiting the

number of vehicles simultaneously charging; and (vi) total costs are always lower with larger

batteries, as smaller batteries have frequent large discharge cycles.

In a one-way electric car-sharing problem [97], the BEVs are shared between multiple users.

At the beginning of the service, BEVs are relocated to the user entry point. The relocation is

performed by a worker who comes with a bicycle to the pick-up point, puts the bicycle into

the BEV’s trunk, and drives the BEV to the user entry point. A Dial-a-Ride Problem with

EVs and BSSs (DARP-EV) [98] considers routing of BEVs for customers with special needs

and disabilities. The BEVs have special characteristics such as handicapped person’s seat,

stretcher, wheelchair or accompanying person’s seat. In Multi-Depot Electric Vehicle Location

Routing Problem with Time Windows (MDEVLRPTW) [99], customers can be served from

multiple depots, where each depot has its own vehicles. The Robust Electric Location Routing

Problem (RELRP) [100] considers uncertain customer patterns related to the customers’ spatial

distribution, demands, and service time windows.

A natural extension of the EVRPTW problem is to consider waiting times at the CSs [61,

68], with three key aspects regarding the queuing at CS: (i) the vehicle arrival distribution,

(ii) the service time distribution, and (iii) service strategy, i.e., First-In-First-Out (FIFO). The

availability of CSs in terms of public or private property is another aspect that can be considered

within the EVRPTW problem [68].
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Chapter 3

Problem solving methods

Since VRP is a well-researched problem, many methods for solving the problem have been

proposed. The general classification of optimization methods used to solve the VRP problem

is presented in Figure 3.1. Due to the NP-hardness of the problem and a large number of

customers in real-world problems, most of the methods used in real-world applications are

heuristics, metaheuristics, and hybrid combinations. Many of the VRP solving methods in the

available literature are with modifications applicable on the EVRP problem. Exact procedures

are able to find optimal solutions on instances with a lower number of customers: up to 360

customers for CVRP problem and up to 100 customers for VRPTW problem [15, 16]. They

can be split into enumerative and calculus procedures. Some of the most used exact algorithms

in the EVRP research field are: branch & price [29], branch & cut [101], branch & bound

[69], branch & cut & price [55], and dynamic programming [9, 35, 53, 54]. Additionally,

many researchers formulate the problem as MILP program and solve the small instances with

commercially available softwares, such as MATLAB, IBM CPLEX, GUROBI, etc. [18, 22,

102]. Lately, in EVRP problems, exact procedures are applied to determine the optimal CS

placement and charging schedule [22, 53].

Heuristic methods seek to solve the problem based on the specific knowledge of the prob-

lem. They are much faster than the exact methods but usually produce suboptimal solutions

or solutions close to a satisfactory solution. Heuristic methods can be split into constructive

and improvement heuristics. Constructive heuristics are often used to generate an initial solu-

tion by serial or parallel route construction. Solutions are constructed in a greedy way, which

often produces solutions to the VRP that are 10-15% far from the optimal solution [3]. In

EVRP, constructive heuristics are modified and adapted to BEV characteristics and feasibility

checks. Improvement heuristics, most often referred as Local Search (LS) procedures, explore

the neighborhood of the current solution, searching for a better solution. The neighborhood is

explored by applying perturbation moves based on the composite neighborhood operators. The
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local search stops when no improving solution can be found in the neighborhood of the current

solution, which is then called the local optima.

Many researchers employ metaheuristics to continue the exploration after the local op-

tima occurrence. Metaheuristics can be defined as heuristics guiding other heuristics. They

can be divided into neighborhood-oriented metaheuristics and population based metaheuristics.

Neighborhood-oriented heuristics iteratively explore the neighborhood of the current solution,

while the population metaheuristics use natural selection to evolve a population and select the

fittest individual as the best solution. In the next section, the review of the most used heuristic

and metaheuristic procedures for solving the EVRP problem is presented. For a recent survey

on the various methods used to solve the EVRP problem, the reader is referred to [19, 21, 103].

Optimization methods

Exact Heuristics Metaheuristics Rest

Enumerative

• Branch & Bound

• Branch & Cut

• Branch & Price

• Branch & Cut & Price

• Dynamic programming

Calculus

• Newton method

• Gradient method

Constructive

• Clark & Wright

• Nearest neighbor

• Sweep

• (1)Route-(2)cluster

• Insertions

Improvement

• Intra route operators

• Inter route operators

Neighborhood

• Simulated annealing

• Tabu search

• Variable neighborhood search

• Iterated local search

• Iterated tabu serach

• Adaptive large neighborhood search

Population

• Genetic algorithm

• Evolutionary algorithm

• Ant colony opt.

• Swarm opt.

Figure 3.1: Optimization methods
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3.1 Initial solution

Constructive heuristics build a solution step by step, meanwhile considering overall routing

costs. Vehicle routes are usually constructed in a serial or parallel way [3]. The serial strategy

considers constructing one route from start to the end and then going to another route, while

in parallel strategy, multiple routes are built simultaneously. Here, several most-applied VRP

methods for the initial route creation, adapted on the EVRP problem, are presented.

3.1.1 Sweep algorithm

The sweep algorithm [104] inserts customers in the active route in a circular manner, resulting in

an efficient space division. Customers are sorted based on the value of the polar angle between

the depot and the randomly chosen point. Customers are then iteratively added to the active

route until a constraint is violated. If violation occurs, then a new route is opened, and the

procedure is repeated until all customers are served. The basic idea of how the sweep algorithm

works is best visible in Figure 3.2b for the CVRP problem, where customers are added in routes

in a circular manner. When considering time windows, user u can be inserted between users

i and j only if ei ≤ eu ≤ e j. This does not ensure the feasibility of the solution but leads to

somewhat better solutions. If some customers could not be inserted in either route (usually

far from the depot), then these customers will be added to the last vehicle route. The sweep

algorithm applied in the EVRP field usually assumes that there is no possibility to visit CS

within route [18, 90, 96], as shown in Figure 3.2a, which means that the created solution is

usually infeasible. The CSs are inserted later in the improvement part. As it can be seen in

Figure 3.2 the number of vehicles and total traveled distance are significantly higher in the

EVRPTW-FR problem than in the CVRP problem for the same customer configuration. Also,

in EVRPTW-FR solution, one large route is present, containing all infeasible customers.

(a) C101: EVRPTW-FR (b) C101: CVRP

Figure 3.2: Examples of Sweep algorithm
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3.1.2 Clark and Wright savings algorithm

The Clark and Wright Savings algorithm (CWS) [105] is one of the oldest algorithms applied

on CVRP problems. The algorithm starts with the creation of back-and-forth routes for each

customer. Then, the savings of each possible route merging is computed as long as the capacity

of the vehicle is not violated as si j = di0 + d0 j− di j. To merge the routes, the last arc in the

first route and the first arc in the second route have to be deleted, and a new arc between the

last customer in the first route and the first customer in the second route has to be inserted, as

shown in Figure 3.3. The merging with the highest saving value is performed. The algorithm

ends when no more savings can be achieved by route merging. The example of solutions for the

CVRP and EVRPTW-FR problems on instance C101 are presented in Figure 3.4. In each back-

and-forth vehicle routes, CSs are inserted to make the route energy feasible [37, 82, 91, 92], but

often the solution is still infeasible.

(a) Before merging (b) After merging

Figure 3.3: Clark & Wright savings algorithm

(a) C101:CVRP (b) C101: EVRPTW-FR

Figure 3.4: Examples of Clark & Wright savings algorithm
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3.1.3 Nearest neighbor heuristic

The Nearest Neighbor Heuristic (NNH) is one of the most used greedy algorithms for the con-

struction of an initial solution. The heuristic starts from the depot, and in each iteration, the

feasible customer with the least cost increase from the previously inserted customer is added

to the route. The route is terminated when any constraint is violated, and then a new route is

opened [81]. In NNH for EVRPTW-FR problem [23], the next feasible customer has to satisfy

customer time-window, vehicle load capacity, and vehicle battery capacity, and additionally it

has to have enough energy to return from customer to the depot on time. If energy is violated

at the customer or at the depot, then if possible, the nearest CS between users is inserted im-

mediately before to make the route energy feasible. Otherwise, a new route is opened, and the

procedure is repeated until all customers are served. The example of an initial solution created

with NNH is presented in Figure 3.5. As it can be seen, NNH algorithm produces a solution

with a large number of vehicles. Compared to the Sweep and CWS algorithm, the solution with

the NNH algorithm is often feasible, but still not in all occasions.

Figure 3.5: Example of nearest neighbor heuristic - C101: EVRPTW-FR
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3.2 Local search

A great variety of researchers have performed LS procedures to intensify the search. They

are often coupled with perturbation moves to escape the local optima. The used neighborhood

operators try to find a change in the solution that will decrease the overall objective value.

Often, the perturbation moves are similar to the neighborhood operators used in the LS phase.

Most of the classical VRP neighborhood operators [3, 4] are used in the EVRP field, but still

some additional problem-specific neighborhood operators have been developed. Depending on

whether the operators perform on only one route or between the routes, they can be divided

into intra route and inter route operators. Intra operators change the position of users within

the route, while inter operators change the position of users between multiple routes. As LS

neighborhood operators explore a large number of changes in the solution, the LS procedure

tends to be time-consuming. Therefore, most of the operators applied in VRP have a constant

time complexity O(1), but there are also the ones that are more complex, and therefore search a

larger neighborhood solution space. For the list of most applied operators in the EVRP research

field, the reader is referred to Erdelić et al. [21].

Often, there is a question of whether to make a first better or the best improvement move in

the LS phase [106]. The first better strategy has a lower execution time but generally produces

worse solutions than the best strategy. Some EVRP researchers perform one or the other, and

some combine the two approaches, i.e., the best move of first 100 [9], or first 50 moves [29].

Usually, multiple neighborhood operators are applied to search the solution space. The strat-

egy of using either the best improvement of all operators or the best improvement of each one

significantly affects the overall execution time and the solution quality. It can be seen that the

best ratio of solution quality and execution time in VRP is achieved when the best improvement

value of each operator is used [26]. In such strategy, the order of operators is important. Com-

mon sense is to first use inter operators to reposition users between different routes and then to

apply intra operators to improve each route.

3.2.1 Intra operators

As already mentioned, intra operators perform changes on a single route. Repositioning of

users within a route affects arrival times at other users in the route. Therefore, in VRPTW and

EVRPTW, the violation of time windows and battery capacity has to be checked. As changes

are made on only one route, the load capacity violation does not need to be checked. The

most common intra operators applied in both VRP and EVRP problems are presented in the

following paragraphs. For operators initially applied on CVRP, the example of distance savings

computation is presented.
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Intra relocate operator

Intra relocate [107] operator aims to reposition one customer from its previous position in route

to a new position. The example is presented in Figure 3.6 where customer b is repositioned

between customers f and e. The depot is presented as a purple rectangle, while the customers

are presented as black circles. The distance saving in CVRP problem can be computed by

equation 3.1, with the O(1) complexity.

ds = dab +dbc +de f − (dac +deb +db f ) (3.1)

(a) Before (b) After

Figure 3.6: Intra relocate operator

Intra exchange operator

Intra exchange [107] operator aims to change the positions of two customers with each other.

The example is presented in Figure 3.7 where customers b and f exchange their positions and

are repositioned between customers e and g, and a and c, respectively. The distance saving in

the CVRP problem can be computed by equation 3.2, with the O(1) complexity.

ds = dab +dbc +de f +d f g− (da f +d f c +deb +dbg) (3.2)

(a) Before (b) After

Figure 3.7: Intra exchange operator
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Or-Opt operator

Or-Opt operator aims to delete three arcs in a route and replace it with three new ones [108].

The sequence of up to three customers is repositioned, meanwhile preserving the orientation of

the subroutes. The Or-opt-1 changes the sequence of one customer and therefore is the same

as intra relocate operator. The examples of Or-Opt-2 and Or-Opt-3 are presented in Figure 3.8.

The distance saving in CVRP for Or-Opt-2 can be computed by equation 3.3, with the O(1)

complexity.

ds = dab +dcd +d f g− (dad +d f b +dcg) (3.3)

(a) Or-Opt-2 before (b) Or-Opt-2 after

(c) Or-Opt-3 before (d) Or-Opt-3 after

Figure 3.8: Or-Opt operator

2-Opt operator

2-Opt [109] operator replaces two arcs with two new ones, with a possibility of a sub-route

reversal. The example is presented in Figure 3.9 where arcs ab and de are replaced by ad

and be and the part of the route between customers b and d changed direction to d → c→ b.

The distance saving in the symmetric CVRP problem can be computed by equation 3.4, with

the O(1) complexity. In comparison to the Or-opt-3 operator, it can be seen that for the same

example, the 2-Opt produces a slightly worse solution. In asymmetric problems, the direction

of the subroute has to be reversed, which increases the complexity of an operator to O(M),
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where M is the number of customers in subroute.

ds = dab +dde− (dad +dbe) (3.4)

(a) Before (b) After

Figure 3.9: 2-Opt operator

Intra station in and out operators

Intra station in operator is specially designed for EVRP problems. The operator tries to insert

CSs in a vehicle route. The intra station out does the opposite, as it tries to remove the CS from

a vehicle route. These two operators can be merged together in one as StationInRe operator [18]

in a way that if an arc to the CS is already in the solution, it is removed; otherwise, it is inserted.

The example of Intra station in operator is presented in 3.10. This operator increases the overall

distance, and it is mostly used to make the route energy feasible. The intra station out can be

observed as inverse operation of intra station in operator. In the EVRP without time windows,

the complexity of operator is O(1), while in the EVRPTW problem, the worst complexity is

O(B), where B is the number of users from insertion position up to the latest CS in route.

(a) Before (b) After

Figure 3.10: Intra station in operator
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3.2.2 Inter operators

Inter operators perform changes between multiple routes. Most often, two routes are considered.

In this case, the load capacities of vehicles affected by changes have to be checked, as well as

time windows in VRPTW and EVRPTW problems. The most common inter operators applied

in both VRP and EVRP problems are presented in the following paragraphs. For operators

initially applied on CVRP, the example of distance saving computation is presented.

Inter relocate operator

Inter relocate operator [107] repositions a customer from its route to a new position in another

route. The example is presented in Figure 3.11. The distance saving in CVRP can be computed

by equation 3.5, with the O(1) complexity.

ds = dab +dbc +de f − (dac +deb +db f ) (3.5)

(a) Before (b) After

Figure 3.11: Inter relocate operator

Inter exchange operator

Inter exchange operator [107] swaps the positions of two customers in two different routes. The

example is presented in Figure 3.12. The distance saving in CVRP can be computed by equation

3.6, while the complexity of the operator in such case is O(1).

ds = dab +dbc +de f +d f g− (da f +d f c +deb +dbg) (3.6)
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(a) Before (b) After

Figure 3.12: Inter exchange operator

Inter cross exchange operator

Inter cross exchange operator [110] swaps the sequences of up to k customers from one route

with up to k customers from another route. The operator goes through all k2 permutations

of customer sequences swaps: 1-1, 1-2, . . . , 1-k, 2-k, . . . , k-k. The example of 3-2 swap is

presented in Figure 3.13 while the distance saving in CVRP can be computed by equation 3.7.

If the single combination cost evaluation can be determined in O(1) (as in the CVRP problem),

then the complexity of operator is O(k2).

ds = dab +dcd +d f g +dig− (dag +did +d f b +dcg) (3.7)

(a) Before (b) After

Figure 3.13: Inter cross exchange operator

Inter 2-Opt* operator

Inter 2-Opt* operator [111] swaps the partial route endings between two routes, meanwhile

preserving routes’ directions. The example is presented in Figure 3.14. The distance saving

in CVRP can be computed by equation 3.8, with the O(1) complexity. As the operator avoids

route reversal it is commonly applied on problems dealing with time windows.

ds = dag +dec− (dac +deg) (3.8)

41



3. Problem solving methods

(a) Before (b) After

Figure 3.14: Inter 2-Opt* operator

3.3 Metaheuristics

Metaheuristics are used to explore a large search space, and therefore to escape the local op-

tima. The escape from local optima is usually done by accepting solutions that are worse than

the current solution. The most important part of any metaheuristic is the control of diversifica-

tion and intensification, which affects both the solution quality and algorithm execution time.

Diversification is used to search a larger solution space, while intensification is used to explore

a particular solution space and find local optima. Over the years, a vast number of metaheuris-

tics were developed for solving VRP problems [112, 113], with some of them mimicking a

natural process such as evolutionary algorithm, ant-colony, particle swarm, simulated anneal-

ing, etc. Most often, metaheuristic and heuristic methods are combined together and adapted to

solve the problem; therefore, the term hybrid is used in such occasions [114]. In this section, a

brief overview of used metaheuristics for solving VRP and EVRP problems is presented, with

a highlighting on the neighborhood-oriented metaheuristics.

3.3.1 Population based metaheuristics

Population metaheuristics are based on the natural selection to evolve a population and the

principle of the survival of the fittest. They have been widely applied in the VRP field: ge-

netic algorithm [115], scatter search [116], ant colony [117], bee colony [118], particle swarm

optimization [119, 120], etc. Compared to the neighborhood-oriented metaheuristics, their ap-

plication on EVRP problems is still scarce [21].
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Genetic algorithm

Genetic Algorithm (GA) is the most applied metaheuristic used to solve various variants of the

VRP problem [3, 17, 121, 122, 123]. The GA consists of a pool of individuals (VRP solutions)

called a population, which goes through the process of evolution. Evolution is a robust process

in which individuals in the population adapt to the conditions in nature - the so-called Darwin

theory in which individuals better adapted to the environment have a higher chance of survival,

and therefore with reproduction, transferring such good genes to their offsprings [124]. The

GA has several important components presented in Figure 3.15: (i) solution representation,

(ii) fitness function, (iii) selection, (iv) crossover, (v) mutation, and (vi) replacement of the old

population with a new one. The solution to the VRP problem is usually represented as fol-

lows [125]: customer ID represents a gene, chromosome represents a vehicle - a sequence of

customers between depots (depots have a zero ID), and individual - whole sequence of chro-

mosomes representing a solution to the VRP problem. Each individual is evaluated through

a fitness function which in VRP represents the objective function. Further on, to generate the

offspring, two individuals (parents) are selected from the population for the crossover. Most

often the roulette wheel selection or tournament selection is applied in such occasions [126].

The crossover procedure exchanges genetic material between the individuals and produces ei-

ther one or multiple offsprings. A large number of crossover operators have been applied in the

VRP field, and for detailed description, the reader is referred to Gendreau et al. [127]. The next

step, mutation, is an important part of every evolutionary algorithm as it represents occasional

and random changes in the individual’s genes. Although, in most cases, mutation decreases

the fitness value, it contributes to the diversification of genetic material in the population. For

mutation operators, mostly some basic customer permutations are used, similar to the basic

LS operators: relocate, exchange or route inversion [128]. In the EVRP research field, mostly

non-efficient versions of GA are applied [39, 78, 129, 130, 131], which have the problem of

determining a good CS placement and schedule. Only the hybrid GA proposed by Hiermann

et al. [54] produced high-quality solutions and some of the BKSs on the EVRPTW-FR and

EVRPTW-PR variants.

Figure 3.15: Genetic algorithm
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Ant colony

The Ant Colony (AC) algorithm is based on the principle of indirect communication between

individuals of the same species [117, 127]. The ants use indirect communication as they do not

have highly developed eyesight and cannot see each other directly. This enables them to achieve

complex self-organizing structures, although they do not have the ability to plan or memorize.

As ants search for food, they leave pheromones (clues), which attract other ants. Over a time

period, the pheromones accumulate over the most-used path between the nest and the food loca-

tion. The example of finding the shortest path between the nest and food is presented in Figure

3.16. AC algorithm consists of three components: (i) pheromone initialization, (ii) pheromone

evaporation, and (iii) pheromone update. For a detailed description of AC application in the

VRP field, the reader is referred to [127, 132]. In the EVRP field, the AC algorithm has been

rarely applied [131, 133].

Figure 3.16: Ant colony example [132]

Particle swarm optimization

Particle Swarm Optimization (PSO) mimics the behavior of organisms such as fish schooling or

bird flocking [119, 120]. In comparison to ants, fish and birds have highly developed eyesight

and know not only the nearest individual but also where the socially nearest individual is in

a flock. In PSO, each individual (solution) is represented as a particle and has a position and

corresponding velocity in the swarm. These values are used to optimize the problem following

the personal best solution and global best solution. The particle in the swarm does not know the

exact location of the best solution, but it trusts its neighbor particles if they are close to the best

solution. Further on, the well-balanced moves are applied to adapt the individual to the global

and local exploration. The example of the solution space in PSO is presented in Figure 3.17,

where particles are represented with blue circles, high fitness values are represented with red

color, and low fitness values with dark blue color. In the EVRP field, the PSO is only applied in

one research paper for fuel minimization [43].
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Figure 3.17: Particle swarm optimization solution space [134]

3.3.2 Simulated annealing

Simulated Annealing (SA) is one of the oldest metaheuristics used as an optimization technique.

It mimics the thermodynamic cooling process of the material [127, 135, 136]. With annealing,

the goal is to achieve the state of minimal internal energy of the material, which is achieved by

atoms forming a regular crystal structure. The idea is to heat the metal and then to gradually

cool it. At high temperatures, the atoms in the material move fast, and the internal structure

of the material is stochastically organized. With fast cooling, the atoms form structures that

represent local energy optima. With slow cooling (annealing), atoms have enough time to form

stable crystal structures, which represents global optima.

In VRP problems, the diversification phase is performed when temperatures are high, while

intensification is performed at low temperatures. The diversification considers accepting worse

solutions and moving to the other solution space. The probability of accepting solution s2,

which is worse than the current best solution s1, is computed by equation 3.9. This is the so-

called Boltzmann function [138], where T is the temperature parameter and f (s) is objective

function value of solution s. The example of the SA cooling process is presented in Figure 3.18.

The higher the temperature value is, the higher is the probability of accepting a worse solution.

Figure 3.18: Simulated annealing cooling process [137]
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At lower temperatures, only high-quality solutions have a chance to be accepted. At the end of

each iteration k, the temperature Tk is decreased by coefficient α (equation 3.10, α < 1), rep-

resenting the temperature cooling rate coefficient. If observed over the whole execution period,

the temperature is decreased following an exponential function. Another, important parameter

is the initial temperature value T0 which has to be high enough to accept worse solutions. Most

often initial temperature T0 is determined such that a µ% worse solution (usually 30-40%) than

the initial solution is accepted with a probability of 0.5, while the α value is set very close to

1 (α = 0.9994) [1, 18, 20, 23]. SA is most often used as a control metaheuristic for accepting

solutions produced by other heuristic and metaheuristic procedures.

p = e
f (s1)− f (s2)

T (3.9)

Tk = α ·Tk−1 (3.10)

3.3.3 Tabu search

Tabu Search (TS) is a well-known metaheuristic used to solve VRP problems. It uses mem-

ory structures to forbid the exploration of the solution space that has already been explored

[139, 140]. It escapes the local optima by accepting non-improving move if it is the best in

the explored space. Arcs that are deleted from the solution are stored in the tabu-list, which

prohibits the reinsertion of the deleted arcs into a specific part of the solution for a determined

number of iterations - the tabu-tenure. A basic TS can be seen as a combination of LS operators

with short-term memories. Sometimes the tabu-list is too powerful, as it may prohibit the se-

lection of a good move, even when there is no danger of reusing the move or the search process

stagnation. Therefore, in some occasions, it is advisable to remove a particular arc from the

tabu-list - the so-called aspire critera. Most used aspire criteria is the achievement of a new

best solution [127]. In the EVRP field, TS with neighborhood operators is used to intensify the

search process [18, 40, 65].

3.3.4 Variable neighborhood search

Variable Neighborhood Search (VNS) is a metaheuristic that systematically changes the neigh-

borhood each time when there is no improvement in the LS phase [141]. The changes are based

on the predefined neighborhood structures, which are similar to the ones used in the LS phase.

The basic VNS framework is presented in Figure 3.19. In each step, the new neighborhood

operator is used N1 ≤ N2 ≤ . . . ≤ Nk, which increases the vicinity from the current solution.

After each neighborhood perturbation, the LS procedure is called to find the local optima. The

selection of neighborhood operators can be deterministic or probabilistic.
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3.3. Metaheuristics

Figure 3.19: Variable neighborhood search

In the EVRP research field, the VNS was adapted for the diversification of the solution based

on the cyclic exchange moves, with up to 15 different neighborhood operators [18, 91, 142].

The VNS was also combined with exact algorithms like branch-and-price [143], evolutionary

algorithms [98], deterministic LS operators [56, 83], and adaptive mechanisms [9, 35, 91, 142]

to further improve the solution quality.

3.3.5 Iterated local search

Iterated Local Search (ILS) [144] is a framework based on successively repeating LS on the

current solution, given by Algorithm 3.1. When LS ends up in a local optima, a perturbation

move is applied to escape the local optima. The essence of ILS can be given in a nut-shell:

one iteratively builds a sequence of solutions generated by the embedded heuristic, leading to

far better solutions than if one were to use repeated random trials of that heuristic [127]. The

perturbation moves can be scaled dynamically to overcome the local optima. The effectiveness

of the procedure highly depends on the used LS and perturbation operators. ILS was applied in

several papers dealing with the EVRP problem [38], but usually it’s coupled with some other

metaheuristic: VNS [83], ant-colony [41], large neighborhood search [59, 66], or TS [57, 65].

Algorithm 3.1 Iterated local search [127]
1: s0← Generate initial solution
2: s∗← Perform local search on s0
3: while termination criteria not met do
4: s′← Perturb solution s∗

5: s′′← Perform local search on s′

6: s∗← Apply acceptance criteria on s′′

7: end while
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3.3.6 Adaptive large neighborhood search

Neighborhood operators explore only the space of the immediate vicinity of the current solu-

tion, which often leads to local optima. In order to search a larger solution space, Shaw [145]

proposed the Large Neighborhood Search (LNS) heuristic, which is based on destroying and

repairing the solution - the ruin-recreate strategy. Heuristic efficiency depends on the imple-

mented destroy and, especially, repair operators. The main drawback of the heuristic is the

repeated use of the same destroy and repair operators, which can lead to local optima. The

example of the LNS heuristic on the C101 instance and EVRPTW-FR problem is presented

in Figure 3.20. The vehicle number remained the same, while the distance traveled decreased

from 1085.55 before removal to 1053.88 after insertion. The removed customers are presented

with red dashed circles in Figure 3.20b. The basic LNS has been successfully applied in several

VRP and EVRP variants [41, 59, 65, 66, 93, 146].

Adaptive Large Neighborhood Search (ALNS) [32, 147] is an extension of the LNS heuristic

in which, throughout the search process, different destroy and repair operators are selected from

respective D and R sets in an adaptive manner based on their past performance. The idea is to

have versatile destroy and repair operators in order to escape the local optima. For each operator,

the following attributes are stored:

• πk - the score of the operator in period k,

• θk - the number of times the operator was used in period k,

• wk - the weight of the operator in period k,

• pk - the probability of the operator in period k.

For each operator, the score value πk is increased in the following order (scores σ1 ≥ σ2 ≥ σ3):

(i) σ1 if a new best solution is found,

(ii) σ2 if the solution is better than the previous one,

(iii) σ3 if the solution is worse than the previous one but it is accepted due to the acceptance

criteria,

(iv) and no increase if the solution is not accepted.

Some researchers use σ1 ≥ σ3 ≥ σ2 order, to reward non-improved solutions that diversify

the search [1, 32]. After each time period k in which operators are applied, the weights (equation

3.11) and the probabilities (equation 3.12) of operators are updated based on their previous

weight values and new score values. The ρ factor controls the influence of past weight values

for the computation of the new ones. Additionally, in each iteration, the scores and the number

of times the operator was used are reset to zero. The repair operators probabilities are updated

based on the operators in set R, while the destroy operators are updated based on the operators in

set D. The operators in the current iteration are selected based on the Roulette Wheel Selection

(RWS) [148], in which a probability of an operator selection is proportional to its weight value

(equation 3.12). The set O represents destroy set D or repair set R. The example of RWS is
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(a) Before removal

(b) After removal

(c) After insertion

Figure 3.20: LNS example: C101 - EVRPTW-FR
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presented in Figure 3.21, where the area that the operator covers represents the probability that

a randomly thrown ball will finish on it.

wk+1 = wk(1−ρ)+ρ
πk

θk
(3.11)

pk =
wk

∑o∈O wo
k

(3.12)

The framework of the ALNS is given by Algorithm 3.2. ALNS is one of the most applied

metaheuristic used to solve EVRP problems. Thus, a vast number of destroy and repair opera-

tors have been developed. Some of them originated from the original ALNS [32, 147], but also

some new problem-specific ones regarding the CSs, have been developed [1, 20, 22, 29, 37, 53].

The comprehensive description of the applied destroy and repair operators in EVRP research

field is presented by Erdelić et al. [21]. The ALNS operators tested during the development of

the HALNS method are presented in section 4.4.

Algorithm 3.2 Adaptive large neighborhood search [32]
1: s∗← Generate initial solution
2: while termination criteria not met do
3: d← Select destroy operator from set D
4: r← Select repair operator from set R
5: s′← Destroy solution s∗ with operator d
6: s′′← Repair solution s′ with operator r
7: s∗← Apply acceptance criteria on s′′

8: if criteria for operators update met then
9: Update operators’ scores, weights and probabilities

10: end if
11: end while

Figure 3.21: Roulette wheel selection
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3.4 Feasibility

Regarding the feasibility during the search process, two types of strategies can be distinguished:

(i) the ones that allow only feasible solutions, and therefore search only in a feasible solution

space [1, 22, 23, 59, 65, 66, 69, 82, 83, 92], and (ii) the ones that allow infeasible solutions

during the search process [9, 18, 20, 29, 53, 54, 91, 98]. The infeasible solution means that

some users are served without satisfying all of the problem constraints, usually time-windows,

load capacity and battery capacity constraints. The infeasible strategy generally broadens the

search. In infeasible procedures, the objective function usually contains penalty coefficients for

constraints violations, which are updated during the search process. At the beginning of the

search, infeasible solutions are allowed in order to search a larger solution space. As the search

process comes to an end, penalties for infeasible solutions increase in order to find feasible

solutions. An example of such objective function used in infeasible search strategy is given by

equation 3.13, where f (s) is the total cost of the solution s, Pload(s), Ptw(s) and Pbatt(s) values

of constraint violations, respectively, load capacity, time windows and battery capacity; and α ,

β and γ penalty coefficients [17, 18, 53, 54].

F(s) = f (s)+αPload(s)+βPtw(s)+ γPbatt(s) (3.13)

Although the idea of allowing infeasible solutions during the search process is not new, the

efficient application of such strategy has been done only recently. The infeasible strategy has an

advantage over a feasible one because it is easier to escape local optima, especially in problems

with hard feasibility achievement such as EVRP problem. To better explain this concept, the

example of feasible and infeasible search strategy is presented in Figure 3.22. The blue line

represents the feasible solution space, while the red line represents the infeasible solution space.

The current position marked with full blue circle represents a local optima. To overcome local

optima and get to the global optima, a large solution space has to be escaped (blue dashed-dotted

line). In many VRP variants, this usually means a solution with more than 50% difference in

user schedule. In such cases, there are two strategies: explore a large solution space, which

is time-consuming, or get lucky and hit the global optima by stochastic permutation. In an

infeasible strategy, the local optima can be escaped by smaller moves in solution space (red

dashed lines) and by the acceptance of worse solutions, which is common in the metaheuristic

procedures. The difference between the infeasible and feasible strategy is smaller on problems

that have large feasible solution space, like CVRP problem. On problems such as EVRPTW in

which feasible solution space is much smaller, the infeasible strategy generally produces better

solutions [18, 20, 29, 53, 54].
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Figure 3.22: Difference between infeasible and feasible search strategy

3.5 Move evaluation

An important part of any VRP related search process is move evaluation. It is the evaluation of

how good or bad a particular move is. The move is related to the performed LS, destroy, repair

or perturb operators. Depending on the operator, this evaluation can be time-consuming. The

goal is to perform the evaluation as fast as possible, and in the best case in constant time O(1).

To highlight the importance of evaluation, the example of inter relocate evaluation is discussed.

The assumption is that operator evaluation with O(1) complexity for one permutation is per-

formed in 1 ms, while the evaluation with O(n) complexity for one permutation is performed

in 10 ms, as there are in average roughly 10 customers per route in BKS of Solomon type 1

instances [31]. The number of inter relocate evaluations performed is equal to the number of

permutations. With the assumption that each vehicle has 10 customers, one customer can be

relocated to 90 other positions, and if repeated for each customer, the number of permutations

is 90 · 100 = 9000. This results in total evaluation time of 9 s for O(1) complexity, and 90 s

for O(n) complexity. If put in some practical conditions: (i) larger number of customers per

route, (ii) different LS operators (at least 3-4) with different evaluation complexities, (iii) many

other operators used in destroy, repair, perturb, or initial construction phases, and (iv) moderate

assumption that such operators are applied at least 1000 times; it can be seen that execution

time is highly affected and can be time-consuming. The evaluation time is a crucial part of any

procedure used to solve a VRP problem.

The evaluation complexity of one move mainly depends on the observed problem variant

and the objective function, but also, in some cases the type of the move itself. For example, the

change in the objective function that solely depends on the total distance traveled can be com-

puted in O(1) for all basic moves and almost all problems that do not consider time-dependent

travel time. Such examples are presented for the computation of distance savings in CVRP
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problem for most used LS operators in section 3.2. In the CVRP problem, all of the basic

moves can be evaluated in O(1) if total traveled distance, total travel time, or total time objec-

tive functions are considered, as only load capacity is considered, which can be computed in

O(1). In VRPTW, the total traveled distance and total travel time can be computed in O(1),

but total time cannot be computed in O(1) as changes in route affect arrival times of customers

further down the route. The begin times are nonlinear due to the time windows. In VRPTW,

an additional problem is the feasibility check of time windows - the value of the time window

violation, which in the most basic implementation cannot be computed in O(1), again due to

the nonlinear arrival times. Fortunately, this can be done in O(1) by using additional variables,

the latest arrival time, which is computed in a backward fashion, from route end to route start,

while most of the other variables are computed in a forward fashion. The equations to compute

forward variables for user i: arrival distance dai , arrival time tai and begin time tbi; and backward

variable latest arrival time tlai are given by equations 3.14-3.17. The arrival distance at user j

is computed as the sum of arrival distance at user i and the traveled distance from i to j. The

arrival time at user j is computed as the sum of the begin time of service at user i, the service

time at user i, and the travel time from i to j. As in some cases, the arrival time at customer

j is lower than the early (opening) time window, the vehicle has to wait for the user to open.

Therefore, the begin time of service cannot start before the earliest begin time determined by

the early time window, given by equation 3.16. If the arrival time is greater than the opening

time window, the begin time is equal to the arrival time. The latest arrival time tlai represents

the time by which the start of service has to begin; otherwise, the route is not time window

feasible. It is computed in a similar way as the arrival time, but in a backward fashion from j

to i, given by equation 3.17. Backward from user j to user i, the latest arrival time is computed

as subtraction of latest arrival time at user j (the depot has the latest arrival time l0), the travel

time from i to j and the service time at user i. It is possible that tlai is greater than the late time

window li, by which the service has to begin at user i. Therefore, in such occasion, the latest

arrival time tlai is shifted to the late time window of user i by mathematical min operator.

da j = dai +di j (3.14)

ta j = tbi + si + ti j (3.15)

tb j = max(e j, ta j) (3.16)

tlai = min(tla j − si− ti j, li) (3.17)
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The example of computed variables for one VRPTW route is presented in Figure 3.23a. The

depot is represented with the purple rectangle, while users are represented with gray circles.

Each user has a time window [ei, li] (above user) and service time (in a row below). The arc

distances between users are marked with arrows, and the assumption is that arc distance, travel

time, and energy consumption have the same values (di j = ei j = ti j). It is interesting to note that

the arrival time at customer 15 is 70, but the begin time of service is 80, as the vehicle has to wait

for the opening of the customer to start a service. The example of the insertion of a customer

13 into a route is presented in Figure 3.23b. To evaluate the customer insertion, forward and

si 0 30 30 140 40 0
dai 0 30 40 70 90 100
tai 0 30 70 140 300 350
tbi 0 30 80 140 300 350
tlai 10 40 120 190 350 400

0

[0,400]

11

[20,40]

15

[80,120]

3

[0,400]

22

[250,360]

0

[0,400]

30 10 30 20 10

(a) Route evaluation before customer insertion - VRPTW

si 0 30 30 30 140 40 0
dai 0 30 45
tai 0 30 75
tbi 0 30 75
tlai 75 120 190 350 400
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22
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0
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(b) Customer insertion - VRPTW

si 0 30 30 30 140 40 0
dai 0 30 45 60 90 110 120
tai 0 30 75 120 180 340 390
tbi 0 30 75 120 180 340 390
tlai 0 30 75 120 190 350 400

0
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11

[20,40]

13

[20,75]

15

[80,120]

3

[0,400]

22

[250,360]

0

[0,400]
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(c) Route evaluation after customer insertion - VRPTW

Figure 3.23: Move evaluations - VRPTW
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backward variables have to be computed up to the inserted customer, which is performed in

O(1). As condition tbi ≤ tlai (75 ≤ 75) is satisfied, the customer insertion is feasible and the

overall distance increase is d = 15+15−10 = 20. Afterward, if this customer insertion move

is selected as the best move, the move is performed, and all variables are recomputed (Figure

3.23c).

In the EVRPTW problem, beside the load and time windows constraints, there is also a

constraint regarding the vehicle battery capacity (energy feasibility), which also influences the

time window feasibility. Therefore, the time window evaluation is more complex. To present

the example of route evaluation in EVRPTW, the forward rest battery capacity is added, given

by equation 3.18.

y j = yi− ei j (3.18)

A similar example as for VRPTW is presented in Figure 3.24a for EVRPTW-FR, where

customer 3 is changed to CS (blue circle) with charging time corresponding to same amount

of service time as in VRPTW example, and with the recharging rate g = 2. To evaluate the

move of inserting the customer 13, the forward and backward variables have to be computed

for customer 13, but the problem is that the recharging amount is unknown at CS, and therefore

the service time at CS is also unknown (3.24b). In problems where the energy consumption can

be estimated from the distance increase, the additional charging amount can also be computed,

which in this case is 20. Therefore the total charging time at CS is 140+ 20 · 2 = 180. But

even with that, due to the nonlinear begin times caused by time windows, the arrival time at

CS is unknown, or if looked in the opposite way, the latest arrival time at customer 13 is un-

known. To know either of the values, the forward or backward variables have to be recomputed

(propagated) forward up to the latest CS in route or backward from the latest CS in route up

to the customer 13 (3.24c). In this case, at user 3 as the condition tbi ≤ tlai (180 ≤ 150) is not

satisfied, the time window violation of 30 occurs, and this customer insertion is not feasible.

Therefore, the same example of customer insertion in VRPTW and EVRPTW-FR have differ-

ent outcomes. Naturally, one could assume that the energy violation would occur, but actually,

what usually happens is that an additional charging amount causes the time window violation.

The complexity of such approach is O(B) where B is the number of users between the position

of the insertion and the latest CS in route. It is not enough to extend the variables just to the next

CS in route. If there is no CS in the second part of the route, recomputation is not needed. By

storing additional information about the recharging position and its amount, and by the use of

general concatenation operators, the basic neighborhood operators in EVRPTW can be evalu-

ated in O(1) [29, 121]. A different approach is to use a specially defined surrogate cost function

whose evaluation is less demanding and completely evaluate only a subset of best moves [20].
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si 0 30 30 2 ·70 = 140 40 0
yi 100 70 60 30→ 100 80 70
dai 0 30 40 70 90 100
tai 0 30 70 140 300 350
tbi 0 30 80 140 300 350
tlai 10 40 120 190 350 400
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(a) Route evaluation before customer insertion - EVRPTW-FR

si 0 30 30 30 ? 40 0
yi 100 70 55
dai 0 30 45
tai 0 30 75 ?
tbi 0 30 75 ?
tlai 190 350 400
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(b) Insertion of customer - EVRPTW-FR

si 0 30 30 30 180 40 0
yi 100 70 55 40 10→ 100
dai 0 30 45 60 90
tai 0 30 75 120 180
tbi 0 30 75 120 180
tlai 45 90 150 350 400

0

[0,400]

11

[20,40]

13

[20,75]

15

[80,120]

3

[0,400]

22

[250,360]

0

[0,400]

30 15 15 30 20 10

(c) Propagation of variables after insertion - EVRPTW-FR

Figure 3.24: Move evaluations - EVRPTW-FR
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Chapter 4

Hybrid adaptive large neighborhood
search method

In this chapter, the Hybrid Adaptive Large Neighborhood Search (HALNS) method for solving

different EVRP variants is presented. The term hybrid is used as the ALNS method is coupled

with the exact procedure for optimal CS placement. The proposed HALNS method includes

the LS procedure and specially defined concatenation operators that allow the evaluation of

some moves (local search moves) in O(1). The idea for the HALNS is based on the ALNS for

Electric Location Routing Problem with Time Windows and Partial Recharging (ELRPTW-PR)

presented by Schiffer et al. [53]. The authors formulate penalty functions and concatenation

operators that allow evaluation of most of the basic moves in ELRPTW-PR problem in O(1).

In this thesis, the proposed penalty functions and concatenations operators for ELRPTW-PR

are simplified and applied to solve EVRPTW-PR. Further on, the new penalty functions and

concatenation operators are presented for three problems: EVRPTW-FR, EVRPTWDCS-PR,

and EVRPTWDCS with Full Recharge (EVRPTWDCS-FR). The EVRPTWDCS-FR problem

has not been addressed in the literature by itself, as it is mostly observed as a sub-problem of the

partial variant, but if looked at separately, this problem has different constraints than the partial

variant.

The chapter is organized as follows. In section 4.1 the overview of the proposed HALNS

method is presented. In section 4.2 the heuristic for creating the initial solution is given. Then

the penalty functions and concatenations operators for four different EVRP variants are given in

section 4.3. The destroy and repair operators tested during the development of HALNS method

are presented in section 4.4, while the used route removal operators are presented in section 4.5.

Then, the LS and exact procedures for improving the solution are described in sections 4.6 and

4.7. Further on, the techniques that significantly improve the execution time are described in

section 4.8. The tuning of the HALNS parameters is presented in section 4.9. In the end, the
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results of HALNS applied on both small and large EVRPTW instances are presented in section

4.10.

4.1 Framework

The general framework of the proposed HALNS method is given by Algorithm 4.1. First, the

initial solution is created by special NNH that takes into account CS insertions presented in

section 4.2. The produced initial solution s is completely feasible and copied to additional three

solution instances: (i) temporal solution stemp that stores previous iteration solution values (can

be infeasible), (ii) best solution sbest that stores so far the best solution (can be infeasible), and

(iii) the best feasible solution sbest_ f eas. The initial values of iteration i and last iteration in

which the improvement happened, ilast_imp, are set to zero. In each iteration, the route removal

criteria is checked, which if met, calls the procedure to minimize the number of vehicle routes,

described in section 4.5. In each iteration, the current solution s is destroyed with the selected

operator d, and repaired with the selected operator r, and as a result, a new solution snew is

produced. The destroy and repair operators used in HALNS are described in section 4.4. If

the cost function of solution snew is within ∆ls percentage of solution sbest cost function, the

LS procedure, described in section 4.6, is performed on solution snew. Additionally, if the

cost function of this new solution snew after the LS procedure is within ∆exact (∆exact < ∆ls)

percentage of sbest cost function, the exact procedure that determines optimal CS positions

is performed on solution snew. The exact procedure is described in section 4.7. Afterwards,

regardless of the LS and exact procedures, the update of solutions instances occurs in lines

17-27. If a new solution snew is better than the current temporal solution stemp, the snew is set

as stemp. If a new solution snew is better than the best solution sbest , the snew is set as sbest . As

solution sbest can be infeasible the procedure to generate a feasible solution snew
best_ f eas, if possible,

is performed. The method for generating feasible solutions is presented in subsection 4.6.2. If

this new solution snew
best_ f eas is feasible and better than the so far best feasible solution sbest_ f eas,

the snew
best_ f eas is set as sbest_ f eas, and the last improvement ilast_imp is set to the current value of i.

Further on, the scores of used destroy and repair operators are updated. Afterward, additional

three updates are performed:

(i) every µrbks iterations the temporal solution stemp and best solution sbest are reset to the

best feasible solution sbest_ f eas,

(ii) every µuop iterations the scores, weights and probabilities of destroy and repair operators

are updated, and

(iii) every µupw iterations the penalty coefficients are updated.

In the end, the iteration value i is increased by one and the temporal solution stemp is set

as solution s. The whole procedure (lines 4-40) is repeated until either a maximum value of
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iteration µmax is reached, or there was no improvement of the feasible solution for more than

µ
last_imp
max iterations.

Algorithm 4.1 Hybrid adaptive large neighborhood search method
1: s← Generate initial solution
2: stemp,sbest ,sbest_ f eas← Copy s
3: i, ilast_imp← 0
4: while i < µmax and i− ilast_imp < µ

last_imp
max do

5: if route removal criteria met then
6: s← Perform route removal on s
7: end if
8: d,r← Select destroy and repair operators
9: sd ← Destroy solution s with operator d

10: snew← Repair solution sd with operator r
11: if f (snew)< f (sbest)(1+∆ls) then
12: snew← Perform LS on snew
13: if f (snew)< f (sbest)(1+∆exact) then
14: snew← Perform exact procedure on snew
15: end if
16: end if
17: if f (snew)< f (stemp) then
18: stemp← snew
19: if f (snew)< f (sbest) then
20: sbest ← snew
21: snew

best_ f eas← Generate feasible solution from snew

22: if snew
best_ f eas is feasible and f (snew

best_ f eas)< f (sbest_ f eas) then
23: sbest_ f eas← snew

best_ f eas
24: ilast_imp← i
25: end if
26: end if
27: end if
28: Update scores of selected destroy d and repair r operators
29: if modulo(i,µrbks) = 0 then
30: stemp,sbest ← sbest_ f eas
31: end if
32: if modulo(i,µuop) = 0 then
33: Update destroy and repair operators scores, weights and probabilities
34: end if
35: if modulo(i,µupw) = 0 then
36: Update penalty weights
37: end if
38: i← i+1
39: s← stemp
40: end while
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Temporal solution stemp is stored because sometimes the new solution snew created by the

destroy and repair operators can be much worse than the current temporal solution stemp. In

such cases, instead of propagating such bad solution to next iteration, the current solution s is

set as the temporal solution stemp. The solution sbest is used as it evaluates the infeasible solution

space. The basic idea to store possibly infeasible solution is adopted from similar works that

search in the infeasible solution space [53, 149]. By storing the sbest , which often is infeasible,

the infeasible regions of the solution space are evaluated. As already explained in subsection

3.4, the small changes in infeasible search space can lead to a feasible solution.

4.2 Pseudo-greedy time-oriented nearest neighbor heuristic

To construct an initial solution on all observed EVRP variants, a new modified nearest neighbor

heuristic is proposed: Pseudo-Greedy Time-Oriented Nearest Neighbor Heuristic (PGTONNH).

The time-oriented construct heuristic selects the nearest customer in a timely manner which

makes it suitable for the application on the problems that deal with time windows [31, 150]. In

EVRP problems, the CSs have to be inserted to make the solution energy feasible. The proposed

heuristic is described by Algorithm 4.2. Routes are constructed in a serial way, one by one, by

selecting one customer from the set of all customers that satisfy all problem constraints. To add

the customer j after the customer i in active route, the candidate customer j has to satisfy:

(i) Vehicle load capacity given by equation 4.1, where ui is the rest load capacity at user i

and q j demand of customer j (the first user in a route, the depot, has u0 =C):

ui−q j ≥ 0, (4.1)

(ii) Customer j late time window given by equation 4.2, where the arrival time at customer j

is computed by equation 3.15:

ta j ≤ l j, (4.2)

(iii) The depot time window from customer j given by equation 4.3, where begin time at

customer j is computed by equation 3.16:

tb j + s j + t j0 ≤ l0, (4.3)

(iv) Rest vehicle battery capacity (energy) given by equation 4.4 (the first user in route, the

depot, has y0 = Q):

yi− ei j ≥ 0. (4.4)

The PGTONNH starts with the initialization of the solution s with an empty vehicle route list

and a set of unserved customers U with all customers. Then the new vehicle route v is opened,
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Algorithm 4.2 Pseudo-greedy time-oriented nearest neighbor heuristic
1: s← Initialize solution with empty vehicle list
2: v← Open a new vehicle
3: i← Set the depot as last visited user
4: U ← Initialize set of unserved customers with all customers
5: while U is not empty do
6: C← Initialize empty set
7: for each customer j in U do
8: if vehicle v has enough rest load capacity to accept j and j is reachable from i and the

depot is reachable from j regarding the time windows then
9: if j is reachable from i and the depot is reachable from j regarding the energy then

10: Add j to set C
11: else
12: Add j and depot to vehicle v
13: v← Perform MBSI
14: if v is feasible then
15: Add j with determined CS insertions to set C
16: i← j or succeeding CS
17: else
18: Remove j and last depot from vehicle v
19: end if
20: end if
21: end if
22: end for
23: if C is empty then
24: Close the current vehicle v and add it to the vehicle list in solution s
25: v← Open a new vehicle
26: i← Set the depot as last visited user
27: else
28: Sort customers (with possible CSs insertions) in set C based on the objective function

given by equation 4.5
29: z← From k customers that have the lowest objective function value select one using

determinism factor kpgtonnh
30: Add z together with the possible CSs insertions to the current vehicle v
31: Remove customer z from set of unserved customers U
32: i← z or succeeding CS
33: end if
34: end while

and the depot is set as the last visited user i. In each outer loop iteration, a set of customer

candidates C is initialized as empty. Each unserved customer j is checked if it satisfies the

load and time-window constraints, but not the energy constraint, as either the customer j is not

energy reachable or the depot from j is not energy reachable. If all constraints are satisfied, the

customer j is added to set C; otherwise, if only energy constraint is violated, the Multiple Best

Station Insertion (MBSI) procedure [1] on the current vehicle is performed (line 13) to make

the solution energy feasible, with the full recharge strategy. A detailed description of the MBSI
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4. Hybrid adaptive large neighborhood search method

procedure is given in the next paragraph by Algorithm 4.3. After MBSI, if the vehicle route

is feasible, the customer j together with the CSs and its positions is added to set C. If after

checking all unserved customers, the set C is still empty, not a single customer could be added

to a current vehicle route without a constraint violation. In such case, a current vehicle route is

closed by adding a new instance of the depot at the end of the route, and the complete procedure

is repeated from start until all customers are served (lines 5-34). If set C is not empty, then all

of the candidates are evaluated by equation 4.5, which has three parts:

(i) distance traveled between users i and j,

(ii) time between the begin of service at user j and end of service at user i (this time can

include waiting time for time window opening at the customer j),

(iii) spare time to the late time window of customer j.

δ1, δ2 and δ3 are coefficients that control the relation between the described parts. They

have to be larger or equal to zero and have the sum equal to one (equation 4.6). The used

equation also takes into account the possible inserted CSs within time and distance variables.

Next, from k customers that have the lowest objective insertion value, one is selected based on

the determinism factor kpgtonnh and added to the route together with appropriate CS insertions.

This determinism factor favors customers with a lower objective function value and is more

thoroughly described in subsection 4.4.1. The parameter value kpgtonnh controls the stochastic

component of the algorithm. The values of kpgtonnh = 1 (random) are suited for use in population

metaheuristics where the goal is to have a versatile set of individuals in the initial population.

In the end, the selected customer z is removed from the set of unserved customers U , the last

visited user is updated to be either customer z or succeeding CS.

ci j = δ1di j +δ2(tb j − (tbi + si))+δ3(l j− (tbi + si + ti j)) (4.5)

δ1 +δ2 +δ3 = 1, δ1 ≥ 0,δ2 ≥ 0,δ3 ≥ 0 (4.6)

The MBSI procedure is given by Algorithm 4.3. The first goal is to determine the position of

the first energy violation in route and then insert one or more CSs somewhere before in route to

make the route energy feasible. The tuple Ibest , which contain CSs instances, their positions, and

total cost value increase is stored. Next the backward loop from the energy violation position i

to the depot position is performed (lines 3-26). In each iteration, the insertion of CSs between

users at the current position is evaluated. If this insertion evaluation I1 is feasible and it is better

than the so-far best feasible insertion Ibest , then I1 is set as Ibest . Otherwise, if it is time window

feasible (the time window infeasible insertion cannot be improved by CS insertion), but not

energy feasible, and the Ibest is empty (meaning that no feasible solution was found so-far), then

the evaluation of another CS insertion I2 at the same position in the same way as in the previous
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Algorithm 4.3 Multiple best station insertion
Input: Vehicle route v

1: i← Determine the first position of energy violation in route v (−1 if route v is feasible)
2: CS insertion tuple Ibest : CSs, positions, value {cs, ics, f} ← {none,−1,max}
3: while i≥ 1 do
4: Current user ucur← User at position i in vehicle route v
5: User before ube f ← User at position i−1 in vehicle route v
6: for each possible CS cs1 between ube f and ucur do
7: I1← Evaluate the insertion of CS cs1 at position i in route v
8: if I1 is completely feasible then
9: if f (I1)< f (Ibest) then

10: Ibest ← I1
11: end if
12: else if I1 is time window feasible and not energy feasible and Ibest is empty then
13: Insert cs1 at position i in route v
14: for each possible CS cs2 between ube f and cs1 do
15: I2← Evaluate the insertion of CS cs2 at position i in route v
16: if I2 is completely feasible then
17: if f (I1)+ f (I2)< f (Ibest) then
18: Ibest ← I1 and I2
19: end if
20: end if
21: end for
22: Remove cs1 at position i in route v
23: end if
24: end for
25: i← i−1
26: end while
27: if Ibest is not empty then
28: Preform Ibest on vehicle route v
29: end if

insertion is performed. This is needed as in EVRPTW instances at most two CS are necessary

to reach the customer (section 2.2). Further on, if this new insertion I2 produced a feasible

solution and together with I1 has a lower cost than the Ibest , then both insertions I1 and I2 are

stored as Ibest . At the end of the while loop, the value of position i is decreased by one, and the

procedure is repeated. In the end, if the best insertion Ibest is not empty, it is performed to make

the route v energy feasible.

The example of the EVRPTW-FR initial solution on instance C101 is presented in Figure

4.1. In the example, the following parameter values were used: kpgtonnh = 3, δ1 = 0.6, δ2 = 0.3

and δ3 = 0.1. In comparison to the Sweep algorithm, CWS, and NNH of Felipe presented in

section 3.1, the PGTONNH produces a completely feasible solution and significantly reduces

the number of vehicles compared to the NNH algorithm.
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4. Hybrid adaptive large neighborhood search method

Figure 4.1: Initial solution constructed by PGTONNH - C101

4.3 Penalty functions

The proposed HALNS method allows infeasible solutions during the search phase. The ad-

vantages and drawbacks of searching in the infeasible solution space are already discussed in

section 3.4. In HALNS, the generalized cost function given by equation 3.13 with penalties

for time window, load capacity, and battery capacity is considered. As already mentioned, the

penalty coefficients are labeled as α for load capacity, β for time window, and γ for battery

capacity violation. The values of these coefficients control the ratio of diversification and inten-

sification phases. In the beginning, these coefficients are initialized to the predefined starting

values α0, β0, and γ0. To skip getting stuck in the over-intensification or over-diversification

their values are bounded as [αmin,αmax], [βmin,βmax], and [γmin,γmax]. The penalty coefficients

are updated in adaptive manner [53, 149], every µupw iterations, in the following way:

(i) multiplied by ζ if in the last µupw iterations penalty in best solution sbest occurred, or

(ii) divided by ζ if in the last µupw iterations penalty in the best solution sbest did not occur.

The penalty of the solution s is the sum of penalties per vehicle v in the solution s =

{v1, . . . ,vn}. As here, the focus will be only on the penalties and not the cost function, the

penalty of the solution s can be computed by equation 4.7 as the sum of penalties per vehicle.

P(s) = ∑
v∈s

P(v) = ∑
v∈s

(αPload(v)+βPtw(v)+ γPbatt(v)) (4.7)

The example of a penalty coefficient function α during the search process when solving

EVRPTW-FR on instance R101 is presented in Figure 4.2. The values of penalty coefficient α

are plotted with black color and presented on the right y axis. On the left y axis are the values
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Figure 4.2: Penalty function value in search process - R101 - EVRPTW-FR

of the cost function for the best solution sbest (blue line for the feasible part and red line for

the infeasible part), and best feasible solution sbest_ f eas (green line). The first occurrence of the

best overall feasible solution smin
best_ f eas is represented with a green circle. The used minimum,

maximum and starting alpha values are: αmin = 2, αmax = 80, and α0 = 10. The update value is

ζ = 1.2, and the penalties are updated every µupw = 20 iterations. The cost value of the initial

solution is 2829.84. It can be seen that the feasible solution is rapidly improved at the beginning

of the search, with occasional spikes. These spikes represent that the feasible solution with a

lower number of vehicles is found and that it is accepted although it has a worse cost function

value. When the best solution sbest is infeasible but accepted due to the acceptance criteria (red

lines), the penalty coefficient α increases, while the opposite occurs when the best solution sbest

is feasible. In the zoomed part, it can be seen that allowing infeasible solutions can lead to

better feasible solutions. Also, as minimum best feasible solution smin
best_ f eas is relatively quickly

found (i = 880), in the rest of the search, the infeasible solutions are accepted, and penalties are

updated to find a better solution.

As already mentioned in section 3.5 the important part of any VRP algorithm is the eval-

uation of the basic moves (changes) in the solution. As here, the cost function also includes

penalties, the important aspect is also the efficient evaluation of the penalties in the solution.

The easiest penalty to compute is the vehicle load penalty. If a vehicle route v is represented

as a sequence of users v = (u0, . . . ,uN+1) the vehicle load penalty can be computed by equation

4.8. The penalty is equal to the amount of total vehicle overload: the load over the vehicle

load capacity C. The evaluation of load violation between partial routes φ1 = (u0,u1, . . . ,x) and

φ2 = (y, . . . ,uN+1) can be done in O(1) for most of the known move operators [18, 53, 151].

This requires tracking two forward variables for each user in route: rest load capacity zi (in

previous mathematical formulations, it was ui, but to not confuse it with the user ui here a
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different symbol is used) and forward load violation pload . For example, if the last user in the

partial route φ1 has rest load capacity zx and load violation ploadx , the first user in the partial

route φ2 has rest load capacity zy and the last user in the partial route φ2 has rest load capacity

zN+1, the load violation of vehicle route v combined from two partial routes φ1 and φ2 can be

computed by equation 4.9. The way of storing variables for each user in route and evaluating

the changes in solution by considering partial routes is called the concatenation strategy [3, 17].

Pload(v) = max

((
∑
u∈v

qu

)
−C,0

)
(4.8)

Pload(φ1⊗φ2) = ploadx +max(zN+1− zy +qy− zx,0) (4.9)

Due to the vehicle route’s non-linear total travel time function, the evaluation of time win-

dows is more complex. The example of computing the time window violation in a classical way

is presented in Figure 4.3 by equation 4.10, where tau is arrival time at user u and lu is late time

window at user u. The first violation occurs at user 15 as arrival time of 70 is larger than the

late time window value of 50, and the time window violation is 20. Then, propagated further,

the time window violation at user 3 occurs, as arrival time is 130, the late time window is 110,

and the additional 20 is added to the total time window violation. In the end, one more violation

occurs at the last user, resulting in the total time window violation value of 50.

Ptw(v) = ∑
u∈v

max(tau− lu,0) (4.10)

Nagata et al. [152] concluded that this way of computing time windows over-penalizes total

time window violation. For example, the first penalty in Figure 4.3 occurs at user 15. As the

vehicle is late at user 15, it is also possible that it will be late at other users after the user 15,

and as a result, time window violation accumulates. Here, the problem is not in the sequence

of users after the user 15, but rather only the user 15 produces the time window violation. The

real question should be, if vehicle arrives before the late time window at user u, would there

si 0 30 30 30 40 0
tai 0 30 70 130 180 230
tbi 0 30 70 130 180 230
ptwi 0 0 20 40 40 50

0

[0,220]

11

[20,40]

15

[30,50]

3

[90,110]

22

[170,180]

0

[0,220]

30 10 30 20 10

Figure 4.3: Computation of time window violations in a classical way in VRPTW
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still be a time window penalty in the second part of the route? The answer is maybe yes, but

certainly with lower or the same penalty value, depending on the user schedule. To reduce the

over-penalization, Nagata et al. [152] proposed a time traveling technique, meaning that when

the violation at user occurs, quantify the violation, and travel back in time, via time machine,

to the latest feasible point in time. The example of computing time window violations with

traveling back in time to the latest feasible point in time in VRPTW problem is presented in

Figure 4.4. The same sequence of customers as in the previous example is used. One additional

variable, the shifted begin time t ′bi
(latest feasible point in time) is computed by equation 4.11

and used in computation instead of a classical begin time tbi . The Figure 4.4b presents a graph

of total time, where on the x axis is time and on the y axis are the users in the route. The

time windows are represented by blue square brackets, the travel time between users with black

arrows, the service time with red arrows, the waiting time for early time window opening with

a cyan arrow, and the travel back in time to the latest feasible point with green arrow. It can be

si 0 30 30 30 40 0
tai 0 30 70 110 160 220
tbi 0 30 70 110 170 220
t ′bi

0 30 50 110 170 220
Ptwi 0 0 20 20 20 20

0

[0,220]

11

[20,40]

15

[30,50]

3

[90,110]

22

[170,180]

0

[0,220]

30 10 30 20 10

(a) Computation of time window violations

time

users

0

11

15

3

22

0

0 30 60 90 120 150 180 210

(b) Travel times on a graph

Figure 4.4: Strategy of traveling back to the latest feasible point in time in VRPTW
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seen that the time window violation occurs only at user 15, where the begin time of service is

shifted to the late time window of user 15. Due to time-shifting, no more violations occur in

the route, and the overall time window violation of the route is 20. This leads to a significantly

lower time window violation value, which is more realistic than the one computed in a classical

way.

t ′bi
= min(tbi, li) (4.11)

This concept includes specially defined penalty variables and concatenation operators for

the evaluation of the most basic moves in the VRPTW solution (relocate, exchange, Or-Opt,

2-Opt*, etc.) [152]. Schneider et al. [153] noted that some concatenation operators produce

a wrong evaluation values in some specific situations, i.e., an infeasible solution has no time-

window penalty; and improved the formulation to account for the correct time window viola-

tion in such occasions. In the EVRPTW problem, this concept has to be modified to include

the charging time at CS. Schneider et al. [18] applied this concept on the EVRPTW-FR prob-

lem with specially defined concatenation operators for full recharge strategy. They concluded

that the evaluation of two partial routes φ1 and φ2 can be done in two ways depending on the

situation: (i) in O(1) if the second route does not contain CS, and (ii) in O(B) if the second

route contains at least one CS, where B is the number of users between the last user in partial

route φ1 and last CS in partial route φ2 (already explained in section 3.5). For partial recharge

strategy, this concept cannot be used since the amount of fuel is no longer fixed when the user

is evaluated. The time window and battery (fuel) violations became linearly dependent on the

amount of fuel replenished at preceding CSs. Schiffer et al. [53] proposed a corridor-based

penalty approach for computing both time window and fuel violations in O(1) for most of the

basic move operators in the ELRPTW-PR problem. This corridor-based approach consists of

specially defined forward and backward penalty variables, and a specially defined concatenation

operators. In this thesis, the concept of the corridor-based approach is used for the evaluation

of moves in different EVRP variants. Here, the difference between the corridor-based approach

proposed in this thesis and the one proposed by the Schiffer et al. [53] are highlighted:

(i) EVRPTW-PR - the original corridor-based approach by Schiffer et al. [53] for the ELRPTW-

PR problem with evaluation O(1) is slightly modified to not include CS location place-

ment problem and service times while charging,

(ii) EVRPTW-FR - modified forward variables for the evaluation of the surrogate function in

O(1) and later evaluation of best LS moves in O(n),

(iii) EVRPTWDCS-FR - new penalty variables and concatenation operators, that use surro-

gate function for evaluation in O(1) (for both compatible and incompatible charger types),

and later evaluation of best LS moves in O(n),

(iv) EVRPTWDCS-PR
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(a) if partial routes contain compatible charger types (or none at all) - the penalty vari-

ables and concatenation operators for EVRPTW-PR are used and computed in O(1),

(b) if partial route contains different charger types - new penalty variables and concate-

nation operators for EVRPTWDCS-PR- in practice between O(n) and O(n2).

In the following subsections, the penalty variables and concatenation operators for different

problem variants are described.

4.3.1 EVRPTW-PR

The original corridor-based approach for ELRPTW-PR [53] lacks a detailed description of

penalty variables and concatenation operators to fully understand the proposed concept. Here,

a detailed description is provided for the EVRPTW-PR problem. The proposed variables and

operators for the ELRPTW-PR problem are modified for the EVRPTW-PR problem, as CS

placement and service time at CSs are removed.

The good idea of the corridor-based approach is to express all variables in a unit of time

[55]. The energy consumed on a path is expressed as the time needed to recharge the consumed

energy hi j = gei j = grdi j, as in the EVRPTW-PR problem the consumed energy depends linearly

on the total distance traveled (section 2.4). The battery capacity Q is expressed as the time

H = gQ needed to fully charge the battery. The variables indicating travel back in time to the

latest feasible point in time are labeled with tilde (~) and determined based on the shifting rules.

Forward variables

The forward variables for EVRPTW-PR are presented in Table 4.1. First the slack time at user

j is computed by equation 4.12 as the time between the arrival time at user j with minimum

charging amount and early time window e j. The arrival time at user j is computed as the sum

of shifted begin time at previous user with minimum charging amount ãmin
i , service time si and

the travel time ti j.

Next, the maximum recharging time art
j at user j is computed by equation 4.13. The assump-

tion is that no recharging has been performed at previous CSs except the minimum charging

amount needed to visit users before j. The minimum charging amount can be added to previous

CSs only if there exists such a CS, and there is enough free amount (time) to charge the vehicle

(vehicle cannot be charged over Q). If the preceding user i is a CS, then the maximum recharg-

ing time art
i at user i is first reduced by computed slack time asl

i j and then increased by the time

hi j needed for recharging the energy consumed on arc (i, j). More precisely, the possible spare

slack time at CS preceding user j is always used for recharging as this is the "spare" time that

would otherwise be wasted. Therefore, the art
j is the maximum charging time at user j with con-

sideration that all possible slack times are used for recharging and that, if needed and possible,
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Table 4.1: Forward variables - EVRPTW-PR

Symbol Description
amin

j Earliest begin time at user j with charging minimum amount as possible be-
fore j

amax
j Earliest begin time at user j with charging maximum amount as possible at

preceding CS with assumption that minimum charging was performed before
preceding CS

art
j Time needed to charge to maximum at user j with assumption that minimum

charging was performed before j
asl

i j Slack time at user j
aadd

i j Additional charging time at user j that has to be added at preceding CSs
ãmin

j Shifted earliest begin time at user j when violation occurs with charging min-
imum amount as possible before j

ãmax
j Shifted earliest begin time at user j with charging maximum amount as pos-

sible at preceding CS with an assumption that minimum charging was per-
formed before preceding CS

act
j→CSbe f

Charging time at CS preceding user j
atn

j Cumulative charging time needed for traversing the route
atr

j Cumulative charging time at CSs
a j→CSbe f An instance of CS preceding user j

the minimum charging amount has already been charged before. If the slack time asl
i j is greater

than art
i , the art

i is limited to zero, as the vehicle cannot be charged over its capacity, although

there is more spare time. The computed limited difference is increased by hi j, meaning that the

maximum recharging time is increased by the amount of time needed for recharging the energy

consumed on arc (i, j), but again limited by vehicle capacity Q, i.e., total vehicle recharge time

H. If the preceding user i is not a CS, then the same principle is used, but the available slack

time for recharging is limited by the spare time between minimum charging begin time ãmin
j and

maximum charging begin time ãmax
j . This also means that if there is more spare time than there

is slack time, the spare charging time is limited to the slack time. The variable art
j at user which

is not CS is used only for the propagation of the values, and the actual charging does not occur

at such user.

Next, the additional recharging time aadd
i j that needs to be accounted for at previous CSs

is computed by equation 4.14. The equation is almost the same as the equation for maximum

recharging time art
j (4.13). Instead of limiting the maximum recharging time to H, the as-

sumption is to charge at the previous user as max as possible, and if the unlimited maximum

recharging time is greater than H, then this difference is the minimum additional charging time

that has to be added at preceding CSs to reach the user j without fuel violation.

The earliest begin time at user j with charging minimum amount as possible amin
j is com-

puted by equation 4.15. It is computed as the sum of the shifted begin time ãmin
i at previous

user i, travel time ti j between users and the service time si; and it is limited by the early time
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window e j, as the service cannot start before that time. Additionally, if there is not enough

energy expressed in time to reach the user j even if at previous CS the maximum charging is

performed, the minimum additional recharging time aadd
i j is added. This is valid, as all of the

slack times up to j (including) are already used for recharging, but some additional recharging

is still needed. As there are no non-linear spare time holes, the added charging time increases

linearly the earliest begin time at user j. Adding aadd
i j does not necessarily mean that the fuel

violation occurs. It only means that to escape the fuel violation, the aadd
i j recharging time has to

be added at preceding CSs. But if there is no such possibility, the violation occurs, which will

be accounted for, in the equation for computing fuel violation.

The earliest begin time amax
j at user j with charging maximum amount as possible at pre-

ceding CS with the assumption that minimum charging was performed before preceding CS is

computed by equation 4.16. If the user i is not CS then the shifted earliest begin time ãmax
i

at preceding user i, the travel time ti j and the service time si are summed, and limited by the

early time window e j. Otherwise, if user i is CS, then instead of ãmax
i the ãmin

i is used which

is the shifted earliest begin time at user i with charging minimum amount as possible, and the

maximum charging time art
i and travel time ti j are added. Again the result is limited to the early

time window e j, if the vehicle has to wait for the opening of a time window.

asl
i j = max(0,e j− ãmin

i − ti j− si) (4.12)

art
j =

min(H,max(0,art
i −asl

i j)+hi j) i ∈ F ′

min(H,max(0,art
i −min(asl

i j, ã
max
j − ãmin

j ))+hi j) else
(4.13)

aadd
i j =

max(0,max(0,art
i −asl

i j)+hi j−H) i ∈ F ′

max(0,max(0,art
i −min(asl

i j, ã
max
j − ãmin

j ))+hi j−H) else
(4.14)

amin
j = max(e j, ãmin

i + ti j + si)+aadd
i j (4.15)

amax
j =

max(e j, ãmin
i +art

i + ti j) i ∈ F ′

max(e j, ãmax
i + ti j + si) else

(4.16)

To travel back in time to the latest feasible point when a violation occurs, the forward shift-

ing rules are determined. The rules are presented in Figure 4.5. In total there are 5 shifting

rules, but only 4 account for time and fuel violations (4.5c-4.5f). Figure 4.6a represents sym-

bols used for amin, amax and their shifted counterparts ãmin and ãmax. Figure 4.5b represents

feasible variables and no violation. Figure 4.5c represents time window violation (green ar-

row), when amin > l, and amin has to be shifted. The amax is also shifted to the late time window
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amin amax ãmin ãmax

Fuel

Complementary
Time window

(a) Symbols

(b) Feasible (c) Time window violation

(d) Fuel violation 1 (e) Fuel violation 2 (f) Time and fuel violation

Figure 4.5: Forward shifting rules - EVRPTW-PR

- the complementary shift (magenta arrow). Figures 4.5d and 4.5e represent fuel violation when

amax < amin (black arrows). This happens when there is not enough fuel to reach a user. For

example, in route without CSs, when there is not enough fuel the aadd value is additionally

added to amin (equation 4.15), while the variable amax remains the same (without additional

charging time). As a result condition amax < amin is satisfied and a violation occurs. Figure

4.5f presents violation of both time window and fuel, as conditions amin > l and amax < amin

are satisfied. Also the complementary shift of amax is presented. All of these shifting rules can

be combined in two equations 4.17 and 4.18. The forward time window and fuel penalties of a

route φ = (u0, . . . ,uN+1) are given by equations 4.19 and 4.20.

ãmin
j = min(amin

j ,amax
j , l j) (4.17)

ãmax
j = min(l j,amax

j ) (4.18)

−−→
TW (φ) = ∑

u∈φ

max(min(amin
u ,amax

u )− lu,0) (4.19)

−→
FL(φ) = ∑

u∈φ

max(amin
u −amax

u ,0) (4.20)

The proposed approach does not specifically determine how much charging is performed at

each CS. The aadd
i j is computed as the additional recharging time needed at previous CSs, but
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no scheduling is performed to determine how much to charge on each CS. To track the charg-

ing time at each CS, four new variables are proposed, which are not presented in the original

corridor-based approach of Schiffer and Walter [53]. The a j→CSbe f represents an instance of the

latest CS before user j given by equation 4.21. The charging time act
j→CSbe f

at the latest CS be-

fore j is given by equation 4.22. The charging time at latest CS, if any, is computed as follows.

If previous user i is a CS, the charging time is equal to the sum of slack time asl
i j limited by max-

imum charging amount art
i and additional charging time aadd

i j . If the previous user i is not a CS,

the charging time is equal to the sum of slack time asl
i j limited by the difference between min-

imum ãmin
j and maximum shifted begin time ãmax

j , additional charging time aadd
i j and previous

charging time act
j→CSbe f

. Last two variables represent cumulative route values: the cumulative

recharging time at CSs acrt
j (4.23) and acrtn

j cumulative recharging time (energy, fuel) needed

for traversing the route up to j (4.24). The charging time in CS is needed for determining the

exact solution of the problem, with the whole routing plan and charging schedule or in cases

where the objective function contains charging costs. The model assumes that whenever there

is an available slack time, that it will be used for charging, but sometimes the feasibility can be

achieved without considering all slack times for charging, which can reduce overall charging

costs. Therefore, by limiting the total charging time to max(acrtn
j −H,0), which is the energy

consumed on the entire route, the minimum amount of charging is performed in a route, and

the vehicles ends the route with empty battery. This can be used to reduce the slack charg-

ing times and still to ensure feasibility. Initial values of forward variables at depot are all set

to as ãmin
0 = ãmax

0 = amin
0 = amax

0 = art
0 = acrt

0 = acrtn
0 = 0, while the CS before depot is set as

act
0→CSbe f

= None. The service time in all CSs (i∈ F ′) is set as si = 0, and therefore are excluded

from equations related to CS only.

a j→CSbe f =


None i = 0

i i ∈ F ′

ai→CSbe f else

(4.21)

act
j→CSbe f

=


0 a j→CSbe f is None

min(asl
i j,a

rt
i )+aadd

i j i ∈ F ′

act
j→CSbe f

+min(asl
i j, ã

max
j − ãmin

j )+aadd
i j else

(4.22)

acrt
j =

acrt
i +min(asl

i j,a
rt
i )+aadd

i j i ∈ F ′

acrt
i +min(asl

i j, ã
max
j − ãmin

j )+aadd
i j else

(4.23)

acrtn
j = acrtn

i +hi j (4.24)
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Backward variables

The used corridor-based approach, besides the forward variables, also contains backward vari-

ables, which enable efficient penalty computation. The used backward variables are presented

in Table 4.2 and are computed in a similar way as the forward variables. The minimum func-

tions are replaced by maximum functions, and ei is swapped by li. The main idea is to propagate

variables backward, from the latest user in route (from depot late time window) to the first user

in route, i.e., from user j to user i. The initial values for backward variables related to the time of

the last user in route uN+1 are set to the late time window, b̃min
N+1 = b̃max

N+1 = bmin
N+1 = bmax

N+1 = lN+1,

while the fuel related variable is set to zero, brt
N+1 = 0. The latest begin time bmin

i at user i

with charging minimum amount as possible before i is computed by equation 4.28. The shifted

latest begin time at user j, b̃min
j is decreased by the travel time ti j (forward travel time direction

i→ j) and service time si at user i. Further on, it is limited by the late time window li as the

latest arrival time cannot be after the late time window. Following the same idea as in forward

variables, the additional recharging time is computed by equation 4.27 and is subtracted from

the previous result. The value bmin
i represents the latest point in time by which the service has

to start without the violation of constraints of all the users following user i in a forward way

(towards the route end). The variables brt
i and badd

i j are computed in almost the same way as the

forward variables (equations 4.26 and 4.27), with only difference being the order of subtraction

b̃min
j − b̃max

j , as in backward manner b̃min
j generally has a greater time value (later point in time)

than b̃max
j . It is important to note that these variables related to charging amount are computed in

backward fashion considering that at the beginning (last user in route) the vehicle is charged to

a full capacity Q as initial value of time needed to charge to maximum is set to zero, brt
N+1 = 0.

The bsl
i j slack time is the amount of spare time up to the late time window li that can be spent

on recharging (equation 4.25). The bmax
i is computed similar as the forward counterpart, given

by equation 4.29. The backward shifting rules are presented in Figure 4.6, while the equations

are given by 4.30 and 4.31. The time window violation (Figure 4.6c, green arrow) occurs when

bmin value is lower than the early time window, and the bmax is complementary shifted to the

early time window (magenta arrow). The fuel violation occurs when bmin < bmax, as in figures

4.6d and 4.6e. The case when both time window and fuel violation occur is presented in Figure

4.6f. The backward time window and fuel violations are given by equations 4.32 and 4.33.

bsl
i j = max(0, b̃min

j − ti j− si− li) (4.25)

brt
i =

min(H,max(0,brt
j −bsl

i j)+hi j) j ∈ F ′

min(H,max(0,brt
j −min(bsl

i j, b̃
min
j − b̃max

j ))+hi j) else
(4.26)
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4.3. Penalty functions

Table 4.2: Backward variables - EVRPTW-PR

Symbol Description
bmin

i Latest begin time at user i with charging minimum amount as possible before
i

bmax
i Latest begin time at user i with charging maximum amount as possible at

preceding CSs with the assumption that minimum charging was performed
before preceding CS

brt
i Time needed to charge to maximum at user i with charging minimum amount

as possible before i
bsl

i j Slack time at user i
badd

i j Additional charging time at user i that has to be added at preceding CSs
b̃min

i Shifted latest begin time at user i when violation occurs with charging mini-
mum amount as possible before i

b̃max
i Shifted latest begin time at user i when violation occurs with charging max-

imum amount as possible at preceding CS with assumption that minimum
charging was performed before preceding CS

badd
i j =

max(0,max(0,brt
j −bsl

i j)+hi j−H) j ∈ F ′

max(0,max(0,brt
j −min(bsl

i j, b̃
min
j − b̃max

j ))+hi j−H) else
(4.27)

bmin
i = min(li, b̃min

j − ti j− si)−badd
i j (4.28)

bmax
i =

min(li, b̃min
j −brt

j − ti j− si) j ∈ F ′

min(li, b̃max
j − ti j− si) else

(4.29)

b̃min
i = max(bmin

i ,bmax
i ,ei) (4.30)

b̃max
j = max(e j,bmax

j ) (4.31)

←−−
TW (φ) = ∑

u∈φ

max(eu−max(bmin
u ,bmax

u ),0) (4.32)

←−
FL(φ) = ∑

u∈φ

max(bmax
u −bmin

u ,0) (4.33)
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bmin bmax b̃min b̃max

Fuel penalty
Complementary
Time window

(a) Symbols

(b) Feasible (c) Time window violation

(d) Fuel violation 1 (e) Fuel violation 2 (f) Time and fuel violation

Figure 4.6: Backward shifting rules - EVRPTW-PR

Concatenation operators

In the following subsection, both forward and backward penalties are used to define equations

representing concatenation operators. Most of the basic operators can be expressed as a con-

catenation between two partial routes φ1 = (u0,u1, . . . ,x) and φ2 = (y, . . . ,uN+1), and the result

is route φ = φ1⊗ φ2 = (u0,u1, . . . ,x,y, . . . ,uN+1). First, the forward variables are propagated

to user y, based on the forward variables of user x. Then, the time window computation of

concatenated routes is computed by equation 4.34 as the sum of forward time window viola-

tion
−−→
TW (φ1) of partial route φ1, backward time window violation

←−−
TW (φ2) of partial route φ2,

and additional two parts, (1) and (2). The first one is the forward time window violation at

user y (bracket 1 in equation 4.34) consisting of time window violation due to the late arrival

at user y (bracket 1.1 in equation 4.34) which is reduced by the over-penalization value equal

to the forward fuel penalty value at user y (bracket 1.2 in equation 4.34). The second one is

the violation of the latest arrival time at user y (bracket 2 in equation 4.34) computed as the

difference between earliest feasible arrival time (bracket 2.1 in equation 4.34) and latest arrival

time with minimum charging amount bmin
y , further reduced by the over-penalization value equal

to the backward fuel penalty at user y (bracket 2.2 in equation 4.34). As it can be seen, the

general idea is to compute the time window violation in a typical way, but to reduce it by both

forward and backward fuel violations, to escape the time window over-penalization. The fuel

violation is computed by equation 4.35 as the sum of forward fuel violation
−→
FL(φ1) of route

φ1, backward fuel violation
←−
FL(φ2) of route φ2, forward fuel violation at user y and additional

value D computed by equation 4.36. The value D represents fuel penalty if a complete route
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4.3. Penalty functions

φ = φ1⊗φ2 exceeds overall fuel capacity.

TW (φ1⊗φ2) =
−−→
TW (φ1)+

←−−
TW (φ2)+

(1)︷ ︸︸ ︷
max(0,amin

y − ly︸ ︷︷ ︸
(1.1)

−max(0,amin
y −amax

y )︸ ︷︷ ︸
(1.2)

)+

(2)︷ ︸︸ ︷
max(0,min(ly,max(ey,amin

y ))︸ ︷︷ ︸
(2.1)

−bmin
y −max(bmax

y −bmin
y ,0)︸ ︷︷ ︸

(2.2)

) (4.34)

FL(φ1⊗φ2) =
−→
FL(φ1)+

←−
FL(φ2)+max(0,amin

y −amax
y )+D (4.35)

D =



max(0,

(3)︷ ︸︸ ︷
art

y +brt
y −H−

(5)︷ ︸︸ ︷
min(H,min(max(0,bmin

y −amin
y )︸ ︷︷ ︸

(5.1)

,max(0,amax
y −amin

y )+max(0,bmin
y −bmax

y )︸ ︷︷ ︸
(5.2)

))) y 6∈ F ′

max(0,art
y +brt

y −H−
(6)︷ ︸︸ ︷

min(art
y ,max(0,bmin

y −amin
y −max(0,amax

y −bmax
y ))︸ ︷︷ ︸

(6.1)

,max(0,amin
y −bmin

y )︸ ︷︷ ︸
(6.2)

)) else

(4.36)

The explanation of the computation of a D value is first provided for the case when the

user y is not a CS. The bracket 3 (in equation 4.36) represents the maximum charging time at

user y if previously all forward and backward slack times and minimum amounts of charging

are considered for charging. The value in bracket 3 (in equation 4.36) could be larger than H,

meaning that a fuel violation of the overall route can occur. This difference is further reduced

by possible spare charging time (bracket 5 in equation 4.36) at user y to not over-penalize the

fuel violation, as the goal of the approach is to use all spare time for charging. The spare time

for charging is computed as the sum of the time between amax
y and amin

y and the time between

bmin
y and bmax

y (bracket 5.2 in equation 4.36). The spare time values are further limited by the

total spare time between the latest minimum begin time bmin
y and the earliest minimum begin

amin
y time at user y (bracket 5.1 in equation 4.36). The computed spare time cannot be larger

than H if user y is not CS, and the overall result must be larger than zero; otherwise, no penalty

occurs. If user y is CS, then the spare time (bracket 6 in equation 4.36) that can be used for

charging cannot be larger than the maximum charging time art
y or the time violation between
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4. Hybrid adaptive large neighborhood search method

minimum charging amin
y − bmin

y (bracket 6.2 in equation 4.36). The spare value (bracket 6.1 in

equation 4.36) is computed as spare time between bmin
y and amin

y reduced by the time violation

between maximum forward and backward charging amax
y −bmax

y .

It is important to note that the time window and fuel violations are not exact, but rather an

approximation of their values, as they can differ from values if the whole route is evaluated

exactly. But the sum of approximated fuel and time window penalties are equal to the sum of

exactly evaluated values, which means that it is hard to determine which penalties are caused

by fuel violation and which by time window violation, because the fuel penalties also affect the

time window penalties.

4.3.2 EVRPTW-FR

Instead of partial charging at CS, the EVRPTW-FR problem considers full recharge at each CS.

For EVRPTW-FR, a similar corridor-based approach as in EVRPTW-PR is applied. All the

variable names remain the same as for the EVRPTW-PR problem but have a slightly different

description, presented in Table 4.3. The forward variables are computed by equations 4.37-

4.42. Each time when a CS is visited, the full recharge is considered, i.e., the whole value of

art
j is used. The aadd

i j variable accounts for the additional recharging time, which here directly

corresponds to the fuel violation. The slack times are always zero, as there is no spare time to

charge the vehicle further than its capacity Q. The forward shifting rules, time window penal-

ties, and fuel penalties remain the same as in EVRPTW-PR, as well as all backward variables,

shifting rules, and penalties. The backward variables remain the same because the solution to

full recharge strategy in second partial route φ2, considers backward charging somewhere be-

tween minimum and maximum charging [by
min,b

y
max]. In EVRPTW-FR, the fuel violation occurs

whenever the aadd
i j > 0, and it is equal to the difference between amin

j and amax
j .

Table 4.3: Forward variables - EVRPTW-FR

Symbol Description
amin

j Earliest begin time at user j with charging maximum as possible before j plus
the additional infeasible charging time

amax
j Earliest begin time at user j with charging maximum as possible before j

art
j Time needed to charge to maximum at user j

aadd
i j Additional charging time at user j that has to be added at preceding CSs

ãmin
j Shifted earliest begin time at user j with charging maximum as possible be-

fore j plus the additional infeasible charging time
ãmax

j Shifted earliest begin time at user j with charging maximum as possible be-
fore j

acrtn
j Cumulative charging time needed for traversing the route

acrt
j Cumulative charging time at CSs
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asl
i j = 0 (4.37)

art
j =

min(H,hi j) i ∈ F ′

min(H,art
i +hi j) else

(4.38)

aadd
i j =

max(0,hi j−H) i ∈ F ′

max(0,art
i +hi j−H) else

(4.39)

amin
j =

max(e j, ãmin
i +art

i + ti j)+aadd
i j i ∈ F ′

max(e j, ãmin
i + ti j + si)+aadd

i j else
(4.40)

amax
j =

max(e j, ãmin
i +art

i + ti j) i ∈ F ′

max(e j, ãmin
i + ti j + si) else

(4.41)

acrt
j =

acrt
i +art

i i ∈ F ′

acrt
i else

(4.42)

In EVRPTW-FR, most of the basic neighborhood operators can be evaluated in O(1). How-

ever, in some special circumstances, the approximated violations are not good and underesti-

mate penalties. Specifically, these are the cases in which there is a CS in the second partial route

φ2. In these cases, it is not possible to precisely estimate and propagate backward slack times

for all special cases, although for most of the cases, the penalties give a good approximation.

Schneider et al. [18] in such cases used tabu list and prevented LS from searching in that space.

This is still not the solution because some good solutions can come from such a solution space.

One other solution is to proceed with forward propagation until the last CS, which in the worst

case has O(n) complexity [53]. Here, a different approach is used. All of the moves are ap-

proximated with such surrogate function and are considered valid in the LS phase. During the

search, the nls
RCL best LS moves are stored in the restricted list. At the end of the LS operator,

all the moves in the restricted list are evaluated exactly with the complexity of O(n), and the

best one is selected. It is important to highlight that the proposed corridor-based variables and

concatenation operators have not yet been applied in the literature to solve the EVRPTW-FR

problem.
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4.3.3 EVRPTWDCS-FR

The EVRPTWDCS-FR problem is an extension of EVRPTW-FR problem in which at each CS

different charger types can be used. The EVRPTWDCS-FR problem has not yet been addressed

in the literature, and here the variables and concatenation operators are provided to solve the

problem efficiently. The EVRPTW-FR variables and concatenation operators cannot be used

in the EVRPTWDCS-FR because the time to charge the vehicle to the fullest H = gQ, is not

fixed, and it depends on the used charger type and starting SoC. For each user, four different

variable sets are stored: the EVRPTW-FR forward and backward variables for each charger

type (three different chargers) and new forward and backward variables for EVRPTWDCS-FR.

The first three variable sets are computed under the assumption that the whole route is charged

with the same charger type, while the last set considers different charger types. Some variables

for EVRPTWDCS-FR are similar to the variables used in EVRPTW-FR but are differently

computed, and some are the same. The variables related to fuel, art
j (brt

j ) and aadd
i j (badd

i j ), are

expressed in the capacity (energy) unit. Forward and backward variables, which are different,

are presented in Table 4.4. Forward variables are given by equations 4.43-4.50, and backward

variables are given by equations 4.51-4.57. The equations for forward and backward time win-

dow violation and shifting rules are the same as in EVRPTW-FR problem. To fully assess the

different charger types in the solution, the objective function cannot be purely distance or travel

time based, as in such case the rapid charging is always selected as the best option. The ob-

jective function should include costs for charging with different charger types, as for example

the objective function given by equation 2.23 (section 2.5). The initial values of the additional

variables are set as art
j = brt

j = aadd
i j = badd

i j = arec
j = am

j = bm
j = 0 and mmin

j = None.

As capacity unit is used for fuel (energy) consumption, in the equation for amin
j (equation

4.46) the capacity needed to charge to maximum art
j is multiplied with recharging rate gmi where

m ∈ {1,2,3}; and m = 1 represents rapid charging technology, m = 2 fast charging technology

and m = 3 slow charging technology. The problem occurs where there is not enough energy left

(aadd
i j > 0), and fuel violation occurs. This value has to be expressed in unit of time and added

to the variable amin
j . The time value depends on the CSs used in preceding part of the route. If

only one CS is used, the gmmin
j is set to the used charger type of that CS. But if multiple CSs are

Table 4.4: New forward and backward variables - EVRPTWDCS-FR

Symbol Description
art

j (b
rt
j ) Capacity needed to charge to maximum at user j

aadd
i j (badd

i j ) Additional charging capacity at user j that has to be added at preceding CSs
am

j (b
m
j ) Charger types used up to user j

mmin
j Fastest charger type used up to user j

arec
j Cumulative charging costs at CSs
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used the gmmin
j is set to the fastest charger type used (equation 4.45) to not over-penalize fuel

violation. If CS is not present in preceding part of the route, the rapid charger is set as m = 1.

This is the main reason why the fuel violation is computed by equation 4.50, as exact capacity

violation, instead of corresponding time violation. The variable am
j ∈ {0,1,2,3,4} computed

by equation 4.49 is added to determine the partial route CS type. The value of 0 represents that

there is no CS before, the value 4 that there are CSs with different charger types, and values

1, 2 and 3 specify that only that type of CS is present in the partial route before user j. Time

window violations are computed in a same way as in EVRPTW-PR problem (equation 4.19).

For concatenation operators, the backward variables (equations 4.51-4.54) also have to be

computed but only up to the latest CS in route (first CS in backward direction), except the

bm
i = {0,1,2,3,4} (equation 4.53) which has to be computed for whole route, as it is used

in concatenation operators to determine which set to use. The g1 recharge rate is used in the

equation 4.53 as there are not any CS in the observed backward partial route (up to the latest

CS) and again to reduce the over-penalization.

art
j =

min(Q,ei j) i ∈ F ′

min(Q,art
i + ei j) else

(4.43)

aadd
i j =

max(0,ei j−Q) i ∈ F ′

max(0,art
i + ei j−Q) else

(4.44)

mmin
j =

min(mmin
i ,mi) i ∈ F ′

mmin
i else

(4.45)

amin
j =

max(e j, ãmin
i +gmiart

i + ti j)+gmmin
j aadd

i j i ∈ F ′

max(e j, ãmin
i + ti j + si)+gmmin

j aadd
i j else

(4.46)

amax
j =

max(e j, ãmin
i +gmiart

i + ti j) i ∈ F ′

max(e j, ãmin
i + ti j + si) else

(4.47)

arec
j =

arec
i + cmiart

i i ∈ F ′

arec
i else

(4.48)

am
j =


am

i j 6∈ F ′

m j am
i == 0 or am

i == m j

4 else

(4.49)
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−→
FL(φ) = ∑

u∈φ

aadd
iu (4.50)

brt
i = min(Q,brt

j + ei j) (4.51)

badd
i j = max(0,brt

j + ei j−Q) (4.52)

bmin
i = min(li, b̃min

j − ti j− si)−g1badd
i j (4.53)

bmax
j = min(li, b̃max

j − ti j− si) (4.54)

bm
i =


bm

j i 6∈ F ′

mi bm
j == 0 or bm

j == mi

4 else

(4.55)

←−−
TW (φ) = ∑

u∈φ

max(eu−bmin
u ,0) (4.56)

←−
FL(φ) = ∑

u∈φ

badd
u j (4.57)

Concatenation operators

The concatenation is again performed between two partial routes φ1 = (u0,u1, . . . ,x) and φ2 =

(y, . . . ,uN+1), and the goal is to efficiently evaluate the concatenation. Depending on the CS

chargers used in the partial routes φ1 and φ2 (variables am
x and bm

y ) two evaluation types are

present:

(i) expression 4.58 - the used chargers in the first partial route φ1 are all of the same type

and are equal to the charger types used in the second partial route φ2 in which the cor-

responding user variable sets are used, and the evaluation is performed by EVRPTW-FR

concatenation operators in O(1) (this also covers if some or both partial routes do not

contain any CS) and later after the LS operator, the evaluation of best stored moves is

performed in O(n),

(am
x 6= 4∧bm

y 6= 4)∧ (am
x == bm

y ∨ (am
x == 0∨bm

y == 0)), (4.58)
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(ii) expression 4.59 - the used chargers in the partials route φ1 and φ2 are different, in which

case the proposed EVRPTWDCS-FR variables are used for the evaluation in O(B), where

B is the number of users between last user in partial route φ1 and the latest CS in partial

route φ2,

am
x == 4∨bm

y == 4∨ (am
x 6= bm

y ∧ (am
x 6= 0∧bm

y 6= 0)). (4.59)

The time window and fuel concatenation operators in this case are given by the equations

4.61 and 4.60, where LCS is the latest CS in partial route φ2. It is important to note that

the variables are propagated up to the latest CS, where the exact violations are computed.

TW (φ1⊗φ2) =
−−→
TW (LCS)+

←−−
TW (LCS)+max(amin

LCS−bmin
LCS,0) (4.60)

FL(φ1⊗φ2) =
−→
FL(LCS)+

←−
FL(LCS)+aadd

i,LCS (4.61)

4.3.4 EVRPTWDCS-PR

The EVRPTWDCS-PR is an extension of EVRPTW-PR problem, where different charger types

at CSs are considered. This problem variant, with linear charging at CSs has only been ad-

dressed by Keskin et al. [22]. The authors proposed a solution method to solve the problem

with searching only in the feasible solution space but did not describe the variables used to

determine the overall route values (the same goes for the EVRPTW-PR by Keskin et al. [1]).

This problem of partial recharging is hard to solve without the use of a corridor-based approach.

More precisely, the evaluation is hard to solve. In EVRPTW-FR problem, in the worst case, the

evaluation can be performed in O(n), as at each CS the exact charging amount is known. In

EVRPTW-PR problem, this is not the case because additional (best possible) charging sched-

ule has to be determined to evaluate the route, although the total route consumption is known.

This charge scheduling is quite demanding in both EVRPTW-PR and EVRPTWDCS-PR. This

problem can be defined as Fixed-Route Vehicle-Charging Problem (FRVCP) as a variant of the

Fixed-Route Vehicle-Refueling Problem (FRVRP) [83]. The FRVRP seeks the minimum-cost

refueling policy (which fuel stations to visit and the refueling amount at each station) for a

given origin-destination route. Since the FRVRP is NP-hard [154], the FRVCP is also NP-hard.

Instead of the exact determination of charging decisions in the evaluation part, here the heuristic

approach is proposed to determine these charging decisions, and later on in the improvement

part (section 4.7) the exact procedure will be applied to further improve the CSs positions and

the charging amount.

Similar as in EVRPTWDCS-FR problem, in total four variable sets are used: three when

charger types are compatible and one when they are not. When chargers are compatible, the

EVRPTW-PR variables are used that correspond to the specific charger type used. In this case,
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4. Hybrid adaptive large neighborhood search method

the complexity of evaluation is O(1). The compatibility of chargers between partial routes

is determined in the same way as in EVRPTWDCS-FR problem. As already mentioned in

EVRPTWDCS-FR problem, the previously described variables and concatenation operators for

EVRPTW-PR cannot be used for the EVRPTWDCS-PR problem when chargers are incompat-

ible. The variables used in such case are similar to the variables used in EVRPTW-PR and

EVRPTWDCS-FR problems but are differently computed. Only the variables that differ from

the variables in EVRPTW-PR and EVRPTWDCS-FR are presented in Table 4.5. The variables

related to fuel art
j , aadd

i j a and acc
j are expressed in the unit of capacity while the computation of

variables is given by equations 4.62-4.73. The charging costs are added to diversify the solu-

tion with different charger types. If recharging costs are not included, then always the fastest

charging option would be selected as it decreases overall charging times.

The slack times are computed in a similar way as in EVRPTW-PR given by equation 4.62.

If the preceding user is a CS, the value acc
i that represents the charging amount at CS i is

multiplied by recharge rate gmi , to get the charging time. Already performed charging in CS

is not considered as slack time. Rest of the equation follows already described procedure for

computation of slack time. In the beginning, all acc
i values are set to zero, and all slack times can

be used for charging. The charging amounts are computed only for CSs and are not propagated

to customers. That is why an instance of the latest CS before user j, CS j
be f , is used, for which

the charging capacity (the amount that will be recharged) is computed by equation 4.63. If

preceding user i is CS (CS j
be f = i) then the slack is expressed in capacity unit based on the used

charger mi, and it cannot be larger than the difference between the maximum possible charging

amount art
i and already determined charging amount acc

i at CS i. This can be confusing, and

one could ask, "Isn’t the maximum possible charging amount already reduced by determined

charging amount?". The answer is no, because as in EVRPTW-PR variables, the actual update

on CS charging time (amount) happens on the first user after CS. If preceding user i is not a CS

Table 4.5: Forward variables - EVRPTWDCS-PR

Symbol Description
art

j Capacity needed to charge to maximum at user j with assumption that mini-
mum charging was performed before j

asl
i j Slack time at user j

aadd
i j Additional charging amount at user j that has to be added at preceding CSs

aaddt
i j Additional charging time at user j that has to be added at preceding CSs

aaddrec
i j Additional charging cost at user j that has to be added at preceding CSs
acc

j Charging amount at CS j
arec

j Cumulative charging costs at CSs
mmin

j Fastest CS charger type used before user j
CS j

be f Instance of latest CS before user j
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4.3. Penalty functions

(CS j
be f 6= i) and is not None, then the possible slack time can be used for charging at CS CS j

be f .

The possible slack capacity, which in this situation is limited by the difference between ãmax
i −

ãmin
i expressed in capacity units and the difference between the maximum possible charging

amount art
CS j

be f
and already determined charging amount ac

CS j
be f

at the latest CS. In this case, the

charging amount acc
CS j

be f
is increased by computed slack capacity. If there is no CS in route the

variable value is propagated to next user.

asl
i j =

max(0,e j− ãmin
i − ti j−gmiacc

j ) i ∈ F ′

max(0,e j− ãmin
i − ti j− si) else

(4.62)

Next, the maximum charging amount art is computed by equation 4.64. If preceding user i

is a CS, then art
i is reduced by already determined slack charging amount, and increased by the

capacity corresponding to the energy consumption ei j. If preceding user i is not a CS, and there

has been at least one CS before j, then the art
i is reduced by the slack capacity that could be

added to the latest CS before j, and increased by energy consumption ei j. If preceding user i is

not CS, and there has not been at least one CS before j, then the art
i is increased by the energy

consumption ei j.

acc
CS j

be f
=



acc
i +min(

asl
i j

gmi ,max(art
i −acc

i ,0)) i ∈ F ′

acc
CS j

be f
+min

(
min(asl

i j,ã
max
i −ãmin

i )

g
m

CS j
be f

,max(art
CS j

be f
−acc

CS j
be f
)

)
CS j

be f 6= None

acc
CS j

be f
else

(4.63)

Using the same principle the charging amount aadd
i j that has to be accounted for at pre-

vious CSs is computed by equation 4.65. This is where the thing get more complex than in

EVRPTW-PR. In EVRPTW-PR, the variable aadd
i j expressed in time could be added, knowing

that it will linearly increase the overall earliest begin time due to the: (i) all slack times are

used for charging, and any further increase in time linearly increases arrival times (in case when

all slack times has been used for recharging the increase in time can be non-linear due to the

time windows), and (ii) the exact value of additional time can easily be computed as all CSs

have same charger type. In EVRPTWDCS-PR, this time cannot be easily computed if different

CS types are present in a partial route before j, because scheduling of this additional charging

amount per CS before j has to be determined. Here, the following heuristic procedure is applied

in case when aadd
i j > 0. If there is some space to charge to the fullest at previous CS, use all of

that possible charging amount to cover the aadd
i j amount, and store the result in the variable aadd′

i j

(equation 4.66). Then, the additional charging amount aadd
i j is reduced by this amount (equation
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4. Hybrid adaptive large neighborhood search method

4.67), and the charging amount at latest CS acc
CS j

be f
is increased by this amount (equation 4.68).

At this point, all of the forward variables from the latest CS, CS j
be f , to user j have to be recom-

puted. However, there is also a possibility that there is not enough charging amount at CS j
be f

to cover the aadd
i j amount or to cover it partially. In such cases, the additional time aaddt

i j and

additional cost aaddco
i j are computed by equations 4.70 and 4.71. In cases where there is a CS

in route before user j, the charger type mmin
j is determined by equation 4.69, and used for the

computation of additional time and cost. If there is not a CS in route before user j the additional

time and costs are computed using rapid charger m = 1. In both cases, this is the approximation

of time and cost value because the exact time and cost are unknown. Using the fastest possible

charger in such occasions makes more sense as faster charging increases feasibility and reduces

over-penalization.

art
j =


min(Q,max(0,art

i −acc
i )+ ei j) i ∈ F ′

min

(
Q,max

(
0,art

i −
min(asl

i j,ã
max
i −ãmin

i )

g
m

CS j
be f

)
+ ei j

)
aCS j

be f
6= None

min(Q,art
i + ei j) else

(4.64)

aadd
i j =


max(0,max(0,art

i −acc
i )+ ei j−Q) i ∈ F ′

max

(
0,max

(
0,art

i −
min(asl

i j,ã
max
i −ãmin

i )

g
m

CS j
be f

)
+ ei j−Q

)
a j→CSbe f 6= None

max(0,art
i + ei j−Q) else

(4.65)

aadd′
i j =


min(aadd

i j ,max(0,art
j→CSbe f

−acc
CS j

be f
)) CS j

be f 6= None

0 else
(4.66)

aadd
i j = aadd

i j −aadd′
i j (4.67)

acc
j→CSbe f

= acc
j→CSbe f

+aadd′
i j (4.68)

mmin
j =

min(mmin
i ,mi) i ∈ F ′

mmin
i else

(4.69)
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4.3. Penalty functions

aaddt
i j =


0 aadd

i j ≤ 0

aadd
i j gmmin

j CS j
be f 6= None

aadd
i j g1 else

(4.70)

aaddrec
i j =


0 aadd

i j ≤ 0

aadd
i j cmmin

j CS j
be f 6= None

aadd
i j c1 else

(4.71)

The earliest minimum and maximum begin time, amin
j and amax

j , are computed by equations

4.72 and 4.73, in a similar fashion as in the EVRPTW-PR problem. The only difference is in

the computation of amin
j where the determined charging time at previous CS, acc

i (if preceding

user i is CS) is considered as minimum charging amount (which does not have to be truly

minimum). The recharging costs arec
j are cumulatively increased every time when there is a

change in the charging amount at particular CS, or when aaddrec
i j is added. The same shifting

rules and violation equations are used as in EVRPTW-PR problem.

amin
j =

max(e j, ãmin
i + ti j +acc

i gm j)+aaddt
i j i ∈ F ′

max(e j, ãmin
i + ti j + si)+aaddt

i j else
(4.72)

amax
j =

max(e j, ãmin
i +art

i gm j + ti j) i ∈ F ′

max(e j, ãmax
i + ti j + si) else

(4.73)

The presented variables provide one solution to the charging schedule in route which can

be unfeasible. The determined charging schedule is based on the principle that whenever there

is a slack or there is a violation of fuel, add appropriate amount to previous CS in route, if

possible. This is a myopic solution, and in most of the cases the charging schedule could be

further improved, which could lead to better feasible solutions. Here, the following procedure

is proposed to determine a feasible charging schedule, if possible. If at user j there is no fuel

violation, but there is a time window violation, perhaps this time window violation is caused

by long charging at previous CS. In such case, the charging amount at latest CS can perhaps be

reduced, and added to CS before it (if it exists). The latest CS in current partial route is labeled

as CSlat and the first CS before the CSlat is labeled CSbe f . This charge relocation, is performed

only if there is no fuel violation, meaning that the total charging amount remains the same. The

charge relocation can affect time window violation and increase feasibility. The forward time

window violation
−−→
TWj has to be expressed in capacity unit to know how much to reduce the

charging amount at CSbe f . This is not an easy task as it seems. For example, let CSlat use slow

charger mCSlat = 2. Then, the amount of capacity ∆q that needs to be reduced at CSlat can be
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4. Hybrid adaptive large neighborhood search method

computed as ∆q =
−−→
TWj/g2. Let there be a CS, CSbe f with mCSbe f = 3 on which this amount

of recharge q′ can be added. The total increased time would be ∆q · g3 which is greater than

the original
−−→
TWj as slower charging technology is used. Due to the non-linear time windows,

this value could be lower, but as all slack times are considered as charging times, the total

time is linearly increased. This procedure cannot be used if whole charging amount at CSlat

is computed from slack time, as linearity is not ensured. Only the charging amount that was

added in previous step or the additional charging amount can be considered for relocation. To

know the exact amount of the reduced charging capacity ∆q corresponding to the time window

violation
−−→
TWj the additional following assumption is used: if there is no CS before the CSlat that

has a faster charger type than CSbe f , no improvement can be done, as all slack times are already

used for charging, and additional charging would even increase time window penalty. Based

on this, linear equations of earliest arrival travel times can be used to determine the reduced

charging capacity ∆q. The linear equations of earliest arrival travel times are given by equation

4.74 for the example presented in Figure 4.7. For example, the time window violation occurs at

user 4 and has the value
−−→
TW4. The goal is to find new charging amounts acc′

1 and acc′
3 such that

the overall earliest arrival time amin
4 is decreased by

−−→
TW4. This can be expressed by equation

4.75. Equation 4.76 is a result of the subtraction and reorganization of previous equations,

and it represents the time window violation. If the total charging of route has to remain the

same (equation 4.77), and the ∆q is set as acc′
1 −acc

1 , the final equation for ∆q can be expressed

by equation 4.78. With generalization to any CS, this approach can be used to determine the

charging amount at previous CS, under assumptions listed previously. After the computation of

∆q, all of the variables have to be recomputed up to the current user j. If there are slack times

that cannot be used for charging, this procedure cannot be applied due to the nonlinear arrival

times. The complexity of proposed procedure is in practice O(n2), as mostly just two times the

variables are recomputed, but still the complexity increases with the number of time window

violations in route.

amin
1 = amin

0 + s0 + t01

amin
2 = amin

1 +acc
1 gm1 + t12

amin
3 = amin

2 + s2 + t23

amin
4 = amin

3 +acc
3 gm3 + t23 =

amin
0 + s0 + t01 +acc

1 gm1 + t12 + s2 + t23 +acc
3 gm3 + t23 (4.74)

amin
4 −−−→TW4 = amin

0 + s0 + t01 +acc′
1 gm1 + t12 + s2 + t23 +acc′

3 gm3 + t23 (4.75)
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Service/charging s0 acc
1 gm1 s2 acc

3 gm3 s4 s5
amin

j amin
0 amin

1 amin
2 amin

3 amin
4 amin

5

0 1 2 3 4 5t01 t12 t23 t34 t45

Figure 4.7: Example of route for detirmining charging schedule

−−→
TW4 = gm1(acc

1 −acc′
1 )+gm3(acc

3 −acc′
3 ) (4.76)

acc
1 +acc

3 = acc′
1 +acc′

3

acc′
1 −acc

1︸ ︷︷ ︸
∆q

=−(acc′
3 −acc

3 ) (4.77)

−−→
TW4 = gm1(∆q)+gm3(−∆q)

∆q =

−−→
TW4

gm1−gm3
(4.78)
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4. Hybrid adaptive large neighborhood search method

4.4 Destroy and repair operators

In this section, the destroy and repair operators used in the HALNS method are described.

First, the destroy operators are used to remove the users from the solution, and then the repair

operators are used to insert users back into the solution. The idea behind this procedure is to

escape local optima and explore a new solution space. The operators differ in how much they

change the solution. They usually produce a solution that is not better than the current solution,

therefore the LS procedure is used to improve the solution. Keskin et al. [1] also applied destroy

and repair operators, but their aim was to intensify the search and find better solutions without

the LS phase. Such operators are often time-consuming, and several of them were tested as part

of the proposed HALNS method but were rejected. The used destroy and repair operators are

the following:

• Worst removal operator;

• Related removal operator;

• Shaw removal operator;

• CS vicinty operator;

• Sequential insertion operator;

• Sequential insertion operator with perturbed cost.

Before a destroy operator execution, a number of customers nr to be removed from the

solution has to be determined. The nr is selected at random from the interval [nr,nr], nr ≤
nr, where nr and nr are computed by equations 4.79-4.80. The Nc represents the number of

customers in the problem, while the parameters µlow and µhigh are percentage threshold values,

set in advance. The round function rounds the value to the nearest integer value. The nr cannot

be lower than one, so the max function is added that limits the value to one. The threshold

boundaries µlow and µhigh are usually set in the [0.1,0.4] interval [1]. The values are rounded to

the nearest integer values.

nr = max(round(Nc ·µlow),1) (4.79)

nr = round(Nc ·µhigh) (4.80)

The rest of the section describes the tested destroy and repair operators.
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4.4.1 Worst removal

The worst removal operator initially proposed by Pisigner and Ropke [32, 147], removes the

customers that are "expensive", i.e., significantly increase the objective function value. The

worst removal operator adapted on EVRP is described by Algorithm 4.4, similar to the ones

described in [1, 20, 37, 53]. The operator removes only customers from the solution. The

input values are solution s and number of customers to remove nr. In each iteration of an

algorithm, the list Lr, which contains customer candidates for removal, is initialized. Then, the

operator loops through all unremoved customers in the solution s and computes the difference

cdi f f in objective cost value if the customer is removed from the solution and if the customer

stays in the solution. This difference cost and observed customer are added as tuple to the list

Lr. Afterward, the list Lr is sorted in descending order, from customers that have the highest

savings to the ones that have the lowest savings value. Then, based on the determinism factor

kw, one customer is selected and removed from the solution, and the procedure is repeated.

Depending on the objective function, the term worst distance removal or worst time removal

operators can be found in the literature [1, 37].

To avoid selecting the same customers to be removed from the solution, the worst removal

determinism factor kw is used. The random value between [0,1〉 is used as a base in an exponen-

tial function, while the value of kw is used as the exponent. The result is treated as a percentage

that multiplied with the number of customers in list Lr (non-removed customers) gives a posi-

tion i-th tuple (customer and cost) in the list Lr, that is going to be removed from the solution.

The floor function was used to ensure that appropriate position in the list was selected. The

Algorithm 4.4 Worst removal operator
Input: Solution s and number of customers to remove nr

1: n← 0
2: while n < nr do
3: Lr← Initialize list of tuples containing customers and their costs
4: for each customer c in solution s do
5: cin← Cost of vehicle route with customer c
6: cout ← Cost of vehicle route without customer c
7: cdi f f = cin− cout
8: Add cdi f f with customer c to list Lr
9: end for

10: Sort list Lr descending based on the cdi f f value
11: λ ← Random value in interval [0,1〉
12: p← λ kw

13: i← blength(Lr) · pc
14: Remove the customer which cost is i-th in the list Lr from the solution s
15: n← n+1
16: end while
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example of how the determinism factor influences the selection of customers is presented in

Figure 4.8. In Figure 4.8a, the function y = xk (y-axis) is plotted for several k values. It can be

seen that the larger the k value is, more the exponential function curves. The example of proba-

bility p for selecting a customer at i-th position for instance with 100 customers is presented in

Figure 4.8b. Only the first 10 positions are presented as the rest have even lower probabilities.

It can be seen that k = 5 significantly increases the probability of selecting the first customer in

the list. The opposite holds for a low k = 1 value, as in this case, all customers have the same

probability of selection, and high-quality removals could be rejected. The determinism factor

kw value in interval [3,6] is used in related researches [1, 37].

(a) Function y = xk (b) R201

Figure 4.8: Worst removal determinism factor

The example of 10 customers (black dashed circles) removed by the worst removal operator

on C101 instance with an infeasible EVRPTW-FR solution is presented in Figure 4.9. The used

worst removal determinism factor kw is set to 4. The objective function includes the values for

total distance traveled and constraint violations. For comparison, the customers removed with

the criteria of only distance minimization without the penalties for violation are represented

with cyan dashed circles. These are the customers that have long detour costs, but also, some

shorter arcs are present due to the added stochastic component in the operator (determinism

factor kw). It is also important to note that only one removed customer overlaps between the

examples, showing the importance of using penalty violations in the objective function.
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Figure 4.9: Example of worst removal operator

4.4.2 Related removal

Related removal operator removes a set of customers that are close to each other in terms of

distance between them [147]. The first customer is selected at random or based on the detour

distance cost. The next customers are selected in a deterministic way or by a roulette wheel

selection based on the relatedness measure [29, 155]. The related removal operator is given

by Algorithm 4.5. First, the two lists are initialized: list of removed customers R and list of

unserved customers U containing all customers in the problem instance. Next, one customer is

selected at random from list U , set as the current customer cur, and added to the list of removed

customers R. Then the distance from customer cur to all other unserved customers is computed

and together as a tuple added in the list Lr which represents candidates for the removal. The

list Lr is sorted in ascending order, meaning that the customers that are closer to the customer

cur are at the beginning of the list. Next, in the same way as in the worst removal operator, the

stochastic component is added based on the determinism factor kr (Figure 4.8a). The customer

at i-th position in list Lr is removed from the list U and added to the list of removed customers

R. The described procedure is repeated (lines 6-20) until nr customers are added to the list R. In

the end, all customers in the list R are removed from the solution s. This is the biggest difference

between the worst and related removal, as in worst removal in each iteration of the main loop,

a customer is removed from the solution, and the solution variables are recomputed (in total nr

times). In related removal, customers are added to the list R, and in the end, removed from the

solution. Therefore, the solution variables are recomputed only once. Also, the used related

removal operator is only distance based, while the worst removal operator takes into account

the objective function value.
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Algorithm 4.5 Related removal operator
Input: Solution s and number of customers to remove nr

1: R← Initialize list of removed customers
2: U ← Initialize list of unserved customers with all customers
3: cur← Select at random customer from the list U
4: Remove cur from U and add it to R
5: n← 1
6: while n < nr do
7: Lr← Initialize list of tuples containing customers and distances to customer cur
8: for each customer c in list U do
9: d← Distance between cur and c

10: Add d with customer c to list Lr
11: end for
12: Sort list Lr ascending based on the distance value d
13: λ ← Random value in interval [0,1〉
14: p← λ kr

15: i← blength(Lr) · pc
16: Remove the customer c from U which distance is i-th in list Lr
17: Add customer c to R
18: cur← c
19: n← n+1
20: end while
21: Remove all customers in the list R from the solution s

The example of 10 customers (black dashed circles) removed using related removal operator

on C101 instance with an infeasible EVRPTW-FR solution is presented in Figure 4.10. The used

worst removal determinism factor kr is set to 6. As it can be seen, several groups of customers

are removed from the solution. As the worst removal determinism factor is quite high, often the

closest customers are removed from the solution, which, as a result, form a group. However,

in some cases, it selects the n-th closest customer, which then represents a switch to another

group.

4.4.3 Shaw removal

Shaw removal operator proposed by Shaw [145] tries to remove customers that are in some

sense similar to each other by taking into account geographical distance, demand difference,

earliest start time difference, and assigned route difference. The original objective function is

modified for EVRP problems and given by equation 4.81, where the values of distance, early

time windows, and demands are normalized [20]. dmax is the maximum distance between users

in the problem, emax− emin the difference between the maximum and minimum value of early

time window, and qmax−qmin difference between the maximum and minimum value of customer

demand. Parameters χd , χe and χq control the contribution of each part to the related removal

objective function. The special cases are proximity based (χe = χq = 0) [1, 37, 54], time based
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Figure 4.10: Example of related removal operator

(χd = χq = 0) and demand based (χd = χe = 0) operators. The general algorithm of the Shaw

removal is almost the same as for the related removal given by algorithm 4.5, with only few

differences: (i) lines 9, 10 and 12 where instead of distance between the customers, the Shaw

value given by equation 4.81 is used; and (ii) line 14 where the Shaw determinism factor ks is

used. The related removal can be observed as a special case of proximity based removal, where

the maximum distance between users dmax is omitted.

ci j = χd
di j

dmax
+χe

|ei− e j|
emax− emin

+χq
|qi−q j|

qmax−qmin
(4.81)

The example of 10 customers (black dashed circles) removed by Shaw removal operator

on C101 instance with infeasible EVRPTW-FR solution is presented in Figure 4.11. The used

Shaw determinism factor ks is set to 6, while the objective function parameters are set to χd = 6,

χe = 5 and χq = 4.
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Figure 4.11: Example of Shaw removal operator

4.4.4 CS vicinity

CS vicinity operator removes customers and CSs in the radial vicinity of the selected CS [20].

The operator is given by Algorithm 4.6. First, two lists are initialized, a list of removed cus-

tomers R and list LCS containing all CSs in the solution s. Next the radius of vicinity r is

determined as a random value within the interval [χmindmax,χmaxdmax], where dmax is the maxi-

mum distance between two customers in the problem instance, and χmin and χmax are lower and

upper threshold percentages for radius bound. Next, one CS is selected from the list LCS, and all

customers that are in the radial vicinity r of the selected CS are added to set Vr. The |c−CScur|
represents the Euclidean norm (equation 4.82). Afterward, each customer c in Vr, which has not

yet been added to the list R, is added to R, and the selected CS is also removed from the list LCS

and solution s. In the end, in the same way as in the related removal operator, all customers in

list R are removed from the solution s.

|c−CScur|=
√

(cx−CScurx)2 +(cy−CScury)2 (4.82)

The application of the CS vicinity operator on C101 instance with infeasible EVRPTW-FR

solution is presented in Figure 4.12. The parameters χmin and χmax are set to 0.05 and 0.15,

respectively. Although the number of removed customers nr is set to 10, in total, 11 customers

were removed from the solution. This occurs in situations where the condition n < nr (line

7) is satisfied, and all customers in the vicinity of the selected CS are removed, which in the

total number of removed customers can be greater than nr. The red dashed ellipses (due to

the distortion as figure width is greater than the figure height) represent the CS vicinity area,
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in which customers (black dashed circles) are removed. In the end, the selected CSs are also

removed from the solution.

Algorithm 4.6 CS vicinity
Input: Solution s and number of customers to remove nr

1: R← Initialize empty list of removed customers
2: LCS← Initialize list with all CSs used in the solution s
3: r← χmin ·dmax
4: r← χmax ·dmax
5: r← Select random number from interval [r,r]
6: n← 0
7: while n < nr do
8: CScur← Select one CS at random from the list LCS
9: Vr← All customers from s that satisfy |c−CScur| ≤ r

10: for each customer c in Vr do
11: if c not in R then
12: Add c to R
13: n← n+1
14: end if
15: end for
16: Remove CScur from list the LCS and solution s
17: end while
18: Remove all customers in R from solution s

Figure 4.12: Example of CS vicinity operator
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4.4.5 Sequential insertion operator

The sequential insertion operator inserts customers in the solution based on their removal order

[29]. This can be interpreted as Last-In First-Out (LIFO) remove-insert strategy. The operator

is given by Algorithm 4.7. First, the first customer c in list Lr, which contains all removed

customers, is selected, and the list of tuple insertions Li is initialized as empty. Then, two loops

are nested, the first one for each vehicle v in the solution s, and the second one for each position

i in the vehicle route v. The position of the first depot instance is skipped as the insertion of

a customer at that position would mean that vehicle does not start from the depot. In each

iteration, four insertions are evaluated:

(i) customer only insertion, ci,

(ii) customer with preceding CS, cCS,i,

(iii) customer with succeeding CS, ci,CS,

(iv) and customer with both preceding and succeeding CS, cCS,i,CS.

The CSs that are inserted along with the customer are selected as the nearest CS for both

succeeding and preceding cases. Then, the list Li is restricted to the nsi
RCL best insertions. The

Algorithm 4.7 Sequential insertion operator
Input: Solution s and list of removed customers Lr

1: while Lr is not empty do
2: c← Select first customer from list Lr
3: Li← Initialize empty list of tuples containing insertion information (position, cost, vehi-

cle)
4: for each vehicle v in s do
5: for each position i in vehicle v after the first depot position do
6: CSbe f ← Nearest CS between user at position i−1 and customer c
7: CSa f t ← Nearest CS between customer c and user at position i+1
8: Cost ci← Cost of insertion of customer c at position i in vehicle v
9: Cost cCS,i← Cost of insertion of customer c with preceding CSbe f at position i in

vehicle v
10: Cost ci,CS← Cost of insertion of customer c with succeeding CSa f t at position i in

vehicle v
11: Cost cCS,i,CS← Cost of insertion of customer c with preceding CSbe f and succeeding

CSa f t at position i in vehicle v
12: Add tuples of cost, position i and vehicle v to list Li for each cost ci, cCS,i, ci,CS and

cCS,i,CS
13: Restrict candidate list Li to the nsi

RCL
14: end for
15: end for
16: cinsert ← Roulette wheel selection from list Li based on the insertion cost
17: Perform insertion cinsert with possible CSs insertions
18: Remove c from list Lr
19: end while
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idea is adopted from Hierman et al. [29] which store nsi
RCL best insertions of each customer in the

current solution, and select one at random. Here, the same idea is adopted, but for the selection

of the insertion from nsi
RCL best ones, the RWS selection is used. The RWS is already described

in section 3.3.6, [148]. The idea is that the insertion that has the lowest insertion cost has the

highest probability of being selected. The RWS is suitable in applications where the objective

function used to order the entities has a strictly positive value. In EVRPTW, due to the violation

penalties, there can be multiple insertions that have a negative value, meaning that they improve

the current solution, i.e., CS insertion. In such cases, all cost values are shifted by the absolute

value of the minimum objective cost increase. This process lowers the probability of selecting

good insertions, but still, good insertions have higher probabilities than the bad ones. RWS is

initially developed for selecting the entity that has a higher objective function, while here, the

insertions that have lower values should have higher probabilities. Therefore, all objective costs

are reversed in relation to the maximum objective cost in the restricted candidate list. After the

selection of insertion cinsert , the insertion is performed and customer c is removed from the list

Lr. The whole procedure is repeated until all customers are reinserted back into the solution

(lines 1-19 in algorithm 4.7).

The example of sequential insertion operator on C101 instance with an infeasible EVRPTW-

FR solution is presented in Figure 4.13. The insertion procedure continues on previous CS

vicinity removal presented in Figure 4.12. The customers that are reinserted back in the solution

are marked with black dashed circles. Red lines represent arcs that are inserted in the solution.

It can be seen that in some cases, the CS is inserted together with the customer. The produced

solution is worse than the solution before the destroy and repair operators but will be further

improved in the LS phase.

The sequential insertion operator with perturbed cost has only one difference compared to

the previous one. The insertion cost of cinsert is modified by the stochastic component. The

cost is multiplied by a random value Γ selected within the interval [Γmin,Γmax]. This procedure

helps to diversify the solution by artificially changing the insertion cost. The parameter values

of Γmin and Γmax are usually within [0.7,1.3] interval, [29, 53].
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Figure 4.13: Example of sequential insertion operator

4.4.6 Other tested operators

During the development of the HALNS method, other removal and insertion operators have

also been tested but have been rejected due to the high execution time and low contribution to

the overall best solution. These are mostly the operators used in the ALNS presented by Keskin

et al. [1], to which the HALNS method is directly compared in subsection 4.10.2.

Random customer removal

Random customer removal removes customers at random from the solution [1, 37]. Although

randomness adds a stochastic component to the procedure and helps to escape the local optima,

a completely random selection of users often leads to bad solutions, which are hard to repair.

Worst time and distance removal

Worst time and worst distance removals are a special case of the worst operator removal where

the objective function is purely distance or time based [1, 37]. The worst distance operator

removes customers that are distant from its neighboring customers in route. The worst time

operator removes customers that have high value of |τi−ei| (difference in time), where τi is the

arrival time at customer i, and ei is its early time window. The operators were rejected as they

do not include the penalty violations.
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Zone removal

the zone removal operator is based on the removal of users in predefined zones. The whole

geographical instance space is divided into a fishnet quadratic grid. The operator at random

selects one cell (zone) from the fishnet grid and removes all users from the selected zone. The

example of zone removal is presented in Figure 4.14, where all customers in the red zone are

removed from the solution.

Figure 4.14: Example of zone removal operator

Removing customers with CSs

Removal of a customer with preceding CS removes customer with the preceding CS if it exists.

The goal is to eliminate the visit to CSs as the vehicle no longer visits the removed customer, and

recharging is not necessarily needed [1]. Removal of a customer with succeeding CS removes

customer with the succeeding CS if it exists. The recharging may be needed after the departure

from a customer in order to be able to reach the next user in the route. In that case, recharging

is not necessarily needed as a customer is removed from the solution [1]. Both operators were

rejected, as usually with a higher number of customers removed, almost all CSs in the solution

are removed, which results in a solution far from the local optima.

CS removal

The random CS removal operator and worst distance CS removal operator are similar to their

customer removal counterparts. The worst charge usage operator aims to remove CS visited

with a high SoC value. The idea is to utilize the battery energy as much as possible and to avoid
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short charging at CSs [1]. All of the mentioned CS removals were rejected as: (i) CS vicinity

operator used in HALNS outperforms them, and (ii) in HALNS the removals of CSs are also

performed in the improvement phase: LS and optimal CS placement.

Greedy insertion operator

Greedy insertion operator, from all removed customers selects the customer c, vehicle v and

position i which minimize objective function the most [1, 20, 37, 147, 156]. The operator is

given by Algorithm 4.8. The algorithm is similar to the sequential insertion operator, with the

difference that instead of the first customer in the remove list Lr and RWS selection, always the

best insertion is selected. The insertions of CSs with customers are also omitted. The greedy

insertion operator tends to get stuck in local optima. The example of greedy customer insertion

on the same example as for the sequential insertion operator is presented in Figure 4.15. It can

be seen that the overall traveled distance is lower than in the sequential insertion example. The

greedy insertion operator has a higher complexity due to the one additional loop for the iteration

of customers in the list Lr (in order to know the best insertion).

Algorithm 4.8 Greedy insertion operator
Input: Solution s and list of removed customers Lr

1: while Lr is not empty do
2: cbest ← Initialize a tuple of customer, vehicle, position and cost
3: for each customer c in Lr do
4: for each vehicle v in s do
5: for each position i in vehicle v after the first depot position do
6: Cost ci← Cost of insertion of customer c at position i in vehicle v
7: if ci < f (cbest) then
8: cbest ← Tuple c, v, i and ci
9: end if

10: end for
11: end for
12: end for
13: Perform insertion cbest and remove respective customer from the list Lr
14: end while

A special case of greedy insertion is time based insertion [1], in which the cost considers

only the difference in total time of the route before and after insertion. Another special case of

the greedy customer insertion is the zone insertion operator [1], which is a counterpart to the

zone removal operator. The idea is to perform greedy customer insertion only within a randomly

selected zone.
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Figure 4.15: Example of greedy insertion operator

Regret insertion operator

Regret insertion operator is one of the most applied operators for solving various VRP problems

[147]. The idea is to compute the difference between the best insertion and k-th best insertion.

This difference is called the regret value. The customers with a higher regret value have a lower

number of cost-effective insertions. Usually, the regret-2 and regret-3 variants are applied in

the VRP field [37, 90]. Some variants of the problem consider the regret values between the

best vehicle and k-th best vehicle, skipping the high regret values in the same vehicle [26, 157,

158]. The overview of the operator is given by Algorithm 4.9. The only difference to the

greedy operator is that the regret operator stores all insertions in the list, and then based on the

computed regret values, selects the customer insertion with vehicle and position that has the

highest regret value. The application of the regret insertion operator has more sense in variants

where feasible solution space is narrow, as there the regret values could be higher. The example

of greedy customer insertion on the same example as for the sequential insertion is presented

in Figure 4.16. The problem of both regret heuristic and greedy heuristic is that they are time

consuming as they loop through all customers, vehicles, and positions and then find the best

possible insertion, especially the regret heuristic which needs to sort regret insertions.
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Algorithm 4.9 Regret insertion operator
Input: Solution s, list of removed customers Lr and regret value k

1: while Lr is not empty do
2: cbest← Initialize tuple containing customer, vehicle, position, and regret value initialized

with minimum value
3: for each customer c in Lr do
4: Li← Initialize empty list of tuples containing insertion information (vehicle, position,

cost)
5: for each vehicle v in s do
6: for each position i in vehicle v after the first depot position do
7: Cost ci← Cost of insertion of customer c at position i in vehicle v
8: Add tuple containing vehicle v, position i and cost ci to list the Li
9: end for

10: end for
11: Sort list Li ascending based on the cost value
12: rc← Compute regret value between the best insertion and k-th best insertion in the list

Li
13: if rc > regret(cbest) then
14: cbest ← First tuple in the list Li coupled with the regret value rc
15: end if
16: end for
17: Perform insertion cbest and remove respective customer from the list Lr
18: end while

Figure 4.16: Example of regret insertion operator
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4.4.7 ALNS example

The selection probabilities of the operators change depending on their performance. The ex-

ample of how probabilities change for used operators in EVRPTW-PR on instance C101 is

presented in Figure 4.17. The update of operator probabilities occurs every µuop = 50 itera-

tions. As it can be seen, different operators are preferred in different stages of the search. The

related and CS vicinity destroy operators show lower probabilities than worst and Shaw destroy

operators. The probability of related operator increased in the last phase, showing its benefits in

the cases when the search is near the best found local optima. The sequential insertion operator

is preferred in the early stages of the search when more frequently, better solutions are found.

But later on, when the search gets stuck in the local optima, the perturbed variant shows its

benefits.

Figure 4.17: Example of operator probabilities: C101
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4.5 Route removal operators

Removing a vehicle route from the solution means that all customers in the selected route are re-

moved from the solution. The original ALNS framework for ELRPTW-PR proposed by Schiffer

et al. [53] did not consider any route removal operator. By testing the route removal operators

on EVRPTW problems, it was concluded that they significantly increase convergence to the

best solution, as less time is spent on searching in the solution space with a higher number of

vehicles. As it can be seen in Algorithm 4.1, line 6, the route removal criteria has to be met

to perform the route removal. Instead of calling route removal operators every µ iterations, a

different approach is used. The goal is to perform route removal operator more often at the

beginning of the search, than at the end. To simulate such behavior the discrete function given

by equation 4.83 and presented in Figure 4.18 is used. On the x-axis are the number of route

removal calls, and on the y-axis is the iteration number in the HALNS. The value i represents

the iteration at which the route removal is performed. After the creation of an initial solution,

the route removal is immediately performed (i = 0), and afterwards it follows exponential func-

tion (25, 50, 100, 200, 400 and 800). Here, the upper limit on x is set to 6, as after the 800-th

iteration, the focus is only on minimizing the costs with the determined number of vehicles.

The vehicle number could still be reduced after the 800-th iteration, as in some cases in user

removal operators, the whole route is removed (due to the stochastic components).

i =

0 x = 0

12.5 ·2x 0 < x≤ 6
(4.83)

Figure 4.18: Route removal function
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Five different route removal operators were tested: greedy route removal, random route

removal, ALNS based route removal, repeated ALNS based route removal, and ejection pool.

The greedy route removal and ejection pool have already been proposed in the literature, while

the ALNS based route removal and repeated ALNS based route removal are newly proposed

route removal operators.

4.5.1 Random and greedy route removal

Both random and greedy route removal operators remove ω routes from the solution, where ω

is a random integer number between [ωK,ωK], and K is the number of vehicle routes in the

solution [1]. The value of ω is usually within 10-30% of the total number of vehicles. The

random route removal operator removes ω routes at random, while the greedy route removal

operator removes ω routes that have the lowest number of users. The example of removing two

routes (ω = 2) from the EVRPTW-FR solution on instance C101 is presented in Figure 4.19.

The blue lines represent the random removal operator, while the red lines represent the greedy

removal operator, in which two routes containing the lowest number of users, 9 and 10, are

removed.

Figure 4.19: Random and greedy route removal operators
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4.5.2 ALNS based route removal operator

The ALNS based Route Removal (ALNS-RR) operator follows a similar framework as the pro-

posed HALNS method (Algorithm 4.1). The idea is to remove one route from the solution at

random. Then perform HALNS on the solution, which has one vehicle route less, and try to find

a feasible solution. The overview of the proposed operator is given by Algorithm 4.10, and fol-

lows the similar paradigm of HALNS. Here, only the differences will be highlighted. First, the

current values of stemp, sbest and penalties pcur before route removal are stored in corresponding

variables with added label old. All solution instances stemp, sbest and s are initialized as the best

feasible solution sbest_ f eas. The current penalty weights pcur are set to the initial value for the

start of route removal prr
start . Then, one route is removed at random from the solution s, and the

repair operator r is selected to repair the solution s. Additionally, the flag anyChange is set to

False, and the best solution sbest and temporal solution stemp are set as current solution s after

one route was removed. This flag is used at the end of the procedure as a check if there was at

least one improvement of the vehicle number or not. If there was no improvement, the solution

values are returned to their previous state for which the variables with label old are used (line

45). Otherwise, all solution instances are set to the best feasible solution sbest_ f eas. For µrr
max

iterations the same steps as in HALNS are performed, but without route removal part: destroy,

repair, LS, exact procedure, acceptance criteria, update of operator values, and update of penalty

coefficients. Additional, two things are different. First, if the new solution is feasible, then it

is set as the current best feasible solution sbest_ f eas and current solution s. Again, one vehicle

route is removed from solution s, the solution s, is repaired and flag anyChnage is set to True.

Second, a slightly different update procedure of penalty weights pcur is used. As mentioned in

section 4.3 the penalty coefficients in the HALNS are updated from minimum values pmin to

maximum values pmax, depending on the feasibility of the best solution sbest . Here, the cycling

procedure is used. As the search reaches the pmin values, the direction of the penalties update is

reversed towards the pmax. And as the search reaches the pmax, the direction is reversed towards

the pmin. This helps to overcome long computation time when penalties have a low value, as LS

is frequently performed. Additionally, the penalty weight update for route removal is larger than

in regular HALNS, ζ rr > ζ , to ensure faster searching in solution space with a lower number

of vehicles.
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Algorithm 4.10 ALNS based route removal operator
Input: Temporal solution stemp, best solution sbest , best feasible solution sbest_ f eas, current

penalty coefficient values pcur

1: {sold
temp,s

old
best , pold}← {stemp,sbest , pcur}, pcur← prr

start , sb← sbest_ f eas
2: sd ← Remove one vehicle route at random from solution sb
3: s← Select repair operator r and repair solution sd
4: sbest ,stemp← s
5: anyChange← False
6: i← 0
7: while i < µrr

max do
8: d,r← Select destroy and repair operators
9: sd ← Destroy solution s with operator d

10: snew← Repair solution sd with operator r
11: if f (snew)< f (sbest)(1+∆rr

ls ) then
12: snew← Perform LS on snew
13: if f (snew)< f (sbest)(1+∆rr

exact) then
14: snew← Perform exact procedure on snew
15: end if
16: end if
17: if f (snew)< f (stemp) then
18: stemp← snew
19: if f (snew)< f (sbest) then
20: sbest ← snew
21: snew

best_ f eas← Generate feasible solution from snew
22: if snew

best_ f eas is feasible then
23: sbest_ f eas,s← snew

best_ f eas
24: sd ← Remove one vehicle route at random from solution s
25: s← Select repair operator r and repair solution sd
26: sbest ,stemp← s
27: anyChange← True
28: end if
29: end if
30: end if
31: Update scores of selected destroy d and repair r operators
32: if modulo(i,µrr

uop) = 0 then
33: Update destroy and repair operators scores, weights and probabilities
34: end if
35: if modulo(i,µrr

upw) = 0 then
36: Update penalty coefficients pcur for route removal
37: end if
38: i← i+1
39: s← stemp
40: end while
41: pcur← pold
42: if anyChange then
43: s,stemp,sbest ← sbest_ f eas
44: else
45: {s,stemp,sbest}← {sold

temp,s
old
temp,s

old
best}

46: end if
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4.5.3 Repeated ALNS based route removal

In ALNS-RR, the first (or n-th) removed route is selected at random. This means that sometimes

the best route, which could be part of the optimal solution, is also removed. In such cases,

algorithm takes a long time, if ever, to rearrange the users in the solution to achieve a new

feasible solution. Perhaps none of the new routes will be similar to the route that was removed.

To overcome such drawback, the REPeated ALNS based Route Removal (REP-ALNS-RR)

is proposed, given by Algorithm 4.11. The goal is to perform ALNS-RR, i.e., random route

removal multiple times µ
rep_rr
max . After each route removal, perform additional µ

rr2
max iterations

of regular HALNS procedure without route removal part. Additionally, the parameter µ
rr2
max

in REP-ALNS-RR is lower than the same parameter µrr
max in ALNS-RR. In this thesis, the

expression µ
rr2
max ·µrep_rr

max = µrr
max is used to determine parameters for REP-ALNS-RR. This way,

the execution times of ALNS-RR and REP-ALNS-RR are comparable.

Algorithm 4.11 Repeated ALNS based route removal operator
Input: Temporal solution stemp, best solution sbest , best feasible solution sbest_ f eas, current

penalty coefficient values pcur

1: j← 0
2: while j < µ

rep_rr
max do

3: Perform ALNS-RR
4: j← j+1
5: end while

4.5.4 Ejection pool

Ejection pool (EP) operator [159, 160] aims to remove all customers from one route and add

them to the so-called ejection pool. The removed customers are reinserted in other routes only

if the solution afterward is feasible. This algorithm performs searching only in the feasible

solution space. If a customer from the ejection pool cannot be inserted anywhere in the current

solution without the violation of constraints, the customer is given a penalty. In such case,

additionally, up to k customers that minimize the custom objective function are removed from

the solution and added to the ejection pool. The overall goal is to avoid removing customers

that are hard to insert, i.e., have a large ejection penalty value.

The overview of the operator is given by Algorithm 4.12. First, each customer is initialized

with the penalty value of εc = 1, and an empty ejection pool list LEP is initialized. Then the

route with the lowest number of customers is removed (greedy route removal operator) from the

solution s, and the customers are added in the ejection pool list LEP. The following procedure is

repeated until the time limit criteria is not met: if list LEP is not empty, the customer insertion-

removal part is performed (lines 7-30); otherwise, the procedure succeeded in one route removal

and the obtained solution s is set as best feasible solution sbest_ f eas, the penalties are reset and the
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greedy route removal operator is performed again. At the end of each iteration, the improvement

procedure (LS and exact procedure) is performed to improve the solution and find a better

position of customers in the solution. The insertion-removal part starts with setting the last

customer in the ejection pool list LEP as the current customer c that will be inserted in the

solution. This selection follows the LIFO strategy. If possible, the customer c is inserted in the

best feasible position in the solution s and removed from the list LEP. Otherwise, if it could not

be inserted anywhere in the solution, the customer is marked as "troublesome", and the penalty

of the customer εc is increased by one. Next, the goal is to find the position of insertion of

customer c in the solution (in each vehicle v, in each position in vehicle i) with the removal

of up to k customers from the same vehicle v that minimize the sum of penalties of selected k

customers. Therefore, the forming tuple {v, i,Lr,ε
min} contains: vehicle v, position i, list of up

to k removed customers Lr, and the minimum value of the sum of penalties εmin. The removal of

customers covers all permutations from only one customer removal to k customers removals in

vehicle v but does not consider the removal of customer c that was just inserted. The insertion-

removal part is marked as best so far cbest only if the result is a feasible vehicle route (does not

consider that some customers are not inserted as they are waiting in the ejection pool list LEP)

and if it is better than the current best one cbest . The tuple cbest is initialized before insertion-

removal part (line 13) with a maximum value for εmin
best . The setting of the maximum value is

standard in programming when minimizing some objective function, as then the first occurrence

of a value lower than the maximum is stored as the minimum value. After the evaluation of the

insert-removal part, the inserted customer c is removed from the vehicle at position i, and nested

for loops are repeated for each vehicle and each position (without the position of the first depot

instance). In the last part of the insert-removal procedure, if the tuple cbest is not empty, the

insertion and removal is performed and the removed customers are added to list the LEP. If the

tuple cbest is empty, it means that the customer c could not be inserted anywhere in the solution

s even with the removal of up to k customers from vehicle routes. In such case, the last customer

in list LEP is shifted at the beginning of the list, and the customer that was preceding him is set

as the latest customer in the list.
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Algorithm 4.12 Ejection pool operator
Input: Temporal solution stemp, best solution sbest , best feasible solution

sbest_ f eas

1: s← sbest_ f eas
2: For each customer c initialize its penalty value εc to 1
3: LEP← 0 Initialize empty EP pool list
4: Perform one greedy route removal on s and add removed customers to LEP
5: while time limit criteria is not met do
6: if LEP is not empty then
7: c← Last customer in LEP
8: cinsert ← Try to insert customer at best feasible position in solution s
9: if cinsert is feasible then

10: Perform insertion cinsert and remove c from LEP
11: else
12: Customer penalty εc← εc +1
13: Initialize best insertion-removal tuple cbest as {vbest , ibest ,Lr_best ,ε

min
best} with maxi-

mum value for εmin
best

14: for each vehicle v in s do
15: for each position i in vehicle v without first depot position and customer at posi-

tion i 6= c do
16: Insert c at position i in vehicle v
17: Tuple cnew← Evaluate the removal of up to k customers c1, . . . ,ck from vehicle

v (c j 6= c, j = {1, . . . ,k}) that minimize the sum of penalties ε1 + . . .+ εk, and
create the tuple cnew

18: if cnew is feasible and f (cnew)< f (cbest) then
19: cbest ← cnew
20: end if
21: Remove customer c at position i in vehicle v
22: end for
23: end for
24: if cbest is empty then
25: Replace the position of last customer in LEP with previous one
26: else
27: Perform insertion of c in vehicle vbest at position ibest
28: Remove customers in list Lr_best from vehicle vbest and add them to LEP
29: end if
30: end if
31: else
32: stemp, sbest , sbest_ f eas← s
33: For each customer c initialize its penalty value εc to 1
34: Perform one greedy route removal on s and add removed customers to LEP
35: end if
36: Perform improvement procedure (LS and exact) on s
37: end while
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4.5. Route removal operators

4.5.5 Evaluation

The evaluation was conducted to determine which route removal operator to use. The EVRPTW-

FR problem was considered. In total, 12 instances were used for evaluation, the 01 and 02

instances for each problem type: C1, C2, R1, R2, RC1, and RC2. All route removal operators

started with the same initial feasible solution and were run for 800 iterations, except the EP,

which was run for 10 minutes. The REP-ALNS-RR outer loop iteration parameter was set to

µ
rep_rr
max = 10, while the internal loop iteration parameter was set to µ

rr2
max = 80 times. The EP

k parameter was set to 4. The results are presented in Table 4.6 with total vehicle cumulative

number ∑K, and total execution time te (min). The ALNS-RR produced a slightly lower num-

ber of vehicles than REP-ALNS-RR. The random and greedy route removal operators produce

solutions with a slightly larger number of vehicles. The EP produced the worst results, as it was

able to remove only a couple of vehicle routes. The problem is a very narrow feasible search

space. As some customers are removed, they are penalized, but on most occasions not due to

the fact that they are hard to insert, but rather due to the CS configuration in the solution. As a

result, most of the customers are hard to insert, and the number of vehicles is hardly reduced.

Based on the results, only the ALNS-RR is selected as the main route removal operator of the

used HALNS method.

Table 4.6: Comparison of route removal operators

Measure Random Greedy ALNS-RR REP-ALNS-RR EP

∑K 113 116 109 111 201

te 170.54 91.59 53.11 52.94 125.60
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4. Hybrid adaptive large neighborhood search method

4.6 Local search

To improve the solution generated by destroy and repair operators, local search operators are

used. In the design phase, all of the local search operators presented in section 3.2 were con-

sidered: intra relocate, intra exchange, Or-opt, intra station in, intra station out, inter relocate,

inter exchange, inter cross exchange (k = 3), and inter 2-Opt*. The intra 2-opt was not con-

sidered as 2-opt needs a reversal of route direction, which is time consuming in problems with

time windows. The strategy of best move per LS operator is used, which then imposes on the

determination of the order of operators.

Most of the evaluations in the inter operators can be done in O(1), as in each vehicle route

the change is done at only one position in the route, and each change can be evaluated in O(1).

Intra operators change the order of customers within the route. Usually, the changes happen

on two position in the route, and the change positioned earlier in the route effects the variables

of other downstream change. The variables of users between the changed positions have to be

recomputed. Therefore, the complexity of such evaluation is O(B), where B is the number of

users between the first and second position of change in the route.

4.6.1 Order and selection

To determine the order of the operators, as well as which operator to use and which not to use, a

statistical test study was conducted. Again 12 instances were used, the 01 and 02 instances for

each problem type: C1, C2, R1, R2, RC1, and RC2. This time the EVRPTW-PR variant was

considered.

First, the order of all used operators is determined as an average of the best solutions in 10

runs using all LS operators. The value of best solutions in each run is computed by equation

4.84. The K(r) represents the sum of vehicles, fdist(r) sum of total traveled distance, and

te(r) sum of total execution time in minutes in the run r. αveh, βdist , and γtime are function

coefficients, and are set to 1000, 1, and 5, respectively. The large value of αveh is used to

award solutions with a lower number of vehicles. The distance part has higher importance than

the time as γtime = 5, and the distance value has an order of 103. Due to a large number of

operator order permutations (9! = 362880), here the operator order is determined by experience

as follows: first inter operators, then intra CS operators, and lastly, rest of the intra operators.

Such order makes sense, as first, the users are exchanged between multiple routes. Then the CS

configuration is improved, and lastly users within the same route are exchanged. The results are

presented in Table 4.7. The measures used are the sum of all vehicles ∑K, sum of total traveled

distances ∑ fdist (in order of 103), sum of total execution time ∑ te[min] and average value of the

evaluation function λ (in order of 103). First, the inter operator orders are determined, while the

intra operators are fixed by experience as follows: intra station out, intra station in, Or-opt, intra
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4.6. Local search

exchange, and intra relocate. The worst results are achieved for order 7 which has the highest

vehicle number and also the highest execution time. The best orders turned out to be order 5 and

order 8, which have similar objective function values. For the final order of the inter operators,

the order 5 is selected: inter relocate, 2-Opt*, inter exchange and inter cross exchange, as it is

faster than the order 8. In order 8, the inter cross exchange at the beginning consumes a lot

of time. In the second step, the inter operators are fixed, and only the order of intra station in

and intra station out are observed. As it can be seen, the order intra station out, intra station in

(9) produces slightly better results than intra station in, intra station out (10). It can be seen,

that assumed order of intra operators produced higher execution times, as after the change of

order, the execution time significantly decreased. Again, this order is fixed for the third step

in which additional 4 orders of intra operators are observed. The order intra exchange, Or-opt,

intra relocate (13) produces the best results as it decreases the number of vehicles the most. As

a result, the final order of the operators used in LS is: inter relocate, 2-Opt*, inter exchange,

inter cross exchange, intra station out, intra station in, intra exchange, Or-opt and intra relocate.

Table 4.7: Order of LS operators

Num Order ∑K ∑ fdist ·103
∑ te[min] λ ·103

1 2-Opt*, inter exchange, inter relocate, inter cross exchange 1078 149.804 1012.98 127.845
2 Inter exchange, 2-Opt*, inter relocate, inter cross exchange 1078 150.065 1010.12 127.857
3 Inter relocate, inter exchange, 2-Opt*, inter cross exchange 1081 149.836 1013.37 128.151
4 Inter exchange, inter relocate, 2-Opt*, inter cross exchange 1079 150.146 1016.76 127.998
5 Inter relocate, 2-Opt*, inter exchange, inter cross exchange 1076 150.580 1007.61 127.696
6 2-Opt*, inter relocate, inter exchange, inter cross exchange 1078 150.047 1011.23 127.859
7 Inter cross exchange, 2-Opt*, inter exchange, inter relocate 1084 150.204 1049.65 128.668
8 Inter cross exchange, inter relocate, inter exchange, 2-Opt* 1075 149.658 1049.41 127.712
9 Intra station out, intra station in 1079 150.130 475.21 125.289
10 Intra station in, intra station out 1080 149.930 479.23 125.389
11 Intra relocate, Or-opt, intra exchange 1081 150.465 460.17 125.447
12 Intra relocate, intra exchange, Or-opt 1080 150.293 472.48 125.391
13 Intra exchange, Or-opt, intra relocate 1074 149.827 476.50 124.765
14 Intra exchange, intra relocate, Or-opt 1076 149.723 476.89 124.956

λ (r) = αvehK(r)+βdist fdist(r)+ γtimete(r) (4.84)

After the operator order has been determined, additional tests were conducted to remove

some operators if they do not contribute to the overall solution quality [53]. The same instances

were used as in the previous test, and the same objective function given by equation 4.84. First,

the reference value λre f was computed as an average of best solutions in 10 runs using all LS

operators. Then, in each test, one LS operator is removed from the configuration, and again 10

runs were conducted. The relative difference between λre f and λi (i for each removed operator)

is computed as ∆λi = λi−λre f . The results of conducted tests are presented in Table 4.8. As
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4. Hybrid adaptive large neighborhood search method

it can be seen, two operators could be removed: inter exchange and inter cross exchange as

the quality of solution increased when they were removed. The inter cross exchange severely

influences the execution time and therefore could be removed from the configuration. Inter

exchange can be observed as a special case of inter cross exchange with k = 1. Removing

both operators would decrease the overall solution quality; therefore, in the final version of

LS configuration, only the inter cross exchange is removed due to the large execution time.

Also, the intra CS out operator turned out to be the most important operator that significantly

increases the overall execution time and solution quality. The order of operators based on their

significance is the following: intra CS out, intra CS in, intra exchange, intra relocate, intra

Or-Opt, inter relocate, inter exchange, and inter cross exchange.

Table 4.8: Removal of LS operators

Remove ∑K ∑ fdist ·103
∑ te[min] λ ·103 ∆λ

No removal 1078 149.804 580.95 125.685 −
Inter exchange 1078 149.696 574.56 125.642 −42.82
Inter relocate 1080 150.260 537.34 125.712 27.55
Inter cross exchange 1080 149.938 445.21 125.219 −465.29
Intra CS in 1084 150.089 568.06 126.249 563.96
Intra CS out 1080 152.035 105.18 128.462 2777.53
Intra exchange 1083 149.903 582.34 126.202 516.82
Intra Or-Opt 1081 149.892 538.02 125.779 94.21
Intra relocate 1082 151.248 556.37 126.106 421.48

For EVRP variants dealing with different charger types at CSs, a new local search operator

named intra CS change, is proposed. This is a new operator in the literature, as none of the re-

searchers dealing with different charger types considered the LS phase to improve the solution.

The intra CS change operator tries to change the charger type of a CS in a vehicle route. In LS,

it is applied after the intra CS out operator, and before intra exchange operator.

4.6.2 Generate feasible solution with LS

In the HALNS, given by algorithm 4.1, when the solution sbest is infeasible a special procedure

is called to make the solution feasible (line 21). This procedure is based on the LS with penalty

coefficients multiplied by 100 [53, 121] to favor the moves that are feasible. If afterward, still

no feasible solution is found, then the weights are additionally multiplied by 10, to a total of

1000, and LS is performed again. In the end, if the solution is still infeasible, no further steps

are performed at this stage of the algorithm.
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4.7. Optimal CS placement

4.7 Optimal CS placement

As already reported by several researchers the configuration of CSs in a route significantly

affects the overall routing cost [18, 22, 53, 83, 161]. Therefore, the aim is to determine the

optimal CS configuration in a fixed route and also to determine the charging amount. As already

mentioned, this is a FVRCP problem (NP-hard) [83], that seeks the minimum-cost refueling

policy for a given fixed sequence of customers. To keep the computational times low, Schiffer.

et al. [53] solved the Elementary Shortest Path Problem with Resource Constraints (ESPPRC)

[162] for each route on a limited search tree by extending the fixed route with CSs. An example

of a search tree is presented in Figure 4.20, where fixed route of customers (0,1,2,0) is extended

with CSs (blue circles). The tree is expanded by paths: (i) one path without CS, (ii) one path for

each nearest CS, and (iii) one path for each combination of two nearest CSs. A path is further

extended if it is feasible and is not dominated by another path.

In this section, different exact procedures are described for different observed problem vari-

ants.

0 1

1′

11′ 12′

2

2′

21′ 22′

0

3′

31′ 32′

Figure 4.20: Search tree in ESPPRC

4.7.1 EVRPTW-PR

The exact procedure for optimal CS placement in EVRPTW-PR is based on solving ESPPRC

with the Dynamic Programming (DP) technique proposed by Schiffer. et al. [53] (Figure 4.20)

for ELRPTW-PR. The overview of the procedure is given by Algorihtm 4.13. First, the CS

visits are removed from each vehicle route v in the current solution s. Then the user before ube f

is set as the first user in the current vehicle route v, and the path p is initialized with user ube f .

Further on, the tree is initialized with path p. Then, the while loop is used to loop over users and

gradually add them one by one in tree paths. First, the tree t is extended with path p1 that does

not contain a CS. Then, the tree is extended by paths pi for each nearest station csi between the

preceding user ube f and current user ucur. As in the EVRPTW test instances at maximum two
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4. Hybrid adaptive large neighborhood search method

CSs are necessary to visit any customer, the tree is further extended by path p j for each nearest

station between the preceding CS csi and the current user ucur. In the end, the best path from

the tree is selected and set as vehicle route v.

Algorithm 4.13 Dynamic programming - ESPPRC
Input: Current solution s

1: for each vehicle route v in s do
2: v← Remove CSs visits from v
3: ube f ← First user in vehicle v
4: Add ube f to initial path
5: Add path p to initial tree t
6: while vehicle v is not processed do
7: ucur← Next user in vehicle v
8: for each path p in tree t do
9: p1← Extend path p with ucur

10: Extend tree t with path p1
11: LCSube f ,ucur ← List of possible CSs between ube f and ucur
12: for each CS csi in LCSube f ,ucur do
13: pi← Extend path p with csi and ucur
14: Extend tree t with path pi and perform dominance rules
15: if path pi is not dominated then
16: LCScsi,ucur ← Set of possible CSs between csi and ucur
17: for each CS cs j in LCScsi,ucur do
18: pk← Extend path p with csi, cs j and ucur
19: Extend tree t with path pk and perform dominance rules
20: end for
21: end if
22: end for
23: end for
24: end while
25: Vehicle route v← Best path in tree t
26: end for

To evaluate the paths in the tree, the Resource Extension Functions (REFs) are used. The

original REFs for branch-price-and-cut framework for EVRPTW-PR and EVRPTW-FR have

been proposed by Desaulniers et al. [55] and are presented by equations 4.85-4.91, while the

corresponding variables are presented in Table 4.9. The presented variables are similar to the

corridor-based variables for EVRPTW-PR 4.12-4.16, but there are some differences that limit

their values to the feasible ones. First, the new variable T F
j is used to track the number of CSs

visited up to user j. Second, in cases where there was not a CS before user j the additional

recharging time Xi j is not added to T tMin
j and the value T rtMax

j is updated only by value hi j.

Lastly, the T tMax
j is additionally limited to late time window l j.

T cost
j = T cost

i +di j (4.85)
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Table 4.9: REFs - EVRPTW-PR variables

Symbol Description
T cost Cost of a path
T F

i Number of CSs up to user i
T tMin

i Earliest arrival time at user i with charging the minimum amount as possible
T tMax

i Earliest arrival time at user j with charging the maximum amount as possi-
ble at preceding CS with assumption that minimum charging was performed
before that

T rtMax
i Time required to charge at user j to maximum with assumption that minimum

charging was performed before that
Si j Slack time at user j
Xi j Additional charging time that needs to be added at preceding CSs

T F
j = T F

i +

1 j ∈ F ′

0 else
(4.86)

T tMin
j =

max(e j,T tMin
i + ti j + si) T F

i = 0

max(e j,T tMin
i + ti j + si)+Xi j else

(4.87)

Xi j =

max(0,max(0,T rtMax
i −Si j)+hi j−H) i ∈ F ′

max(0,max(0,T rtMax
i −min(Si j,T tMax

i −T tMin
i ))+hi j−H) else

(4.88)

Si j = max(0,e j− (T tMin
i + ti j + si)) (4.89)

T tMax
j =

min(l j,max(e j,T tMin
i +T rtmax

i + ti j)) i ∈ F ′

min(l j,max(e j,T tMax
i + ti j + si)) else

(4.90)

T rtMax
j =


T rtMax

i +hi j T F
i = 0

min(H,max(0,T rtMax
i −Si j)+hi j) i ∈ F ′

min(H,max(0,T rtMax
i −min(Si j,T tMax

i −T tMin
i ))+hi j) else

(4.91)

To speed up the search process in tree extension, the dominance rules play an important

part. The basic idea is to associate each extended path with a label that contains basic values

that describe a path. This so-called labeling technique is commonly used to perform dominance

checks, and cuts in exact procedures [15, 16, 55, 101]. The dominance rules are performed on

the labels for the extended tree paths, which results in the removal of paths that are dominated

by other paths, meaning that they will always provide a worse solution than the other paths in

the tree. In EVRPTW-PR, the label L j at user j is defined by equation 4.92. The label L j is
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4. Hybrid adaptive large neighborhood search method

feasible if expression 4.93 is satisifed. Initial values of all variable are set to zero, T cost
0 = T F

0 =

T tMin
0 = Xi0 = T tMax

0 = T rtMax
0 = 0.

L j = (T cost
j ,T F

j ,T
tMin
j ,T tMax

j ,T rtMax
j ) (4.92)

T tMin
j ≤ l j∧T tMin

j ≤ T tMax
j ∧T rtMax

j ≤ H (4.93)

To determine the dominance rules in partial recharge strategy, the relation between the max-

imum possible additional recharge time T max
i and earliest service start time T t

i has to be deter-

mined. The relation is presented in Figure 4.21 by four line segments, each corresponding to

different labels L1 to L4. The labels are associated with four paths in the tree ending at the same

user and containing one visit to a CS. The slope of labels is the same and linear, as slack times

were already considered for charging, and the same charging rate g is used in all CSs. If a path

does not contain a CS, the earliest minimum begin time T tMin
i and earliest maximum begin time

T tMax
i are equal, and the line reduces to a single point. For label L1 there are two extremities:

(i) if the minimum amount of recharging was performed at previous CS corresponding to the

earliest service start time T tMin
1 , then the maximum possible additional recharge time is deter-

mined by the value of T rtMax
1 , and the first extremity is point (T tMin

1 ,T rtMax
1 ); and (ii) if maximum

amount of recharging was performed at previous CS corresponding to the earliest service start

time T tMax
1 , then in the ideal situation the maximum possible additional charging time is limited

to T rtMax
1 −(T tMax

1 −T tMin
1 ), and the second extremity is point (T tMax

1 ,T rtMax
1 −(T tMax

1 −T tMin
1 )).

To clarify this, the time T max
i is the additional time that can be added to charge the battery to

the fullest if the minimum or maximum charging amount was already performed. The slope is

equal to one, as an increase of one time unit in charging time increases the value of T t
i by one

and decreases the value of T max
i by one.

To apply dominance rules, all label components need to have nondecreasing functions

(REFs) [55], as they have, but standard dominance rules cannot be applied due to the re-

lation between T max
i and T t

i . A label L1 dominates a label L2 if T cost
1 ≤ T cost

2 , T F
1 ≤ T F

2 ,

T tMin
1 ≤ T tMin

2 , and for every service start time T2 ∈ [T tMin
2 ,T tMax

2 ], there exists a service start

time T1 ∈ [T tMin
1 ,T 2] such that T rtMax

1 − (T1−T tMin
1 )≤ T rtMax

2 − (T2−T tMin
2 ). This means that

for every maximum possible additional charging time achievable by label L2 the label L1 can

achieve same or lower maximum possible charging time at the same service time or earlier.

The example of different labels is presented in Figure 4.21. The label L1 dominates L4 as for

every T4 ∈ [T tMin
4 ,T tMax

4 ] there exists a T1 ∈ [T tMin
1 ,T4] such that T max

1 ≤ T max
4 . Graphically this

means that the label L4 has to be higher than the value at the extremity point (T tMax
1 ,T rtMax

1 −
(T tMax

1 −T tMin
1 )) of label L1 and right of the extremity point (T tMin

1 ,T rtMax
1 ) of label L1 (it must

be in the area between the red dashed lines). This means that label L1 cannot dominate labels
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T t
i

T max
i

T tMin
1 T tMax

1

T rtMax
1 − (T tMax

1 −T tMin
1 )

T rtMax
1

L1
L2

L3

L4

Figure 4.21: Maximum possible additional recharging time T max
i in relation to earliest service start

time T t
i

L2 and L3, as well as that none of the other labels can dominate or be dominated. L1 cannot

dominate L2 as for T2 = T tMin
2 , there does not exists T1 ∈ [T tMin

1 ,T1] such that T rtMax
1 − (T1−

T tMin
1 ) ≤ T rtMax

2 − (T2− T tMin
2 ). L1 cannot dominate label L3, as the previous expression is

valid only for the partial interval of [T tMin
3 ,T tMax

3 ] (up to the point of crossover with red line).

The final two dominance rules can be expressed by equations 4.94 and 4.95. The first equation

is related to the lower extremity (horizontal red dashed line) as maximum service time T tMax
i

is considered for both labels L1 and L2, then for L1 to dominate L2, the maximum possible

additional recharging time T max
1 has to be lower than T max

2 . The second equation is related to

the higher extremity (vertical red dashed line) as the earliest service time T t
1 is set to T tMin

2 , then

for L1 to dominate L2, the maximum possible additional recharging time T max
1 at service time

T tMin
2 has to be lower than T max

2 = T rtMax
2 − (T tMin

2 −T tMin
2 ) = T rtMax

2 .

T rtMax
1 − (T tMax

1 −T tMin
1 )≤ T rtMax

2 − (T tMax
2 −T tMin

2 ) (4.94)

T rtMax
1 − (T tMin

2 −T tMin
1 )≤ T rtMax

2 (4.95)

The example of a search tree with labels and dominance rules for vehicle route (0,5,2,6,0)

(dark red line) in optimal EVRPTW-PR solution on instance C101-5 (Figure 4.22) is presented

in Figure 4.23. The CSs are removed from the route, and the depot is set as the active user. The

red border line that surrounds the user represents the part of the route that has been processed.

The label values given by equation 4.92, are represented with the rectangle in the exact same

order. In the beginning they are all set to zero and represented as rounded integers, although in

a real application, they have decimal values. To simplify the search tree, only one CS insertion
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4. Hybrid adaptive large neighborhood search method

is considered between two consecutive users. First, three new paths are generated: one without

the CS, and two with CSs 2 and 3 inserted between users 0 and 5. Here, the path is not extended

with the CS 1, as this CS is located at the depot, and there is no point in going to a CS im-

mediately after the depot (the same goes for the ending depot instance). The second extended

label is dominated by the first extended label as 38≤ 85 (T cost), 0≤ 1 (T F ), 176≤ 176 (T tMin),

132−(176−176)≤ 210−(176−176) (equation 4.94), and 132−(176−176)≤ 210 (equation

4.95) are all satisfied. The first label does not dominate the third label, although it has a lower

cost value due to the equation 4.94. Only the non-dominated paths are extended into the next

iteration. In the end of the tree, two paths remain that are not dominated by each other, and the

one that has a lower T cost value is selected as the best path (red border color).

Figure 4.22: Optimal EVRPTW-PR solution for instance C101-5
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4. Hybrid adaptive large neighborhood search method

4.7.2 EVRPTW-FR and EVRPTWDCS-FR

For EVRPTW-FR and EVRPTWDCS-FR problems, a similar procedure based on solving the

ESPPRC with DP technique is used. To evaluate the paths in the tree, new REFs are proposed

for EVRPTWDCS-FR. The EVRPTW-FR is considered as a special case of EVRPTWDCS-FR

where all CSs have the same charger type. From variables presented in Table 4.9 for EVRPTW-

PR, only the T cost , T tMax
i and T rtMax

i are used, with T rtMax
i representing the maximum possible

charging amount expressed in the unit of capacity. The REFs are given by equations 4.96-4.98,

the label is given by equation 4.99, the feasibility conditions are given by equation 4.100, and

the dominance rules are given by equation 4.101. As there is no partial recharging, the rules are

easier to determine. The rest of the procedure is completely the same as for the EVRPTW-PR

problem.

T cost
j = T cost

i +di j (4.96)

T rtMax
j =

ei j i ∈ F ′

T rtMax
i + ei j else

(4.97)

T tMax
j =

max(e j,T tMax
i + ti j +gmiT rtMax

i ) i ∈ F ′

max(e j,T tMax
i + ti j + si) else

(4.98)

L j = (T cost
j ,T tMax

j ,T rtMax
j ) (4.99)

T tMax
j ≤ l j∧T rtMax

j ≤ Q (4.100)

T cost
1 ≤ T cost

2 ∧T tMax
1 ≤ T tMax

2 ∧T rtMax
1 ≤ T rtMax

2 (4.101)

4.7.3 EVRPTWDCS-PR

The previous procedure based on solving the ESPPRC for EVRPTW-PR cannot be applied for

optimal CS placement in EVRPTWDCS-PR. The reason is similar to the already discussed

additional charging time (aadd
i j ) in section 4.3.4. Here this variable is represented as Xi j. The

value Xi j could be easily computed and added in EVRPTW-PR, because the earliest begin time

increases linearly, while in EVRPTWDCS-PR this value depends on the charger types used

in preceding CSs, and the amount recharged with each charger. To determine the optimal CS

placement and charging amount in EVRPTWDCS-PR, the procedure proposed by Keskin et

al. [22] is used. The idea is to formulate the FVRCP as a MILP program and solve it with
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4.7. Optimal CS placement

commercially available software. The MILP program proposed by Keskin et al. [22] is based

on the MILP program for EVRPTWDCS-PR presented in section 2.5 with a tighter formulation

presented by Bruglieri et al. [143]. The proposed MILP program by Keskin et al. [22] contains

several errors, which are all corrected and highlighted in the next paragraph.

First of all, all CSs are removed from vehicle route v. A set of customers in route without

depots is labeled as V = (1, . . . ,N), while a set that contains a instance of depot (0 or N + 1)

is labeled as V0 or VN+1. The variable Θm
i,i+1 denotes the amount of energy recharged using

charger type m if vehicles visit a CS between customers i and i+ 1. The binary variable xi j

(4.116) indicates if arc from customer i to CS j (and then from j to i+1) is used in the solution

or not. Variables ai,i+1 and bi,i+1 (4.114) indicate the charger type used on arc from i to i+ 1,

which can also include a visit to CS (i→ j → i+ 1). The minimization function given by

equation 4.102 consists of a straightforward part that includes charging costs per charger type

in CSs, and a second part which represents the amount of used energy that was recharged at

the depot with the slowest charger type before any routing begun. In the original formulation,

the i ∈ F is used, and not i ∈ V0, which is impossible as arc variable xi j is defined from i ∈ V

to j ∈ F . One additional equation that was missing in the original formulation, which ensures

the stability of the model, is the limitation of the number of CS between customer i and i+ 1

to 1 (equation 4.115). This equation needs to be added as Θm
i,i+1 represents the amount of

charging at a single CS, and not the multiple ones. The equation 4.104 ensures travel time

flow, meaning that begin time at customer i plus the possible travel and charging times must

be lower or equal the begin time at customer i+ 1. In the original formulation, first instead

of the proposed t jk, the variable t j,i+1 is actually needed, and second, the proposed equation is

missing the part ∑ j∈F ti,i+1(1−xi j) which ensures the travel time feasibility in cases when there

is no CS between users. The equation 4.105 ensures travel time feasibility. The equation 4.106

ensures energy consumption flow. If CS j is used, rest battery capacity at user i is decreased

by the energy consumed from user i to CS j, and from CS j to user i, and increased by the

charging amount at CS. If CS j is not used, rest battery capacity at user i is decreased by

the energy consumed from user i to user i+ 1. Equation 4.107 ensures that there is enough

rest battery capacity to reach CS j. Equations 4.108 and 4.109 ensure that vehicle cannot be

charged more than Q. The starting vehicle rest battery capacity value is set to Q (equation

4.110). The equations 4.111-4.113 determine the charger type used. The equation 4.115, was

not present in the original formulation, and here is added to limit the possible outcomes of the

binary variables ai and bi to three cases: (i) ai = 1, bi = 0, (ii) ai = 0, bi = 1, and (iii) ai = 0,

bi = 0. It is important to note that the proposed model considers only one CS insertion between

the two consecutive customers.

min ∑
i∈V0

∑
m∈M

(
cm

Θ
m
i,i+1

)
+ c3(Q− yN+1) (4.102)
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∑
j∈F

xi j ≤ 1 i ∈V0 (4.103)

τi + si + ∑
j∈F

(ti j + t j,i+1)xi j + ∑
j∈F

ti,i+1(1− xi j)+ ∑
m∈M

gm
Θ

m
i,i+1 ≤ τi+1, i ∈V0 (4.104)

ei ≤ τi ≤ li, i ∈VN+1 (4.105)

yi−

[
ei,i+1

(
1−∑

j∈F
xi j

)
+ ∑

j∈F
(ei j + e j,i+1)xi j

]
+ ∑

m∈M
Θ

m
i,i+1 = yi+1, i ∈V0 (4.106)

yi−∑
j∈F

ei jxi j ≥ 0, i ∈V0 (4.107)

∑
m∈M

Θi,i+1 ≤ Q ∑
j∈F

xi j, i ∈V0 (4.108)

∑
m∈M

Θi,i+1 ≤ Q−

(
yi−∑

j∈F
ei jxi j

)
, i ∈V0 (4.109)

y0 = Q (4.110)

0≤ θ
1
i,i+1 ≤ Qai,i+1, ∀i ∈V0 (4.111)

0≤ θ
2
i,i+1 ≤ Qbi,i+1, ∀i ∈V0 (4.112)

0≤ θ
3
i,i+1 ≤ Q(1−ai,i+1−bi,i+1), ∀i ∈V0 (4.113)

ai,i+1,bi,i+1 ∈ {0,1}, ∀i ∈V0 (4.114)

ai,i+1 +bi,i+1 ≤ 1, ∀i ∈V0 (4.115)

xi j ∈ {0,1}, ∀i ∈V0, ∀ j ∈ F (4.116)

To compare the execution time between the DP technique for EVRPTW-PR and solving

a MILP for EVRPTWDCS-PR, the EVRPTWDCS-PR was considered with the same charger

types and recharging costs equal to 1. The commercial software CPLEX Optimizer IBM was
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used to solve the proposed MILP program. The EVRPTW instance C101 was considered for

comparison with in total 2000 iterations. The results are presented in Table 4.10. In total, the

DP was applied 394 times and the MIP solver 550 times. The a-priori assumption was that the

DP would have a lower execution time, but the results show that the CPLEX has a slightly lower

execution time. This occurs as a single-core implementation was used for DP, and CPLEX uses

parallelization.

Table 4.10: Comparison between DP and MILP solver

Applied Total time [s] Average time [s]
DP 394 14.56 0.037

MIP 550 17.56 0.032

4.8 Speed-up techniques and implementation

To improve the overall execution time, several speed up techniques are applied and described in

this section. Besides the speed up techniques, the important part of the HALNS method is the

implementation, which severely influences the execution time.

4.8.1 Infeasible arc removal

Some arcs in the instance are infeasible all the time as they violate problem constraints [163,

164]. As proposed by Schneider et al. [18] and Schiffer et al. [53] an arc (i, j) is considered to

be infeasible if any of the constraints given by equations 4.117-4.120 are satisfied. The equa-

tion 4.117 represents vehicle capacity violation. The equation 4.118 represents time window

violation as the service starts at the earliest possible time at user i and still the arrival time at

user j is greater than late time window l j. The equation 4.119 represents the violation of the

depot time window, as there is not enough time to go from i to j and then, afterward, to arrive

at the depot before its late time window l0. The equation 4.120 represents the battery capacity

violation when there is not enough energy to traverse the arc hdi j > Q. Additionally, it covers

the case when the vehicle charges to full immediately before user i at CS m, and immediately

after the user j at CS n, and there is not a combination of CSs m and n that can produce an

energy feasible partial route φ = (m, i, j,n). During the development of the HALNS method, it

was noted that removing infeasible arcs significantly reduces the search space and overall exe-

cution time. The number of infeasible arcs per EVRPTW instance groups is provided in Table

4.11. The column Total represents the total number of arcs in the instance group, while the

Load, Time, and Battery columns represent the number of violated arcs by load capacity, time

window, and battery capacity, respectively. The column Percentage represents the percentage

of infeasible arcs in the total number of arcs in the instance group. As it can be seen, in instance
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4. Hybrid adaptive large neighborhood search method

types 1 (with narrow time windows) larger number of arcs are infeasible (up to 35%), with most

of them caused by time window violation. It can also be seen that not a single load capacity

violation is present in all instances. The battery capacity is a cause of fewer infeasible arcs than

time windows especially on problems with wide time windows (C2, R2, RC2).

i, j ∈V ∧qi +q j >C (4.117)

i ∈V ′0, j ∈V ′N+1∧ ei + si + ti j > l j (4.118)

i ∈V ′0, j ∈V ′∧ ei + si + ti j + s j + t j,N+1 > l0 (4.119)

i, j ∈V ∧∀m ∈ F ′0,n ∈ F ′N+1 : h(dmi +di j +d jn)> Q (4.120)

Table 4.11: Infeasible arcs

Instance Total Load Time Battery Percentage
C1 132840 0 31703 10296 31.62
C2 118080 0 23562 13 19.96
R1 177120 0 36192 14655 28.71
R2 177120 0 17093 1707 10.61

RC1 118080 0 28002 12431 34.24
RC2 118080 0 15528 0 13.15

4.8.2 Nearest neighbors in local search

As noted by Christiaens et al. [146], in most BKS solutions, customers that are close to each

other tend to be in the same vehicle route or in other close vehicle routes. This means that

moves that lead to the improvement of the current solution often change the position of the

customers that are close to each other. This could also be rephrased as: there is no point of

inserting a customer between two "close" customers when this new customer is far away from

both customers. Such moves almost never lead to a better solution even when time windows

or battery capacity constraints are considered. Having that in mind, all of the LS operators are

additionally limited to explore only the nearest neighbors’ solution space. In the pre-processing

step, for each arc (i, j) a list of limited nearest neighbors is created. This limited nearest neighbor

list is determined as the threshold percentage ptNN of all neighbors sorted in the ascending order.

Figure 4.24a presents the box plot example of computed nearest neighbor measures in the

LS procedure for different EVRPTW-PR instance types. First of all, only the LS moves that

lead to a better solution were considered. pNN represents the percentage position of user move
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(a) Nearest neighbors percentage in LS

(b) Nearest neighbors example on instance C101

Figure 4.24: Nearest neighbors example

(insertion or deletion) in the sorted list of all nearest neighbors. As it can be seen, all instance

types have an upper whisker value up to 30%, while the lower whisker value is 0. Clustered

instances have the lowest median and upper whisker value, while the randomly clustered in-

stances have the largest median and upper whisker values. In regular statistical analysis, all

of the red points can be considered as outliers, but in VRP problems, the threshold percentage

ptNN is usually determined in [60,100]% interval. Such an interval is used, as some moves that

include neighbors that are 60−80% far away, can still lead to good local optima solutions. To

express how rare are such moves are, the magenta points are added. These values represent the

percentage of moves in the total number of moves, in which neighbors are more than 70% away.

The results are in [0.26,0.91]% range. Figure 4.24b show an example of users nearest to the

depot with ptNN = 70% on EVRPTW instance C101. The users that are regarded as neighbors

have a black color border. All of the customers within the red ellipse are considered as nearest
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neighbors, as well as all CSs in instances, as CSs significantly influence the solution quality.

The CS located at the depot is not considered as its nearest neighbor, as there is no point of

going to this CS directly from the depot at the beginning of the route. The same goes for end

depot instance, as there is no point in first visiting the CS located at the depot and then going to

the depot.

4.8.3 Nearest CSs

In many steps of the HALNS method, CSs are inserted in the solution. In such cases, the

selection of a CS that produces the lowest cost is often performed. Instead of looping through

all CSs and selecting the best one, the set of possible CSs between users can be reduced. The

criteria used for reducing the set is the distance between the CS and users. This can be done,

as in all problem variants the energy consumption linearly depends on the traveled distance.

Therefore, the closer CS would always produce a better solution in terms of total distance

traveled than the CS that is further away. For each arc (i, j), a set of nearest possible CSs is

determined in the pre-processing step, based on the procedure proposed by Keskin et al. [22].

Let arc (i, i+ 1) be an arc that connects two consecutive users i and i+ 1, and let the list of

nearest possible CSs, LnCS
i j be initialized as empty. In the beginning, all CSs in an instance

( j ∈ F) are considered. The CS j is added to the list LnCS
i j if it is not dominated by any CS k,

already added in the list. If CS j dominates some of the CSs in the list, those CSs are removed

from the list. The CS j is dominated by CS k if equation 4.121 is satisfied, meaning that CS k is

both closer to user i and user i+1. The example is shown in Figure 4.25 where dominated CSs

have a red edge. None of the CSs j1, j2 and j3 can dominate each other. The j4 is dominated by

j1 and not j3, and j5 is dominated by j3. This reduced CS set significantly reduces the search

space and overall execution time in procedures oriented on CSs insertions and removals, i.e.,

solving ESPPRC with DP.

di j > dik∧d j,i+1 > dk,i+1 (4.121)

4.8.4 LS inter-intra relation

The inter-intra relation is related to the order of the LS operators used. As already mentioned,

first, the inter operators are performed that reposition users between different routes, and then

intra operators are used to improve each vehicle route. The basic idea of inter-intra relation is

the following: if in the current iteration not a single inter operator changed the vehicle route

v, there is no point in performing intra operators on this route if the local optima with intra

operators for a route v was already achieved in the previous iteration. Having that in mind, a

binary flag indicating intra update or no-update of the vehicle route is added. This approach can
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i i+1

j1

j3
j2

j4 j5

. . . . . .

Figure 4.25: Nearest CSs between users

significantly reduce overall LS execution time, as it avoids searching in the same solution space

without further improvements.

4.8.5 Minimum number of vehicles

For problems with load capacity, the theoretical lower bound on the number of vehicles can be

determined by equation 2.17 in section 2.2, as the ceiling integer value of the ratio of the sum of

customers’ demand qi and vehicle load capacity C. During the search, if the theoretical lowest

number of vehicles is achieved, the operators for route removal finish their execution and are

never called again. The search process afterward is only focused on searching in the solution

space regarding the secondary objective: distance, travel time, total time or recharging cost.

4.8.6 Implementation

The HALNS is implemented as a single-thread code in the C# programming language. All tests

were performed on a machine with Intel E5 processor and 32 GB of RAM. Throughout the

code, the goal was to implement classes, methods, and variables to perform the execution as

fast as possible. An overview of the stripped class diagram is presented in Figure 4.26, which

contains the most basic classes: User, Customer, Station, Vehicle, Solution and Params. In

the entire program, the comparison between real numbers is done with 10−7 precision. The

implemented program contains 11365 lines of code, 209 classes and 3621 branches.
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Figure 4.26: The most important classes in the implementation

4.9 Parameter tuning

Parameter tuning is an essential part of any algorithm, especially in cases where a large number

of parameters is used, as in most metaheuristic methods. The tuning methodology is adopted

from the literature [1, 32, 37, 147, 165]. First, a fair parameter setting is produced by an ad hoc

trial-and-error phase. This parameter setting was found while developing the HALNS or has

been adopted from the literature. Next, each parameter is allowed to take three values, while

the rest of the parameters are kept fixed. For each parameter setting, the HALNS method is

applied five times on the selected set of instances, and the setting that produced the best average

deviation value from the best achieved solution is chosen. In the next step, the best parameter

setting from the previous iteration is fixed, and the next parameter values are varied. This

process continues until all parameters have been tuned. As there are many parameters in the

HALNS method, and each parameter value is run five times, a following representative subset

of instances is selected: R107, RC101, RC104, RC105, R205, and RC205 [1]. The instances

C1 and C2 were omitted as they usually converge to the same solutions for different parameter

values, and therefore do not provide information of how good the algorithm parameters values

are. The EVRPTW-PR variant is considered as its evaluation is the fastest. The function used

for the evaluation of solutions was already described in section 4.6, and it is given by equation

4.84. Here, the function values are set to αveh = 200, βdist = 1, γtime = 1. The lower value

for αveh is used as there are roughly 58 vehicles in one run. The HALNS parameters, their

considered values, deviations, and final selected values are presented in Table 4.12. The final
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selected parameter values are marked with bold font.

Table 4.12: Tuned parameters

Parameter Initial Values tested Parameter Initial Values tested

µmax
V 4000 1000 7000 15000

(δ1,δ2,δ3)
V (0.6,0.3,0.1) (0.6,0.3,0.1) (0.5,0.4,0.1) (0.7,0.2,0.1)

∆λ − 66.23 0.00 74.59 ∆λ − 112.25 0.00 1960.88

µ
last_imp
max

V 2000 1000 2000 4000
npgtonnh

RCL
V 5 3 5 10

∆λ − 202.08 0.00 34.68 ∆λ − 0.00 1527.98 3915.38

µrbks
V 1500 500 1000 2000 kpgtonnh

V 3 2 3 5
∆λ − 173.59 16.68 0.00 ∆λ − 2226.63 1670.62 0.00

µuop
V 50 25 50 100

(µlow,µhigh)
V (0.1,0.4) (0.1,0.4) (0.2,0.4) (0.1,0.6)

∆λ − 116.12 44.82 0.00 ∆λ − 0.00 41.49 156.91

µupw
V 50 25 50 100 kr

V 4 2 4 6
∆λ − 62.45 0.00 89.07 ∆λ − 74.11 0.00 54.49

∆ls
V 0.2 0.1 0.2 0.3 kw

V 3 2 4 6
∆λ − 84.01 104.69 0.00 ∆λ − 33.69 74.93 0.00

∆exact
V 0.02 0.01 0.02 0.05 ks

V 6 2 4 6
∆λ − 0.00 12.26 2.96 ∆λ − 0.00 17.68 13.51

(α0,β0,γ0)
V 10 10 100 1000

(χd ,χe,χq)
V (6,5,4) (4,4,2) (6,5,4) (8,6,3)

∆λ − 39.83 0.00 16.44 ∆λ − 0.00 60.58 66.17

(αmin,βmin,γmin)
V 2 0.1 1 10

(χmin,χmax)
V (0.05,0.15) (0.02,0.1) (0.05,0.15) (0.1,0.25)

∆λ − 88.97 0.00 133.27 ∆λ − 12.52 0.00 190.99

(αmax,βmax,γmax)
V 80 50 150 1000

nsi
RCL

V 5 3 5 9
∆λ − 52.28 0.00 34.53 ∆λ − 0.00 104.46 411.08

ζ
V 1.2 1.05 1.15 1.3

(Γmin,Γmax)
V (0.8,1.2) (0.9,1.1) (0.8,1.2) (0.7,1.3)

∆λ − 0.00 120.07 40.81 ∆λ − 10.79 0.00 84.32

(σ1,σ2,σ3)
V (9,4,1) (3,2,1) (9,4,1) (12,6,1)

µrr
max

V 200 100 200 300
∆λ − 0.00 74.93 113.78 ∆λ − 45.89 102.95 0.00

ρ
V 0.8 0.4 0.6 0.8

(µrr
uop,µ

rr
upw)

V (20,20) (15,15) (25,25) (35,35)
∆λ − 0.00 145.89 86.81 ∆λ − 8.97 0.00 91.33

w0
V 0.1 0.1 1 5

ζ rr V 2 1.2 1.6 2
∆λ − 21.53 30.34 0.00 ∆λ − 59.10 87.28 0.00

ptNN
V 0.9 0.55 0.7 0.9

(αrr
0 ,αrr

min,α
rr
max)

V (15,1,50) (10,0.5,50) (100,2,100) (100,10,150)
∆λ − 18.49 0.00 26.17 ∆λ − 4.25 0.00 76.46

nls
RCL

V 10 10 20 50
(∆rr

ls ,∆
rr
exact)

V (0.2,0.02) (0.2,0.01) (0.3,0.02) (0.4,0.05)
∆λ − 49.14 0.00 82.25 ∆λ − 119.28 55.69 0.00
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4.10 Results

In this section, the proposed HALNS method is tested and compared to other methods from the

literature. First, the comparison is conducted on small instances formulated as MILP program

and solved by commercial software CPLEX. Next, the HALNS method is compared to the

ALNS method of Keskin et al. [1] (KESK-ALNS) on the EVRPTW-FR variant. In the end,

HALNS is compared to the BKSs on different EVRP variants with different secondary objective

functions: total traveled distance, total time, and recharging cost.

4.10.1 Small instances

As already mentioned in section 2.2, there are in total 36 small instances containing 5, 10 and

15 customers. First, EVRPTW problems for these instances are formulated as MILP programs

and solved by the commercial software CPLEX. The MILP programs for the observed vari-

ants are already described in chapter 2: EVRPTW-FR - section 2.2, EVRPTW-PR - section 2.4

and EVRPTWDCS-PR - section 2.5. The commercial software MATLAB was also tested for

solving the MILP programs, but CPLEX turned out to be a superior software. For details on

solving the MILP for EVRPTW-FR problem with MATLAB, the reader is referred to Erdelić et

al. [166]. In MILP formulations for EVRPTW-FR and EVRPTW-PR, the important aspect is

parameter β which represents the number of virtual CSs per actual CS. This parameter affects

the size of set F ′, overall solution quality, and most important the execution time. The param-

eter β has not been discussed in any of the papers that deal with MILP and EVRPTW related

problems [1, 18, 161]. Therefore, here the evaluation of parameter β will also be discussed.

The EVRP problems use a hierarchical function, where solutions with a lower number of ve-

hicles are preferred, although higher routing costs are achieved. This relation between primary

and secondary objectives has not been discussed in any of the papers dealing with MILPs for

EVRPTW. In this thesis, first, the MILP model is solved by minimizing the vehicle number,

and then with found minimum vehicle number, the MILP model is solved again by minimiz-

ing the total traveled distance. In the second step, the found minimum number of vehicles is

set as a constraint in the MILP program. For all MILP models, the maximum execution time

was set to 2h. The results are presented in Table 4.13. For each instance, three β values were

considered β = 1,2,3, and for each problem variant the following measures are used: number

of vehicles K, CPLEX running time for the minimization of vehicle number tK
e (min) and total

traveled distance td
e (trec

e ) (min), d total traveled distance or rec total recharging costs, and result

R- indicating optimal O, feasible F or infeasible I solution for the respective minimization. The

values with bold font represent either of the three things: (i) solutions that were not reported in

the respective research papers, as the influence of β value has not been discussed, (ii) the value

achieved is higher than the value in respective research papers meaning that it was reported
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falsely, and (iii) improvement in partial recharge strategy to full recharge, or different charger

types to single charger type.

It can be seen that limiting the number of visits to same CS β = 1, in 9 out of 36 increases the

number of vehicles or total traveled distance. Additionally, on instance RC108-5 for EVRPTW-

FR, the Schneider et al. [18] reported only one vehicle, whereas all of the reported optimal

solutions contain two vehicles [166, 167]. On the instance RC204-15 for EVRPTW-FR, the

CPLEX was able to found the BKSs of 384.86, which the MILP formulation in the original

paper of Schneider et al. [18], was not able to find (the proposed metaheuristic was able to

found this solution). In 4 instances, the partial strategy decreased the total traveled distance,

while in additional 9 instances, the different charger types led to the better solutions in terms

of recharging cost and vehicle number. The comparison of results on EVRPTWDCS-PR to

the original research paper cannot be adequately done, as Keskin et al. [22] only reported

cumulative sum of vehicles and total traveled distance and did not observe a different number

of virtual CSs vertices.

Table 4.13: Solving small instances with CPLEX

Instance β
EVRPTW-FR EVRPTW-PR EVRPTWDCS-PR

K tK
e R d td

e R K tK
e R d td

e R K tK
e R rec trec

e R

C101-5
1 2 0.01 O 257.75 0.02 O 2 0.01 O 257.75 0.01 O 2 0.01 O 253.29 0.01 O
2 2 0.07 O 257.75 0.01 O 2 0.06 O 257.75 0.02 O 2 0.06 O 250.69 0.18 O
3 2 0.09 O 257.75 0.12 O 2 0.47 O 257.75 0.21 O 2 0.36 O 250.69 0.73 O

C103-5
1 2 0.01 O 165.67 0.01 O 2 0.01 O 165.67 0.01 O 2 0.01 O 165.67 0.01 O
2 1 0.01 O 176.05 0.01 O 1 0.01 O 175.37 0.15 O 1 0.02 O 175.37 0.07 O
3 1 0.07 O 176.05 0.20 O 1 0.09 O 175.37 0.08 O 1 0.09 O 175.37 0.07 O

C206-5
1 1 0.01 O 245.34 0.01 O 1 0.02 O 244.37 0.01 O 1 0.01 O 244.37 0.01 O
2 1 0.08 O 242.56 0.01 O 1 0.22 O 242.56 0.13 O 1 0.10 O 242.56 1.16 O
3 1 7.42 O 242.56 0.15 O 1 27.07 O 242.56 0.12 O 1 14.275 O 242.56 66.59 O

C208-5
1 1 0.06 O 158.48 0.14 O 1 0.01 O 158.48 0.01 O 1 0.01 O 158.48 0.01 O
2 1 0.40 O 158.48 0.20 O 1 0.18 O 158.48 0.02 O 1 0.01 O 158.48 0.05 O
3 1 0.52 O 158.48 0.14 O 1 0.56 O 158.48 0.16 O 1 0.23 O 158.48 0.45 O

R104-5
1 2 0.13 O 136.69 0.12 O 2 0.17 O 136.69 0.01 O 2 0.01 O 136.69 0.01 O
2 2 0.32 O 136.69 0.19 O 2 0.19 O 136.69 0.01 O 2 0.01 O 136.69 0.05 O
3 2 0.39 O 136.69 0.15 O 2 0.82 O 136.69 0.03 O 2 0.23 O 136.69 0.19 O

R105-5
1 2 0.01 O 156.08 0.08 O 2 0.01 O 156.08 0.01 O 2 0.01 O 156.08 0.01 O
2 2 0.33 O 156.08 0.21 O 2 0.15 O 156.08 0.01 O 2 0.01 O 156.08 0.03 O
3 2 0.23 O 156.08 0.13 O 2 0.16 O 156.08 0.04 O 2 0.05 O 156.08 0.14 O

R202-5
1 1 0.25 O 128.78 0.21 O 1 0.02 O 128.78 0.01 O 1 0.01 O 128.78 0.01 O
2 1 0.37 O 128.78 0.23 O 1 0.13 O 128.78 0.05 O 1 0.02 O 128.78 0.15 O
3 1 1.47 O 128.78 0.11 O 1 1.76 O 128.78 0.03 O 1 0.51 O 128.78 2.75 O

R203-5
1 1 0.12 O 179.06 0.15 O 1 0.01 O 179.06 0.01 O 1 0.01 O 179.06 0.01 O
2 1 0.78 O 179.06 0.18 O 1 0.45 O 179.06 0.01 O 1 0.09 O 179.06 0.31 O
3 1 45.85 O 179.06 0.15 O 1 84.46 O 179.06 0.10 O 1 31.72 O 179.06 12.98 O

RC105-5
1 2 0.02 O 241.30 0.08 O 2 0.03 O 241.30 0.07 O 2 0.01 O 241.30 0.01 O
2 2 0.38 O 241.30 0.17 O 2 0.68 O 233.77 0.14 O 2 0.17 O 233.77 0.49 O
3 2 2.72 O 241.30 0.13 O 2 19.49 O 233.77 0.13 O 2 120 F 244.45 120 F

RC108-5
1 2 0.09 O 253.93 0.04 O 2 0.07 O 253.93 0.03 O 2 0.02 O 253.93 0.01 O
2 2 0.11 O 253.93 0.03 O 2 0.46 O 253.93 0.01 O 2 0.12 O 253.93 0.26 O
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4. Hybrid adaptive large neighborhood search method

Instance β
EVRPTW-FR EVRPTW-PR EVRPTWDCS-PR

K tK
e R d td

e R K tK
e R d td

e R K tK
e R rec trec

e R
3 2 1.15 O 253.93 0.03 O 2 8.71 O 253.93 0.02 O 2 2.29 O 253.93 120 F

RC204-5
1 1 0.13 O 176.39 0.16 O 1 0.13 O 176.39 0.04 O 1 0.01 O 176.39 0.05 O
2 1 1.15 O 176.39 0.12 O 1 1.73 O 176.39 0.15 O 1 0.75 O 176.39 2.78 O
3 1 120 F 176.39 0.16 O 1 120 F 176.39 0.12 O 1 120 F 176.39 120 F

RC208-5
1 1 0.26 O 167.98 0.16 O 1 0.20 O 167.98 0.04 O 1 0.02 O 167.98 0.01 O
2 1 0.34 O 167.98 0.12 O 1 0.24 O 167.98 0.07 O 1 0.02 O 167.98 0.15 O
3 1 1.86 O 167.98 0.16 O 1 4.41 O 167.98 0.12 O 1 1.062 O 167.98 1.09 O

C101-10
1 3 0.01 O 393.76 0.01 O 3 0.02 O 393.56 0.01 O 3 0.4 O 382.93 0.49 O
2 3 0.96 O 393.76 0.03 O 3 42.02 O 388.25 0.18 O 3 120 F 382.93 120 F
3 3 77.09 O 393.76 0.20 O 3 120 F 388.25 0.14 O 3 120 F 382.93 120 F

C104-10
1 2 0.52 O 273.93 0.05 O 2 0.75 O 273.93 0.02 O 1 0.17 O 267.60 1.95 O
2 2 120 F 273.93 0.01 O 2 120 F 273.93 0.05 O 1 120 F 267.60 120 F
3 2 120 F 273.93 0.09 O 2 120 F 273.93 0.07 O 2 120 F 273.93 120 F

C202-10
1 1 0.01 O 304.06 0.05 O 1 0.01 O 304.06 0.05 O 1 0.04 O 304.06 0.49 O
2 1 1.08 O 304.06 0.16 O 1 65.05 O 304.06 0.13 O 1 21.52 O 304.06 120 F
3 1 42.50 O 304.06 0.25 O 1 120 F 304.06 0.37 O 1 120 F 304.06 120 F

C205-10
1 2 0.01 O 228.28 0.01 O 2 0.02 O 228.28 0.01 O 1 0.01 O 290.23 0.01 O
2 2 0.35 O 228.28 0.01 O 2 0.53 O 228.28 0.01 O 1 0.08 O 283.29 0.71 O
3 2 4.18 O 228.28 0.01 O 2 13.39 O 228.28 0.01 O 1 1.79 O 283.29 22.13 O

R102-10
1 3 0.04 O 249.19 0.06 O 3 0.02 O 249.19 0.01 O 3 0.04 O 249.19 0.04 O
2 3 0.13 O 249.19 0.07 O 3 0.18 O 249.19 0.03 O 3 0.50 O 249.19 9.15 O
3 3 0.27 O 249.19 0.06 O 3 4.25 O 249.19 0.04 O 3 120 F 259.93 120 F

R103-10
1 2 0.22 O 207.05 0.06 O 2 0.45 O 206.12 0.07 O 2 0.56 O 206.12 03.64 O
2 2 7.81 O 207.05 0.13 O 2 52.20 O 206.12 0.16 O 2 29.50 O 215.24 120 F
3 2 120 F 207.05 0.21 O 2 120 F 206.12 0.36 O 2 120 F 215.24 120 F

R201-10
1 2 0.03 O 228.36 0.01 O 2 0.04 O 228.36 0.01 O 2 0.06 O 228.36 0.01 O
2 1 0.57 O 241.51 0.06 O 1 13.74 O 241.51 0.04 O 1 2.03 O 254.96 120 F
3 1 120 F 241.51 0.17 O 1 120 F 241.51 0.02 O 1 120 F 254.96 120 F

R203-10
1 1 0.08 O 218.21 0.02 O 1 0.08 O 218.21 0.03 O 1 0.08 O 218.21 1.58 O
2 1 120 F 218.21 0.04 O 1 120 F 218.21 0.04 O 1 120 F 224.12 120 F
3 1 120 F 218.21 0.03 O 1 120 F 218.21 0.05 O 1 120 F 224.12 120 F

RC102-10
1 4 0.01 O 423.51 0.01 O 4 0.02 O 423.51 0.01 O 4 0.02 O 423.51 0.03 O
2 4 0.23 O 423.51 0.01 O 4 0.72 O 423.51 0.03 O 4 0.17 O 433.35 120 F
3 4 4.94 O 423.51 0.04 O 4 115.76 O 423.51 0.02 O 4 120 F 433.35 120 F

RC108-10
1 3 0.01 O 345.93 0.01 O 3 0.03 O 345.93 0.01 O 3 0.03 O 345.93 0.22 O
2 3 3.04 O 345.93 0.06 O 3 12.83 O 345.93 0.02 O 3 22.35 O 345.93 106.78 O
3 3 120 F 345.93 0.01 O 3 120 F 345.93 0.06 O 3 120 F 357.58 120 F

RC201-10
1 2 0.01 O 340.00 0.01 O 2 0.01 O 340.00 0.01 O 2 0.04 O 340.00 0.23 O
2 1 0.15 O 414.81 0.17 O 1 0.52 O 414.81 0.81 O 1 0.21 O 412.86 2.31 O
3 1 89.23 O 414.81 3.65 O 1 120 F 412.86 15.54 O − 120 I − 120 I

RC205-10
1 2 0.02 O 325.98 0.01 O 2 0.01 O 325.98 0.01 O 2 0.01 O 325.98 0.01 O
2 2 1.16 O 325.98 0.03 O 2 0.89 O 325.98 0.01 O 2 120 F 336.61 120 F
3 2 120 F 325.98 0.03 O 2 120 F 325.98 0.04 O 2 120 F 336.61 120 F

C103-15
1 3 23.20 O 390.61 2.97 O 3 120 F 377.49 2.58 O 2 5.77 O 374.44 120 F
2 3 120 F 384.29 7.85 O 3 120 F 348.46 0.73 O 2 120 F 372.85 120 F
3 3 120 F 384.29 10.02 O 3 120 F 348.46 0.53 O 2 120 F 399.25 120 F

C106-15
1 3 0.06 O 275.13 0.01 O 3 0.12 O 275.13 0.01 O 2 0.15 O 313.13 0.65 F
2 3 2.16 O 275.13 0.02 O 3 120 F 275.13 0.03 O 2 3.53 O 310.79 120 F
3 3 14.38 O 275.13 0.02 O 3 120 F 275.13 0.02 O 2 120 F 310.79 120 F

C202-15
1 2 0.49 O 383.62 0.10 O 2 1.26 O 383.62 0.18 O 2 0.89 O 381.23 38.98 O
2 2 120 F 383.62 0.51 O 2 120 F 383.62 0.54 O 2 120 F 381.23 120 F
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4.10. Results

Instance β
EVRPTW-FR EVRPTW-PR EVRPTWDCS-PR

K tK
e R d td

e R K tK
e R d td

e R K tK
e R rec trec

e R
3 2 120 F 383.62 1.33 O 2 120 F 383.62 1.90 O 1 120 F − 120 I

C208-15
1 2 0.18 O 300.55 0.3 O 2 0.18 O 300.55 0.3 O 2 0.15 O 300.55 7.52 O
2 2 120 F 300.55 0.12 O 2 120 F 300.55 0.07 O 1 11.96 O 339.21 120 F
3 2 120 F 300.55 0.13 O 2 120 F 300.55 0.10 O 1 120 F 339.21 120 F

R102-15
1 5 9.43 O 420.47 0.27 O 5 43.94 O 419.32 0.33 O 5 120 F 433.33 120 F
2 5 120 F 413.93 0.52 O 5 120 F 412.78 0.56 O 5 120 F − 120 I
3 6 120 F 419.64 0.66 O 5 120 F 412.78 2.39 O − 120 I − 120 I

R105-15
1 4 0.75 O 336.15 0.07 O 4 0.91 O 336.15 0.02 O 3 0.61 O 389.16 2.45 O
2 4 120 F 336.15 0.07 O 4 120 F 336.15 0.09 O 3 120 F − 120 I
3 4 120 F 336.15 0.04 O 4 120 F 336.15 0.33 O − 120 I − 120 I

R202-15
1 2 0.33 O 384.60 0.06 O 2 1.11 O 384.60 0.20 O 2 0.46 O 400.91 10.88 O
2 2 120 F 358.00 0.10 O 2 120 F 358.00 0.18 O 2 120 F − 120 I
3 2 120 F 358.00 0.36 O 2 120 F 358.00 0.39 O 2 120 F 410.92 120 F

R209-15
1 2 0.39 O 293.20 0.01 O 2 0.53 O 293.20 0.02 O 2 0.78 O 293.20 0.53 O
2 1 120 F 313.24 0.85 O 1 120 F 313.24 0.59 O 1 120 F 331.24 120 F
3 1 120 F 313.24 1.02 O 1 120 F 313.24 1.01 O 1 120 F 331.24 120 F

RC103-15
1 4 2.99 O 397.67 0.07 O 4 9.69 O 397.67 0.11 O 4 27.21 O 404.14 120 F
2 4 120 F 397.67 0.23 O 4 120 F 397.67 0.46 O 4 120 F 404.14 120 F
3 5 120 F 397.75 0.07 O 4 120 F 397.67 0.67 O − 120 I − 120 I

RC108-15
1 3 1.51 O 370.25 0.04 O 3 4.48 O 370.25 0.10 O 3 21.30 O 387.31 120 F
2 3 120 F 370.25 0.10 O 3 120 F 370.25 0.15 O − 120 I − 120 I
3 4 120 F 383.52 0.06 O 4 120 F 383.52 0.09 O − 120 I − 120 I

RC202-15
1 2 0.13 O 405.53 0.03 O 2 0.21 O 405.53 0.06 O 2 0.66 O 405.53 2.65 O
2 2 120 F 394.39 0.03 O 2 120 F 394.39 0.06 O 2 120 F 400.52 120 F
3 2 120 F 394.39 0.09 O 2 120 F 394.39 0.15 O 2 120 F 400.52 120 F

RC204-15
1 1 120 F 384.86 120 F 1 120 F 382.22 120 F 1 120 F 413.14 120 F
2 1 120 F 384.86 120 F 1 120 F 382.22 120 F 1 120 F 413.14 120 F
3 2 120 F 310.91 4.32 O 1 120 F 382.22 120 F − 120 I − 120 I

The comparison between solving a MILP model and proposed HALNS method on small

instances is presented in Table 4.14. The vehicle number K, total distance traveled d, recharging

cost rec, and execution time te (min) are reported for HALNS. The differences in used measures

to CPLEX solutions are noted with ∆K, ∆d, and ∆te (min), respectively. The best CPLEX

solution out of three possible (β ∈ 1,2,3) was used for comparison. The HALNS is able to

achieve all optimal/non-optimal solutions found by CPLEX, and even in 13 cases (bold font)

found a solution better than the non-optimal solution of CPLEX. In 5 instances, the used vehicle

number was lower, while in 8 instances for the EVRPTWDCS-PR variant, the recharging cost

was reduced. For CPLEX execution time, the sum of vehicle minimization time and secondary

objective minimization was used. As it can be seen, the HALNS execution time is much lower

than the execution time of CPLEX and shows all of the advantages of using a metaheuristic

procedure instead of the exact procedure.
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4. Hybrid adaptive large neighborhood search method

Table 4.14: Comparison between MILP program solved by CPLEX and HALNS method, on small
EVRPTW instances

Instance
EVRPTW-FR EVRPTW-PR EVRPTWDCS-PR

K d te ∆K ∆d ∆te K d te ∆K ∆d ∆te K rec te ∆K ∆rec ∆te
C101-5 2 257.75 0.03 0 0 −0.19 2 257.75 0.02 0 0 −0.66 2 250.69 0.14 0 0 −0.1
C103-5 1 176.05 0.02 0 0 −0.17 1 175.37 0.01 0 0 −0.16 1 175.37 0.1 0 0 0.01
C206-5 1 242.56 0.01 0 0 −7.57 1 242.56 0.01 0 0 −27.18 1 242.56 0.06 0 0 −1.21
C208-5 1 158.48 0.01 0 0 −0.65 1 158.48 0.01 0 0 −0.71 1 158.48 0.06 0 0 −0.01
R104-5 2 136.69 0.01 0 0 −0.52 2 136.69 0.01 0 0 −0.84 2 136.69 0.02 0 0 −0.04
R105-5 2 156.08 0.01 0 0 −0.35 2 156.08 0.01 0 0 −0.19 2 156.08 0.04 0 0 0.01
R202-5 1 128.78 0.01 0 0 −1.57 1 128.78 0.01 0 0 −1.78 1 128.78 0.05 0 0 −0.12
R203-5 1 179.06 0.01 0 0 −46.00 1 179.06 0.01 0 0 −84.55 1 179.06 0.05 0 0 −0.36

RC105-5 2 241.3 0.02 0 0 −2.83 2 233.77 0.01 0 0 −19.61 2 233.77 0.02 0 0 −0.65
RC108-5 2 253.93 0.02 0 0 −1.17 2 253.93 0.01 0 0 −8.73 2 253.93 0.07 0 0 −0.31
RC204-5 1 176.39 0.02 0 0 −120.16 1 176.93 0.01 0 0 −120.12 1 176.39 0.06 0 0 −3.47
RC208-5 1 167.98 0.02 0 0 −1.95 1 167.98 0.01 0 0 −4.52 1 167.98 0.06 0 0 −0.16
C101-10 3 393.76 0.09 0 0 −77.2 3 388.25 0.05 0 0 −120.31 3 382.93 0.2 0 0 −240.35
C104-10 2 273.93 0.08 0 0 −120.49 2 273.93 0.05 0 0 −120.12 1 267.6 0.14 0 0 −240.2
C202-10 1 304.06 0.07 0 0 −42.68 1 304.06 0.03 0 0 −120.35 1 304.06 0.15 0 0 −141.38
C205-10 2 228.28 0.06 0 0 −4.12 2 228.28 0.04 0 0 −13.36 1 283.29 0.1 0 0 −0.69
R102-10 3 249.19 0.04 0 0 −0.3 3 249.19 0.02 0 0 −4.27 3 249.19 0.06 0 0 −9.59
R103-10 2 207.05 0.07 0 0 −122.77 2 206.12 0.04 0 0 −120.90 2 206.12 0.12 0 0 −149.49
R201-10 1 241.51 0.07 0 0 −120.10 1 241.51 0.04 0 0 −120.09 1 241.25 0.12 0 −13.71−122.13
R203-10 1 218.21 0.07 0 0 −119.96 1 218.21 0.03 0 0 −120.02 1 218.21 0.12 0 0 −240.06

RC102-10 4 423.51 0.04 0 0 −4.94 4 423.51 0.02 0 0 −115.76 4 415.99 0.06 0 −7.52 −16.73
RC108-10 3 345.93 0.05 0 0 −120.15 3 345.93 0.02 0 0 −120.18 3 345.93 0.08 0 0 −129.04
RC201-10 1 412.86 0.08 0 0 −92.80 1 412.86 0.04 0 0 −135.50 1 412.86 0.14 0 0 −2.37
RC205-10 2 325.98 0.08 0 0 −120.39 2 325.98 0.05 0 0 −120.34 1 590.82 0.14−1 264.84 −121.22
C103-15 3 384.29 0.18 0 0 −128.16 3 348.46 0.11 0 0 −120.95 2 372.85 0.29 0 0 −119.84
C106-15 3 275.13 0.05 0 0 −2.13 3 275.13 0.04 0 0 −120 2 310.79 0.22 0 0 −123.32
C202-15 2 383.62 0.34 0 0 −122.94 2 383.62 0.29 0 0 −120.51 1 583.25 0.34−1 202.02 −240.93
C208-15 2 300.55 0.12 0 0 −123.68 2 300.55 0.09 0 0 −120.22 1 339.21 0.18 0 0 −131.95
R102-15 5 413.93 0.10 0 0 −121.27 5 412.78 0.08 0 0 −120.65 5 420.15 0.17 0 −13.18−121.72
R105-15 4 336.15 0.10 0 0 −119.99 4 336.15 0.05 0 0 −120.16 3 340.62 0.17 0 −48.54 −119.9
R202-15 2 358.00 0.36 0 0 −119.91 1 507.32 0.32−1 149.32−119.97 1 449.81 0.4 −1 65.21 −119.6
R209-15 1 313.24 0.21 0 0 −120.65 1 313.24 0.15 0 0 −120.45 1 313.24 0.43 0 −18 −239.58

RC103-15 4 397.67 0.12 0 0 −120.30 4 397.67 0.09 0 0 −120.59 4 397.67 0.15 0 −6.47 −241.04
RC108-15 3 370.25 0.09 0 0 −121.05 3 370.25 0.07 0 0 −120.26 3 370.25 0.15 0 −17.06−141.15
RC202-15 2 394.39 0.23 0 0 −119.80 2 394.39 0.15 0 0 −120.08 1 648.05 0.41−1 247.53 −242.2
RC204-15 1 384.86 0.30 0 0 −240 1 382.22 0.38 0 0 −239.93 1 382.22 0.34 0 −30.92−241.33
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4.10. Results

4.10.2 Comparison between HALNS and KESK-ALNS

To validate the HALNS method, a direct comparison to the implementation of the KESK-ALNS

[1] method is conducted. The initial solution is created in a similar way as in PGTONNH with

CS placement immediately before or after the customer when an energy violation occurs. In

PGTONNH, when a customer cannot be added to the current route, the optimization of CS

placement with the best CS insertion strategy is conducted. In KESK-ALNS, customers are

removed from the solution by one of the eight operators: random, worst distance, worst time,

shaw, proximity-based, demand-based, time-based, and zone removal. Additionally, one of

three options, for each customer removal operator, is selected at random: remove customer with

the first preceding CS, remove customer with the first succeeding CS and remove customer

only. For CS removal, two operators are applied: random and worst distance. For customer

insertion five operators are applied: greedy, regret-2, regret-3, time-based, and zone; while for

CS insertion operators greedy, best, and greedy with comparison are applied. To lower the

number of vehicles the random route removal and greedy route removal operators are used.

All of the removal and insertion operators have been tested as a part of the HALNS method,

and described in section 4.4, while a more detailed description can be found in [1, 37, 166].

For detailed description of KESK-ALNS method applied to solve EVRPTW-FR problem, the

reader is referred to Erdelić et al. [166].

Comparison of the proposed HALNS approach to the KESK-ALNS on EVRPTW-FR is pre-

sented in Table 4.15. Each method was run only once. The parameters presented by Keskin et al.

[1] are used for KESK-ALNS. Values with bold font represent cases in which HALNS outper-

forms KESK-ALNS. In 41 out of 56 instances, HALNS produced a better solution, with in total

10 vehicles less and even further decrease in total traveled distance. The average execution time

of HALNS is roughly 10 minutes lower than the average execution time of KESK-ALNS. The

comparison shows the advantage of using exact procedure and objective function with penalties

in terms of solution quality and overall execution time.
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4. Hybrid adaptive large neighborhood search method

Table 4.15: EVRPTW-FR distance - comparison between HALNS and KESK-ALNS

Inst.
KESK-ALNS HALNS Init.

K d te K d te ∆K ∆d
C101 12 1053.83 19.79 12 1053.83 2.65 0 0.00
C102 11 1081.17 18.73 11 1058.85 4.34 0 −22.31
C103 11 1002.01 15.67 11 1001.81 5.98 0 −0.2
C104 11 1036.04 17 10 1006.55 5.65 −1 −29.49
C105 11 1094.87 19.08 11 1080.85 3.82 0 −14.03
C106 11 1066.88 19.33 11 1057.65 4.43 0 −9.23
C107 11 1093.57 19.75 11 1031.56 2.69 0 −62.01
C108 11 1015.68 16.08 10 1125.95 2.35 −1 110.27
C109 11 1042.96 15.3 10 1085.37 7.22 −1 42.41
C201 4 645.16 22.28 4 645.16 2.50 0 0.00
C202 4 648.84 19.65 4 645.16 4.7 0 −3.68
C203 4 645.55 20.91 4 644.98 6.61 0 −0.57
C204 4 638.09 20.52 4 638.53 7.92 0 0.44
C205 4 641.13 21.82 4 641.13 3.03 0 0.00
C206 4 638.17 20.76 4 638.17 4.18 0 0.00
C207 4 638.17 20.97 4 638.17 5.01 0 0.00
C208 4 638.17 21.93 4 638.17 4.75 0 0.00
R101 18 1691.45 16.93 18 1663.04 10.23 0 −28.42
R102 16 1497.46 14.67 16 1490.40 12.01 0 −7.06
R103 13 1363.38 15.21 13 1311.45 11.77 0 −51.92
R104 11 1100.84 14.76 11 1089.87 15.10 0 −10.97
R105 16 1404.25 15.84 15 1383.29 10.30 −1 −20.96
R106 14 1329.12 14.21 14 1305.55 7.71 0 −23.57
R107 12 1195.27 13.25 12 1176.90 10.12 0 −18.38
R108 11 1069.03 14.37 11 1046.68 5.24 0 −22.34
R109 14 1290.85 13.42 13 1214.47 12.14 −1 −76.38
R110 13 1167.93 13.18 12 1098.57 11.18 −1 −69.36
R111 12 1160.77 12.29 12 1103.92 9.16 0 −56.86
R112 11 1025.89 13.29 11 1016.63 15.65 0 −9.26
R201 3 1269.32 23.98 3 1269.61 11.19 0 0.29
R202 3 1062.14 23.85 3 1056.88 21.73 0 −5.26
R203 3 914.48 33.56 3 920.38 27.43 0 5.9
R204 2 818.99 34 2 801.02 36.48 0 −17.96
R205 3 1014.86 34.73 3 1000.30 14.38 0 −14.56
R206 3 940.93 35.58 3 922.19 18.42 0 −18.74
R207 3 822.77 36.06 2 875.96 25.13 −1 53.19
R208 2 739.65 43.84 2 748.39 52.97 0 8.74
R209 3 885.32 28.8 3 882.89 13.2 0 −2.43
R210 3 857.32 31.16 3 862.36 14.71 0 5.04
R211 3 803.46 34.73 2 840.16 15.51 −1 36.7

RC101 17 1761.90 15.04 16 1738.64 6.55 −1 −23.26
RC102 15 1596.65 14.5 15 1603.88 6.49 0 7.23
RC103 13 1399.51 15.23 13 1351.46 7.36 0 −48.05
RC104 12 1255.23 14.45 11 1228.69 10.56 −1 −26.54
RC105 14 1525.00 14.61 14 1493.43 9.77 0 −31.57
RC106 13 1445.62 14.55 13 1450.57 11.43 0 4.95
RC107 12 1275.89 13.46 12 1357.71 9.66 0 81.83
RC108 11 1197.66 14.35 11 1213.25 13.85 0 15.59
RC201 4 1460.51 21.51 4 1446.84 7.27 0 −13.67
RC202 3 1444.58 22.45 3 1421.47 16.06 0 −23.11
RC203 3 1132.66 24.99 3 1069.18 35.54 0 −63.48
RC204 3 902.42 22.43 3 901.82 32.17 0 −0.60
RC205 3 1351.36 85.87 3 1284.68 12.08 0 −66.68
RC206 3 1218.77 20.47 3 1218.01 21.84 0 −0.76
RC207 3 1055.57 20.69 3 1039.17 27.09 0 −16.40
RC208 3 867.38 22.97 3 836.29 21.40 0 −31.09
AVG 8.14 1088.15 21.77 7.96 1078.00 12.66 −0.18 −10.15
SUM 456 60936.48 1218.85 446 60367.91 708.71 −10 −568.58
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4.10. Results

4.10.3 EVRPTW-PR

The results on EVRPTW instances for EVRPTW-PR with distance minimization are presented

in Table 4.16. The HALNS was run 10 time on each instance. The results are compared to the

BKS of Hierman et al. [54] (HIER) and Keskin et al. [1] (KESK). Three columns are used

to represent BKSs values: name N, best vehicle number K, and total traveled distance d. The

results of Shiffer et al. [53], which seem the best ones so far, were not considered. The authors

stated that they compared their results to the results of Keskin et al. [1], but did not use the

BKS values presented in the paper, but rather they used some different reference values which

are not available in the literature. The problem is that the authors reported the number of vehi-

cles as a difference to the used reference values, which are unknown. Therefore, an adequate

comparison cannot be done. For the HALNS method, the following columns are presented:

average vehicle number K, best vehicle number Kbest , the difference between BKS and HALNS

best vehicle number ∆K, average total traveled distance d, best total traveled distance dbest , rel-

ative difference ∆d and percentage relative difference ∆pd between BKS and best HALNS total

traveled distance, total time of best HALNS solution totbest , recharging cost of best HALNS

solution recbest , average execution time te in minutes, and a number of CSs in the best solution,

m. The relative percentage difference was computed as ∆pd = dbest−dBKS
dBKS

· 100. It is important

to note that in distance difference computation, ∆d and ∆pd, only the solutions that produced

the minimum number of vehicles by HALNS method were considered, because otherwise, with

a higher number of vehicles, the total traveled distance decreases which then influences the

comparison. The summary of the results is presented in the last two rows as the average and

sum values. Additionally, to evaluate the PGTONNH heuristic used to create an initial solution,

average initial vehicle number Kini and average total distance traveled dini columns are added.

All rows in which the HALNS produced a better solution regarding the vehicle number or the

total traveled distance are represented with bold font.

In 44 out of 56 instances, the HALNS found a better solution, with in total 9 vehicle less,

and−0.18 average relative percentage difference of total traveled distance, meaning that even if

the lower number of vehicles is found, the HALNS finds a better user configuration in terms of

distance minimization. The average value of the average vehicle number K has almost the same

value as the average of the BKSs vehicle number, indicating the good average performance of

HALNS. The columns for total time and recharging cost were added to show how much the

total time increases, and to verify the recharging cost computation with a single charger type.

In terms of average execution time, HALNS (6.61 min) outperforms both HIER (9.96 min)

and KESK (11.14 min). It can be noted that Shiffer et al. [53], although hard to compare,

produced some solutions that are both better and worse than HIER, KESK, or HALNS, with

the lowest execution time of 4.31 minutes. The initial solution constructed by PGTONNH on

average produced 6 vehicles more than the best solution, while in the overall sum, it produced
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4. Hybrid adaptive large neighborhood search method

Table 4.16: EVRPTW-PR distance - results

Inst.
BKS HALNS Init.

N K d K Kbest ∆K d dbest ∆d ∆pd totbest recbest te m Kini dini

C101 HIER 12 1044.51 12 12 0 1044.55 1043.38 −1.13 −0.11 12647.62 1043.38 2.845 8 23.69 2879.38
C102 HIER 11 1033.8 10.82 10 −1 1045.75 1058.67 24.87 2.41 11619.45 1058.67 3.29 12 19.92 2628.37
C103 KESK 10 973.39 10 10 0 993.23 971.19 −2.2 −0.23 11411.29 971.19 3.345 9 17.28 2336.15
C104 KESK 10 886.72 10 10 0 893.31 884.38 −2.34 −0.26 11057.74 884.38 6.264 7 14.64 2016.23
C105 KESK 11 1037.78 10.77 10 −1 1069.92 1064.66 26.88 2.59 11436.3 1064.66 1.959 11 20.67 2626.46
C106 KESK 11 1024.18 10.77 10 −1 1054.11 1061.61 37.43 3.65 11376.02 1061.61 2.536 11 20.08 2559.07
C107 KESK 10 1058.11 10.69 10 0 1050.52 1046.5 −11.61 −1.1 11254.18 1046.5 2.65 12 18.49 2384.79
C108 KESK 10 1033.5 10.46 10 0 1034.06 1022.93 −10.57 −1.02 11017.02 1022.93 3.187 12 16.59 2172.41
C109 HIER 10 946.84 10 10 0 984.46 940.38 −6.46 −0.68 10744.74 940.38 3.093 9 14.51 1921.14
C201 KESK 4 629.95 4 4 0 629.95 629.95 0 0 10125.99 629.95 2.932 3 8.1 1836.97
C202 KESK 4 629.95 4 4 0 629.95 629.95 0 0 10125.99 629.95 7.004 3 6.72 2148.82
C203 KESK 4 629.95 4 4 0 629.95 629.95 0 0 10074.33 629.95 7.456 3 6.28 2060.92
C204 KESK 4 629.95 4 4 0 631.8 628.91 −1.04 −0.17 10343.46 628.91 8.791 3 5.59 1561.87
C205 KESK 4 629.95 4 4 0 629.95 629.95 0 0 10020.61 629.95 4.053 3 6.77 1542.77
C206 KESK 4 629.95 4 4 0 629.95 629.95 0 0 10021.16 629.95 5.349 3 6.31 1591.78
C207 KESK 4 629.95 4 4 0 629.95 629.95 0 0 10021.43 629.95 5.866 3 6.63 1846.79
C208 KESK 4 629.95 4 4 0 629.95 629.95 0 0 10021.43 629.95 4.936 3 6.13 1608.48
R101 HIER 18 1630.14 17.75 17 −1 1664.27 1624.89 −5.25 −0.32 3587.38 1624.89 4.647 27 28.54 2603.04
R102 HIER 15 1521.32 15.52 15 0 1448.97 1454.53 −66.79 −4.39 3123.33 1454.53 7.692 25 27.26 2506.72
R103 KESK 13 1262.75 12.77 12 −1 1243.05 1304.24 41.49 3.29 2650.75 1304.24 7.407 23 22.73 2248.32
R104 KESK 11 1078.99 11 11 0 1065.81 1051.41 −27.58 −2.56 2386.27 1051.41 9.124 12 18.69 1894.25
R105 HIER 14 1396.8 14.08 14 0 1372.81 1347.8 −49 −3.51 2903.37 1347.8 5.262 21 24.62 2431.5
R106 HIER 13 1281.09 13 13 0 1284.34 1263.13 −17.96 −1.4 2722.36 1263.13 6.403 19 22.42 2301.46
R107 KESK 12 1118.91 11 11 −1 1121.92 1104.51 −14.4 −1.29 2391.69 1104.51 7.624 17 19 1966.8
R108 KESK 11 1031.14 10.85 10 −1 1036.16 1030.44 −0.7 −0.07 2239.85 1030.44 9.866 16 17.35 1847.01
R109 HIER 12 1265.82 12.04 12 0 1209.13 1176.69 −89.13 −7.04 2569.17 1176.69 5.985 16 19.81 2052.1
R110 HIER 11 1094.99 11 11 0 1084.6 1067.11 −27.88 −2.55 2395.6 1067.11 7.168 15 19 1986.54
R111 HIER 11 1147.22 11.04 11 0 1095.81 1076.15 −71.07 −6.19 2338.33 1076.15 6.444 14 19.04 1967.16
R112 HIER 11 1013.94 11 11 0 1009.25 1001.79 −12.15 −1.2 2322.52 1001.79 9.335 13 17.35 1853.19
R201 HIER 3 1261.64 3 3 0 1268.19 1255.81 −5.83 −0.46 2892.61 1255.81 8.653 7 5.15 1962.26
R202 HIER 3 1051.46 3 3 0 1056.97 1052.52 1.06 0.1 2936.01 1052.52 12.307 4 4.85 1885.12
R203 KESK 3 895.54 3 3 0 906.61 895.54 0 0 2930.01 895.54 17.363 4 4.73 1677.73
R204 KESK 2 780.14 2 2 0 790.67 779.49 −0.65 −0.08 1987.21 779.49 21.046 3 4.08 1412.31
R205 HIER 3 987.36 3 3 0 996.27 987.22 −0.14 −0.01 2718.76 987.22 7.366 4 4.31 1743.91
R206 KESK 3 922.7 3 3 0 938.76 922.08 −0.62 −0.07 2763.95 922.08 12.932 5 4.38 1717.13
R207 HIER 2 846.53 2 2 0 861.92 845.19 −1.34 −0.16 1993.88 845.19 17.518 3 3.68 1551.15
R208 KESK 2 736.12 2 2 0 749.44 736.46 0.34 0.05 1911.93 736.46 20.478 2 3.44 1354.14
R209 HIER 3 867.8 3 3 0 885.23 863.17 −4.63 −0.53 2726.92 863.17 10.987 4 4.24 1724.12
R210 KESK 3 843.36 3 3 0 855.09 844.71 1.35 0.16 2785.5 844.71 11.116 5 4.38 1730.9
R211 HIER 2 857.1 2 2 0 842.95 825.25 −31.85 −3.72 1892.85 825.25 17.683 3 3.54 1580.25

RC101 HIER 15 1725.73 15.24 15 0 1708.76 1661.53 −64.2 −3.72 3193.93 1661.53 5.055 22 27.82 3214.63
RC102 KESK 14 1155.5 14.12 14 0 1534.84 1510.16 354.66 30.69 2951.51 1510.16 7.537 19 24.82 2975.97
RC103 HIER 12 1388.72 12.65 12 0 1356.09 1359.34 −29.38 −2.12 2705.8 1359.34 7.378 15 21.59 2610.07
RC104 HIER 11 1181.26 11 11 0 1192.84 1174.32 −6.94 −0.59 2416.92 1174.32 9.096 13 17.81 2209.26
RC105 KESK 14 1458.49 13.56 13 −1 1471.61 1471.8 13.31 0.91 2861.33 1471.8 4.744 19 22.94 2713.92
RC106 HIER 13 1397.55 13 13 0 1419.71 1391.23 −6.32 −0.45 2832.9 1391.23 5.48 16 22.06 2693.11
RC107 HIER 12 1255.03 11.5 11 −1 1273.87 1244.37 −10.66 −0.85 2448.38 1244.37 5.485 15 19.75 2425.19
RC108 HIER 11 1165.6 11 11 0 1180.51 1154.14 −11.46 −0.98 2391.45 1154.14 6.996 12 18.5 2279.13
RC201 HIER 4 1446.03 4 4 0 1450.44 1433.57 −12.46 −0.86 3650.43 1433.57 6.884 7 5.81 2406.97
RC202 KESK 3 1416.96 3 3 0 1419.74 1403.67 −13.29 −0.94 2838.67 1403.67 13.51 6 5.5 2316.2
RC203 HIER 3 1061.12 3 3 0 1072.29 1054.91 −6.21 −0.59 2708.69 1054.91 18.325 7 5 1984.47
RC204 HIER 3 887.1 3 3 0 893.04 884.75 −2.35 −0.26 2679.15 884.75 20.047 5 4.75 1688.23
RC205 KESK 3 1262.22 3 3 0 1292.14 1238.46 −23.76 −1.88 2661.49 1238.46 11.456 10 5.67 2187.37
RC206 HIER 3 1200.74 3 3 0 1219.21 1197.6 −3.14 −0.26 2693.07 1197.6 10.307 6 4.67 2006.61
RC207 HIER 3 985.67 3 3 0 1012.96 978.3 −7.37 −0.75 2515.67 978.3 13.378 5 4.33 1922.29
RC208 HIER 3 836.93 3 3 0 850.26 833.12 −3.81 −0.46 2425.03 833.12 16.426 6 4.2 1676.95

AVG 7.77 1049.93 7.77 7.61 −0.16 1059.78 1047.03 −2.9 −0.18 5115.42 1047.03 6.61 10 13.15 2089.82
SUM 435 58795.94 434.86 426 −9 59347.89 58633.66 −162.28 −9.98 286463.43 58633.66 482.07 560 736.21 117029.88
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4.10. Results

310 vehicles more. The initial total traveled distance is significantly higher than the best one.

This is expected as a feasible solution in EVRPTW is hard to achieve, and therefore a larger

number of vehicles has to be used. On average, 10 CSs are visited per instance, or 1.31 per

vehicle route, with in total 560 CS visited in all instances.

The total time has significantly larger values than the total traveled distance. To show the

importance of the total time objective function, in Table 4.17 the results for the minimization of

the total time in EVRPTW-PR are presented. The difference in the implementation is the move

evaluation in O(n), which is why an average execution time is significantly larger, resulting

in 27.11 minutes. The columns for BKS solutions were not presented as the minimization of

total time has not yet been addressed in the literature. Instead, the solutions from distance

minimization are used as reference values for the comparison, vehicle number Kdist
best and total

time totdist
best . It can be seen that the total minimum number of vehicles is the same as in distance

minimization and that total time decreased in 53 out of 56 instances. On average the total time

is reduced by 5.27% at the expense of the increase in total traveled distance. Interestingly, the

total number of visited CSs increased from 560 in distance minimization to 741 in total time

minimization, as the costs of traveling to CS are somewhat reduced. This mostly refers to the

fact that spare time can be utilized more for charging at the expense of total traveled distance.
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4. Hybrid adaptive large neighborhood search method

Table 4.17: EVRPTW-PR total time - results

Inst. Kdist
best totdist

best K Kbest ∆K tot totbest ∆tot ∆ptot dbest recbest te m
C101 12 12647.62 12 12 0 11747.5 11721.44 −926.18 −7.32 1214.74 1214.74 8.915 16
C102 10 11619.45 10.25 10 0 11435 11477.35 −142.1 −1.22 1160.41 1160.41 9.4 15
C103 10 11411.29 10 10 0 11108.79 11055.34 −355.95 −3.12 1078.5 1078.5 10.838 13
C104 10 11057.74 10 10 0 10465.17 10463.36 −594.38 −5.38 939.12 939.12 23.4 7
C105 10 11436.3 10 10 0 11335.96 11335.96 −100.34 −0.88 1083.22 1083.22 4.149 12
C106 10 11376.02 10 10 0 11264.54 11260.29 −115.73 −1.02 1086.74 1086.74 4.708 15
C107 10 11254.18 10 10 0 11229.58 11159.48 −94.7 −0.84 1105.85 1105.85 4.182 12
C108 10 11017.02 10 10 0 10992.04 10976.64 −40.38 −0.37 1040.68 1040.68 5.132 12
C109 10 10744.74 10 10 0 10609.13 10601.91 −142.83 −1.33 971.74 971.74 10.024 9
C201 4 10125.99 4 4 0 10027.26 10027.26 −98.73 −0.98 633.6 633.6 12.207 4
C202 4 10125.99 4 4 0 10027.26 10027.26 −98.73 −0.98 633.6 633.6 26.522 4
C203 4 10074.33 4 4 0 10020.08 10020.08 −54.25 −0.54 631.66 631.66 38.362 4
C204 4 10343.46 4 4 0 10016.92 10016.92 −326.54 −3.16 629.95 629.95 37.646 3
C205 4 10020.61 4 4 0 10020.61 10020.61 0 0 629.95 629.95 15.223 3
C206 4 10021.16 4 4 0 10015.92 10015.92 −5.24 −0.05 633.09 633.09 20.562 3
C207 4 10021.43 4 4 0 10016.2 10016.2 −5.23 −0.05 633.09 633.09 24.537 3
C208 4 10021.43 4 4 0 10013.31 10013.31 −8.12 −0.08 635.01 635.01 20.161 4
R101 17 3587.38 17 17 0 3476.27 3470.15 −117.23 −3.27 1869.62 1869.62 12.852 45
R102 15 3123.33 15.5 15 0 3023.42 2980.85 −142.48 −4.56 1584.32 1584.32 22.415 31
R103 12 2650.75 12.5 12 0 2624.45 2650.75 0 0 1304.24 1304.24 22.102 24
R104 11 2386.27 11 11 0 2268 2248.74 −137.53 −5.76 1078.86 1078.86 23.445 14
R105 14 2903.37 14 14 0 2818.16 2817.59 −85.78 −2.95 1441.54 1441.54 17.971 29
R106 13 2722.36 13 13 0 2592.78 2570.67 −151.69 −5.57 1298.63 1298.63 16.954 21
R107 11 2391.69 11 11 0 2351.18 2341.7 −49.99 −2.09 1147.96 1147.96 24.081 18
R108 10 2239.85 10.5 10 0 2227.49 2239.85 0 0 1030.44 1030.44 24.99 15
R109 12 2569.17 12 12 0 2504.22 2483.04 −86.13 −3.35 1239.39 1239.39 23.556 21
R110 11 2395.6 11 11 0 2279.56 2276.36 −119.24 −4.98 1103.77 1103.77 30.008 17
R111 11 2338.33 11 11 0 2347.16 2347.16 8.83 0.38 1140.51 1140.51 21.183 19
R112 11 2322.52 11 11 0 2202.02 2202.02 −120.5 −5.19 1043.17 1043.17 32.718 15
R201 3 2892.61 3 3 0 2826.55 2826.55 −66.06 −2.28 1609.59 1609.59 57.833 17
R202 3 2936.01 3 3 0 2739.8 2739.8 −196.21 −6.68 1578.75 1578.75 45.674 13
R203 3 2930.01 3 3 0 2146.67 2146.67 −783.34 −26.74 1051.38 1051.38 77.609 9
R204 2 1987.21 2 2 0 1886.77 1886.77 −100.44 −5.05 843.15 843.15 69.769 4
R205 3 2718.76 3 3 0 2430.51 2430.51 −288.25 −10.6 1283.76 1283.76 26.371 17
R206 3 2763.95 3 3 0 2163.32 2163.32 −600.63 −21.73 1064.45 1064.45 38.925 6
R207 2 1993.88 2 2 0 1891.3 1891.3 −102.58 −5.14 855.53 855.53 29.98 3
R208 2 1911.93 2 2 0 1786.94 1786.94 −124.99 −6.54 743.48 743.48 37.033 2
R209 3 2726.92 3 3 0 2147.3 2147.3 −579.62 −21.26 1055.56 1055.56 22.116 8
R210 3 2785.5 3 3 0 2100.14 2100.14 −685.36 −24.6 1010.57 1010.57 28.433 7
R211 2 1892.85 2 2 0 1885.58 1885.58 −7.27 −0.38 849.31 849.31 21.032 5

RC101 15 3193.93 15 15 0 3137.99 3137.08 −56.85 −1.78 1815.18 1815.18 9.921 28
RC102 14 2951.51 14 14 0 2870.18 2864.53 −86.98 −2.95 1602.56 1602.56 13.616 23
RC103 12 2705.8 12 12 0 2635.19 2593.36 −112.44 −4.16 1413.48 1413.48 10.602 20
RC104 11 2416.92 11 11 0 2348.18 2338.45 −78.47 −3.25 1198.84 1198.84 17.804 14
RC105 13 2861.33 13.5 13 0 2836.68 2818.79 −42.54 −1.49 1536.32 1536.32 7.679 22
RC106 13 2832.9 13 13 0 2660.66 2659.51 −173.39 −6.12 1441.78 1441.78 10.613 17
RC107 11 2448.38 11 11 0 2427.25 2427.25 −21.13 −0.86 1252.3 1252.3 12.768 17
RC108 11 2391.45 11 11 0 2312.82 2311.79 −79.66 −3.33 1187.96 1187.96 15.862 14
RC201 4 3650.43 4 4 0 3337.37 3323.58 −326.85 −8.95 2090.59 2090.59 26.697 19
RC202 3 2838.67 3 3 0 2722.59 2722.53 −116.14 −4.09 1612.01 1612.01 50.101 10
RC203 3 2708.69 3 3 0 2419.05 2411.74 −296.95 −10.96 1307.61 1307.61 66.175 7
RC204 3 2679.15 3 3 0 2153.38 2120.7 −558.45 −20.84 1011.86 1011.86 70.709 7
RC205 3 2661.49 3 3 0 2609.11 2601.62 −59.87 −2.25 1431.83 1431.83 32.645 14
RC206 3 2693.07 3 3 0 2558.23 2558.16 −134.91 −5.01 1441.48 1441.48 41.42 12
RC207 3 2515.67 3 3 0 2266.24 2266.24 −249.43 −9.92 1180.79 1180.79 53.504 10
RC208 3 2425.03 3 3 0 2097.31 2097.31 −327.72 −13.51 997.65 997.65 75.079 8
AVG 7.61 5115.42 7.65 7.61 0 4936.73 4930.28 −185.14 −5.27 1151.63 1151.63 27.11 13.23
SUM 426 286463.43 428.25 426 0 276457.09 276095.73 −10367.7 −295.13 64491.17 64491.17 1518.21 741
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4.10. Results

4.10.4 EVRPTW-FR

The results on EVRPTW instances for the EVRPTW-FR problem are presented in Table 4.18.

The same columns as in EVRPTW-PR variant are used. The results are compared to the BKSs

of: Schneider et al. [18] (SCHN), Goeke et al. [20] (GOEK), Hierman et al. [29] (HIE1),

Hierman et al. [54] (HIE2), Keskin et al. [1] (KESK) and Schiffer et al. [53] (SCHI). It can be

seen that HALNS was not able to reduce the number of vehicles on four instances: R105, R106,

R110 and RC102. Nevertheless, nine new BKSs (bold fonts) are found for instances: C109,

R104, R108, R211, RC105, RC107, RC201, RC205 and RC206. The total traveled distance is

lower than in BKSs, due to the higher number of vehicles. Compared to the partial recharge

strategy it can be seen, that partial recharging produced 18 vehicles less, with also lower total

traveled distance and total time. As a result partial recharge strategy uses 48 CSs more. The

selection of the recharging strategy depends on the delivery problem and decision makers. With

partial strategy better results can be achieved, but in real life it is stressful for the driver to visit

CSs more frequently, and not only that, but also to perform time-precise charging and leave a

CS without a possibly fully charged battery. The inital values produced by PGTONNH have

almost the same values as in the partial variant, as same heuristic is used.

The results on EVRPTW instances for EVRPTW-FR with total time minimization are pre-

sented in Table 4.19. The best number of vehicles Kdist
best and the best total times totdist

best achieved

with distance minimization are used as reference values for the comparison. As the objective

function changed, the total time improved in almost all instances, except the ones in which

HALNS was not able to find a lower number of vehicles (three instances: C103, C108, and

R109). Similar to the results of the partial strategy, here also the total traveled distance in-

creased. The number of visited CS did not increase as much as in partial recharge strategy but

still an increase is present. The average execution time increased significantly compared to the

distance minimization due to the O(n) evaluation, while compared to the total time in partial

strategy, the execution time is roughly the same.
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4. Hybrid adaptive large neighborhood search method

Table 4.18: EVRPTW-FR distance - results

Inst.
BKS HALNS Init.

N K d K Kbest ∆K d dbest ∆d ∆pd totbest recbest te m Kini dini

C101 SCHN 12 1053.83 12 12 0 1053.83 1053.83 0 0 12904.61 1053.83 2.799 8 23.89 2910.32
C102 GOEK 11 1051.38 11.1 11 0 1052.44 1051.38 0 0 12832.67 1051.38 4.574 8 19.75 2626.42
C103 GOEK 10 1034.86 10.84 10 0 1015.17 1034.86 0 0 11818.14 1034.86 5.647 9 17.38 2374.36
C104 KESK 10 951.57 10 10 0 955.45 951.57 0 0 11575.87 951.57 5.13 7 14.3 1959.19
C105 SCHN 11 1075.37 11.45 11 0 1057.14 1075.37 0 0 12039.54 1075.37 3.085 9 20.41 2613.78
C106 GOEK 11 1057.65 11.15 11 0 1053.06 1057.65 0 0 12181.07 1057.65 3.797 9 20.04 2560.44
C107 SCHN 11 1031.56 11 11 0 1031.56 1031.56 0 0 12167.43 1031.56 4.555 9 18.09 2328.04
C108 GOEK 10 1095.66 10.98 10 0 1030.38 1125.95 30.29 2.76 11899.76 1125.95 4.485 11 16.6 2177.86
C109 GOEK 10 1033.67 10.77 10 0 1005.77 1027.1 −6.57 −0.64 11781.58 1027.1 5.398 9 14.5 1905.5
C201 SCHN 4 645.16 4 4 0 645.16 645.16 0 0 10288.23 645.16 3.517 4 8.11 1920.25
C202 SCHN 4 645.16 4 4 0 645.16 645.16 0 0 10288.23 645.16 11.113 4 6.78 2149.84
C203 SCHN 4 644.98 4 4 0 644.98 644.98 0 0 11114.16 644.98 28.937 4 6.15 2040.18
C204 SCHN 4 636.43 4 4 0 636.43 636.43 0 0 10770.32 636.43 84.382 4 5.52 1643.08
C205 SCHN 4 641.13 4 4 0 641.13 641.13 0 0 10289.5 641.13 6.519 3 6.58 1550.67
C206 SCHN 4 638.17 4 4 0 638.17 638.17 0 0 11506.96 638.17 15.538 4 6.32 1610.87
C207 SCHN 4 638.17 4 4 0 638.17 638.17 0 0 11360.96 638.17 18.558 4 6.44 1857.29
C208 SCHN 4 638.17 4 4 0 638.17 638.17 0 0 11382.96 638.17 8.942 4 5.98 1580.2
R101 HIE2 18 1663.04 18.17 18 0 1664.39 1663.04 0 0 3820.37 1663.04 5.589 22 29.42 2639.1
R102 HIE2 16 1484.57 16.85 16 0 1475.81 1490.4 5.83 0.39 3301.68 1490.4 7.303 23 27.12 2519.81
R103 HIE2 13 1268.88 13.74 13 0 1283.85 1279.53 10.65 0.84 2817.76 1279.53 8.688 18 22.42 2212.81
R104 SCHN 11 1088.43 11.55 11 0 1087.43 1088.09 −0.34 −0.03 2429.12 1088.09 9.424 13 18.77 1925.41
R105 GOEK 14 1442.35 15 15 1 1390.84 1383.29 −59.06 −4.09 3109.09 1383.29 5.109 19 24.3 2389.2
R106 GOEK 13 1324.1 14 14 1 1283.53 1280.14 −43.96 −3.32 2812.46 1280.14 9.623 17 22.3 2259.19
R107 HIE2 12 1148.38 12 12 0 1152.32 1148.38 0 0 2610.63 1148.38 8.743 14 19 1962.19
R108 HIE2 11 1049.12 11.09 11 0 1046.91 1042.63 −6.49 −0.62 2388.86 1042.63 14.45 15 17.09 1823.34
R109 GOEK 12 1261.31 12.96 12 0 1243.28 1281.07 19.76 1.57 2634.99 1281.07 6.813 18 19.73 2017.35
R110 GOEK 11 1119.5 12 12 1 1098.36 1094.35 −25.15 −2.25 2610.55 1094.35 11.323 14 18.9 1969.53
R111 HIE2 12 1099.53 12 12 0 1107.58 1102.18 2.65 0.24 2618.52 1102.18 9.846 15 18.7 1938.43
R112 GOEK 11 1016.63 11 11 0 1017.63 1016.63 0 0 2411.74 1016.63 8.931 13 17.36 1843.76
R201 SCHI 3 1264.32 3 3 0 1268.08 1264.37 0.05 0 2912.47 1264.37 6.261 7 5.1 1989.45
R202 SCHN 3 1052.32 3 3 0 1053.59 1052.32 0 0 2882.2 1052.32 9.642 3 4.9 1876.99
R203 GOEK 3 895.54 3 3 0 896.08 895.54 0 0 2930.01 895.54 17.876 4 4.7 1709.23
R204 GOEK 2 779.49 2 2 0 781.05 779.49 0 0 1988.76 779.49 24.694 3 4.1 1431.08
R205 GOEK 3 987.36 3 3 0 994.05 989.03 1.67 0.17 2695.55 989.03 9.546 4 4.4 1787.28
R206 GOEK 3 922.19 3 3 0 927.69 922.19 0 0 2782.55 922.19 15.697 4 4.55 1744.27
R207 SCHI 2 843.2 2 2 0 858.15 848.67 5.47 0.65 1986.82 848.67 12.476 2 3.6 1602.67
R208 GOEK 2 736.12 2 2 0 741.1 736.12 0 0 1875.73 736.12 17.682 2 3.45 1348.08
R209 GOEK 3 867.05 3 3 0 876.72 871.23 4.18 0.48 2584.27 871.23 7.522 3 4.1 1732.51
R210 KESK 3 843.65 3 3 0 850.29 845.83 2.18 0.26 2788.83 845.83 7.873 5 4 1703.31
R211 GOEK 2 827.89 2 2 0 846 827.29 −0.6 −0.07 1901.2 827.29 12.739 3 3.5 1552.25

RC101 HIE2 16 1723.79 16 16 0 1730.84 1723.79 0 0 3445.33 1723.79 5.229 17 27 3155.7
RC102 HIE1 14 1659.53 15 15 1 1554.04 1552.55 −106.98 −6.45 3243.74 1552.55 9.902 16 25.18 2983.25
RC103 GOEK 13 1350.09 13 13 0 1351.01 1350.55 0.46 0.03 2821.98 1350.55 13.253 14 21.5 2613.91
RC104 GOEK 11 1227.25 11.86 11 0 1233.35 1228.69 1.44 0.12 2495.46 1228.69 9.161 13 18.05 2256.52
RC105 HIE2 14 1473.24 14 14 0 1474.24 1471.87 −1.37 −0.09 3078.57 1471.87 4.83 16 23.5 2748.56
RC106 HIE2 13 1423.27 13.5 13 0 1428.29 1423.27 0 0 2906.45 1423.27 6.058 16 21.55 2624.16
RC107 HIE2 12 1274.41 12 12 0 1276.14 1274.25 −0.16 −0.01 2691.41 1274.25 10.327 13 19.7 2392.66
RC108 HIE2 11 1197.41 11.08 11 0 1202.37 1197.41 0 0 2507.67 1197.41 9.334 14 18.25 2234.08
RC201 SCHN 4 1444.94 4 4 0 1446.08 1441.47 −3.47 −0.24 3649.46 1441.47 6.309 5 5.7 2333.28
RC202 SCHI 3 1408.16 3 3 0 1420.07 1414.97 6.81 0.48 2830.46 1414.97 14.988 5 5.6 2347.9
RC203 GOEK 3 1055.19 3 3 0 1059.59 1055.19 0 0 2728.63 1055.19 20.528 5 5.2 1956.69
RC204 SCHI 3 884.53 3 3 0 889.34 884.75 0.22 0.02 2679.81 884.75 27.052 5 4.92 1743.52
RC205 SCHI 3 1262.38 3.17 3 0 1250.7 1256.09 −6.29 −0.5 2701.78 1256.09 15.734 9 6 2171.85
RC206 GOEK 3 1188.63 3 3 0 1198.91 1187.72 −0.91 −0.08 2605.25 1187.72 10.614 4 4.58 2011.1
RC207 GOEK 3 985.03 3 3 0 998.64 985.03 0 0 2572.44 985.03 17.163 4 4.5 1877.68
RC208 GOEK 3 836.29 3 3 0 836.95 836.29 0 0 2456.21 836.29 18.74 5 4.2 1697.33
AVG 7.86 1069.5 8.08 7.93 0.07 1065.67 1066.47 −3.03 −0.19 5401.98 1066.47 11.86 9.14 13.1 2088.1
SUM 440 59892.03 452.26 444 4 59677.46 59722.34 −169.69 −10.38 302510.8 59722.34 664.05 512 733.78 116933.72
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4.10. Results

Table 4.19: EVRPTW-FR total time - results

Inst. Kdist
best totdist

best K Kbest ∆K tot totbest ∆tot ∆ptot dbest recbest m te

C101 12 12904.61 12 12 0 12013.6 11970.12 −934.49 −7.24 1198.22 1198.22 9 6.71
C102 11 12832.67 11 11 0 11827.1 11767.67 −1065 −8.3 1161.12 1161.12 11 13.61
C103 10 11818.14 11 11 1 11446.72 11378.78 −439.36 −3.72 1088.69 1088.69 7 27.28
C104 10 11575.87 10 10 0 11046.68 11015.17 −560.7 −4.84 1022.31 1022.31 7 21.53
C105 11 12039.54 11 11 0 11645.9 11636.47 −403.07 −3.35 1215.24 1215.24 10 8.24
C106 11 12181.07 11 11 0 11570.63 11539.57 −641.5 −5.27 1173.3 1173.3 9 12.04
C107 11 12167.43 11 11 0 11541.2 11343.52 −823.91 −6.77 1125.32 1125.32 8 8.46
C108 10 11899.76 11 11 1 11198.56 11171.53 −728.23 −6.12 1088.1 1088.1 7 14.88
C109 10 11781.58 10.4 10 0 11057.24 11132.86 −648.72 −5.51 1066.82 1066.82 7 11.91
C201 4 10288.23 4 4 0 10158.86 10158.86 −129.37 −1.26 653.51 653.51 3 6.45
C202 4 10288.23 4 4 0 10156.44 10156.44 −131.79 −1.28 661.69 661.69 3 20.19
C203 4 11114.16 4 4 0 10127.76 10127.76 −986.4 −8.88 659.08 659.08 3 31.44
C204 4 10770.32 4 4 0 10105.09 10104.72 −665.6 −6.18 654.28 654.28 3 49.62
C205 4 10289.5 4 4 0 10124.94 10124.94 −164.56 −1.6 664.95 664.95 3 9
C206 4 11506.96 4 4 0 10118.31 10115.85 −1391.11 −12.09 662.18 662.18 3 14.32
C207 4 11360.96 4 4 0 10124.78 10124.78 −1236.18 −10.88 664.9 664.9 4 19.13
C208 4 11382.96 4 4 0 10115.85 10115.85 −1267.11 −11.13 662.18 662.18 3 19.52
R101 18 3820.37 18 18 0 3709.23 3702.34 −118.03 −3.09 1860.1 1860.1 28 13.81
R102 16 3301.68 16.33 16 0 3159.48 3129.35 −172.33 −5.22 1594.45 1594.45 22 22.87
R103 13 2817.76 13.67 13 0 2797.65 2733.46 −84.3 −2.99 1350.54 1350.54 18 22.94
R104 11 2429.12 11 11 0 2403.84 2356.76 −72.36 −2.98 1134.97 1134.97 13 18.62
R105 15 3109.09 15 15 0 2988.98 2967.46 −141.63 −4.56 1535.98 1535.98 22 12.61
R106 14 2812.46 14 14 0 2691.03 2675.9 −136.56 −4.86 1364.33 1364.33 16 15.34
R107 12 2610.63 12 12 0 2458.36 2441.37 −169.26 −6.48 1220.88 1220.88 11 20.34
R108 11 2388.86 11 11 0 2311.15 2304 −84.86 −3.55 1082.21 1082.21 13 24.43
R109 12 2634.99 13 13 1 2605.29 2594.14 −40.85 −1.55 1310.27 1310.27 18 21.58
R110 12 2610.55 12 12 0 2386.92 2371.79 −238.76 −9.15 1156.74 1156.74 15 24.9
R111 12 2618.52 12 12 0 2449.53 2426.5 −192.02 −7.33 1181.55 1181.55 15 16.21
R112 11 2411.74 11 11 0 2315.01 2304.29 −107.45 −4.46 1093.57 1093.57 15 17.9
R201 3 2912.47 3 3 0 2829.74 2826.55 −85.92 −2.95 1624.69 1624.69 10 30.99
R202 3 2882.2 3 3 0 2739.8 2739.8 −142.4 −4.94 1425.79 1425.79 6 42.55
R203 3 2930.01 3 3 0 2156.13 2156.13 −773.88 −26.41 1060.98 1060.98 6 76.49
R204 2 1988.76 2 2 0 1884.7 1884.7 −104.06 −5.23 838.38 838.38 2 70.76
R205 3 2695.55 3 3 0 2634.99 2634.99 −60.56 −2.25 1393.78 1393.78 11 18.84
R206 3 2782.55 3 3 0 2142.09 2142.09 −640.46 −23.02 1039.29 1039.29 5 52.59
R207 2 1986.82 2 2 0 1910.73 1910.73 −76.09 −3.83 869.36 869.36 2 57.83
R208 2 1875.73 2 2 0 1817.31 1817.31 −58.42 −3.11 768.53 768.53 2 60
R209 3 2584.27 3 3 0 2129.19 2129.19 −455.08 −17.61 1021.49 1021.49 7 35.8
R210 3 2788.83 3 3 0 2095.76 2095.76 −693.07 −24.85 1005.94 1005.94 5 54.28
R211 2 1901.2 2 2 0 1891.5 1891.5 −9.7 −0.51 844.78 844.78 3 45.8

RC101 16 3445.33 16 16 0 3363.78 3278.03 −167.3 −4.86 1877.33 1877.33 21 10.11
RC102 15 3243.74 15 15 0 3016.07 2992.76 −250.98 −7.74 1670.39 1670.39 17 15.95
RC103 13 2821.98 13 13 0 2720.95 2688.33 −133.65 −4.74 1446.5 1446.5 13 18.72
RC104 11 2495.46 11.6 11 0 2504.03 2455.57 −39.89 −1.6 1243.18 1243.18 13 21.09
RC105 14 3078.57 14 14 0 2885.07 2879.73 −198.84 −6.46 1583.93 1583.93 15 12.56
RC106 13 2906.45 13.2 13 0 2767.84 2744.47 −161.98 −5.57 1465.07 1465.07 16 11.22
RC107 12 2691.41 12 12 0 2540.66 2535.33 −156.08 −5.8 1330.04 1330.04 13 14.64
RC108 11 2507.67 11.2 11 0 2433.18 2418.17 −89.5 −3.57 1225.31 1225.31 13 20.57
RC201 4 3649.46 4 4 0 3380.42 3269.71 −379.75 −10.41 2036.91 2036.91 14 23.03
RC202 3 2830.46 3 3 0 2723.2 2708.92 −121.54 −4.29 1610.41 1610.41 6 38.95
RC203 3 2728.63 3 3 0 2443.31 2443.31 −285.32 −10.46 1325.9 1325.9 6 61.69
RC204 3 2679.81 3 3 0 2130.12 2129.94 −549.87 −20.52 1018.71 1018.71 6 79.88
RC205 3 2701.78 3 3 0 2610.22 2605.79 −95.99 −3.55 1412.84 1412.84 8 26.66
RC206 3 2605.25 3 3 0 2558.16 2558.16 −47.09 −1.81 1425.78 1425.78 8 26.9
RC207 3 2572.44 3 3 0 2306.69 2306.69 −265.75 −10.33 1201.81 1201.81 7 50.29
RC208 3 2456.21 3 3 0 2127.54 2127.54 −328.67 −13.38 1023.38 1023.38 6 52.86
AVG 7.93 5401.98 8.02 7.98 0.05 5060.7 5042.2 −359.77 −6.97 1180.32 1180.32 9.77 27.80
SUM 444 302510.8 449.4 447 3 283399.31 282363.45 −20147.35 −390.44 66097.98 66097.98 547 1556.93
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4. Hybrid adaptive large neighborhood search method

4.10.5 EVRPTWDCS-FR

The EVRPTWDCS-FR problem has not been addressed in the literature, although more com-

plex problem EVRPTWDCS-PR has been studied in [22, 23]. Three charger types are con-

sidered, which recharge rate and recharge cost values are adopted from [22, 23] (although not

clearly stated) and presented in Table 4.20. The value kg represents the coefficient value with

which the instance recharge rate g for a single charger type is multiplied to obtain the recharge

rate for a particular charger type. The cost c, as already described, is the coefficient that multi-

plies the amount of energy recharged at CS.

Table 4.20: Charger type values in EVRPTW with different CSs

Type m kg c
Rapid 1 0.08 1.2
Fast 2 0.48 1.1
Slow 3 1 1

First, results on EVRPTW instances for distance minimization are presented in Table 4.21.

Instead of columns for initial solution three new columns m1 (rapid), m2 (fast) and m3 (slow) that

represent the number of respective chargers in the best solution are presented. The selection of

charger type has no effect when distance minimization is considered as always the fastest (rapid)

charging option is selected, which increases the overall charging cost by 1.2. The reference

values for comparison are selected as BKSs for EVRPTW-FR distance minimization, presented

in the previous subsection (bold values represent better solutions), labeled as KFR
best and dFR

best .

It can be seen that in 46 out of 56 instances, the better solutions were found, which includes

the decrease of the number of vehicles by 38 and, on average, 1.57% decrease in total traveled

distance. The sum of recharging cost is significantly higher than in EVRPTW-FR, while the

sum of the total time is much lower than in EVRPTW-FR, as less time is used for charging.

Interestingly, there is no difference in the number of visited CSs between the single and multiple

charger type variants.

Table 4.22 presents results on EVRPTW instances for the EVRPTWDCS-FR problem with

the minimization of recharging cost. The minimization of recharging costs for a full recharge

strategy has not yet been addressed in the literature. The recharging cost value for the mini-

mization of distance presented in Table 4.21, are used as reference values for the comparison,

labeled as Kdist
best and recdist

best . It can be seen that using different charger types reduced charging

costs in almost all instances, except the instance R108, where HALNS was not able to produce

a solution with a lower number of vehicles. On average, the recharging costs are reduced by

7.06%. The most used charger type is fast charging (m2) which is utilized 247 times and offers a

balance between recharging cost and recharging time. Next, the slow recharging is utilized 240

times, and then the rapid charger type, which is utilized 40 times. In total, 547 CSs are used,
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4.10. Results

Table 4.21: EVRPTWDCS-FR distance - results

Inst. KFR
best dFR

best K Kbest ∆K d dbest ∆d ∆pd totbest recbest te m1 m2 m3

C101 12 1053.83 12 12 0 1043.38 1043.38 −10.45 −0.99 12570.36 1117.15 2.672 8 0 0
C102 11 1051.38 10 10 −1 1011.52 1011.52 −39.86 −3.79 11401.1 1104.79 3.786 9 0 0
C103 10 1034.86 10 10 0 958.8 952.06 −82.8 −8 11424.4 1035.33 5.396 9 0 0
C104 10 951.57 10 10 0 874.78 874.73 −76.84 −8.08 10480.83 944.74 6.77 7 0 0
C105 11 1075.37 10 10 −1 1040.98 1039.33 −36.04 −3.35 11036.15 1133.37 2.135 9 0 0
C106 11 1057.65 10 10 −1 1037.61 1037.53 −20.12 −1.9 10964.76 1133.89 2.563 9 0 0
C107 11 1031.56 10 10 −1 1014.19 1009.55 −22.01 −2.13 11038.9 1104.77 3.213 9 0 0
C108 10 1095.66 10 10 0 991.64 991.03 −104.63 −9.55 10913.24 1090.05 4.094 9 0 0
C109 10 1027.1 10 10 0 920.91 920.91 −106.19 −10.34 10517.8 1003.8 3.558 8 0 0
C201 4 645.16 4 4 0 629.95 629.95 −15.21 −2.36 9912.93 686.43 5.634 3 0 0
C202 4 645.16 4 4 0 629.95 629.95 −15.21 −2.36 9912.93 686.43 13.435 3 0 0
C203 4 644.98 3 3 −1 888.62 850.89 205.91 31.93 10044.83 975.04 5.718 9 0 0
C204 4 636.43 3 3 −1 742.84 693.88 57.45 9.03 9911.85 786.36 9.15 5 0 0
C205 4 641.13 4 4 0 629.95 629.95 −11.18 −1.74 9722.37 686.43 6.44 3 0 0
C206 4 638.17 4 4 0 629.95 629.95 −8.22 −1.29 9683.38 686.43 8.248 3 0 0
C207 4 638.17 4 4 0 629.95 629.95 −8.22 −1.29 9769.18 686.43 10.164 3 0 0
C208 4 638.17 4 4 0 629.95 629.95 −8.22 −1.29 9683.38 686.43 7.528 3 0 0
R101 18 1663.04 16.67 16 −2 1624.65 1661.94 −1.1 −0.07 3368.25 1854.42 5.179 24 0 0
R102 16 1484.57 14.67 14 −2 1442.37 1496.98 12.41 0.84 2965.63 1678.4 9.498 20 0 0
R103 13 1268.88 12 12 −1 1194.02 1186.03 −82.85 −6.53 2518.87 1327.62 12.747 17 0 0
R104 11 1088.43 10 10 −1 1042.94 1019.94 −68.49 −6.29 2148.55 1130.45 14.849 14 0 0
R105 14 1442.35 12.83 12 −2 1351.99 1507.31 64.96 4.5 2667.92 1714.35 7.145 25 0 0
R106 13 1324.1 12 12 −1 1234.71 1229.47 −94.63 −7.15 2478.16 1369.74 11.362 18 0 0
R107 12 1148.38 10 10 −2 1081.66 1067.98 −80.4 −7 2172.35 1203.64 12.677 15 0 0
R108 11 1043.12 9.83 9 −2 993.8 1014.88 −28.24 −2.71 2038.1 1137.36 13.541 15 0 0
R109 12 1261.31 11 11 −1 1157.74 1129.6 −131.71 −10.44 2395.53 1266.17 8.041 15 0 0
R110 11 1119.5 10 10 −1 1034.92 1031.42 −88.08 −7.87 2160.2 1149.07 11 12 0 0
R111 12 1099.53 10 10 −2 1046.66 1027.64 −71.89 −6.54 2196.34 1144.18 11.216 14 0 0
R112 11 1016.63 10 10 −1 979.33 969.24 −47.39 −4.66 2180.18 1087.99 13.351 12 0 0
R201 3 1264.32 3 3 0 1273.74 1269.07 4.75 0.38 2890.02 1437.57 22.518 6 0 0
R202 3 1052.32 3 3 0 1059.19 1055.49 3.17 0.3 2912.43 1165.45 27.718 4 0 0
R203 3 895.54 3 3 0 917.82 906.72 11.18 1.25 2912.86 987.34 37.115 4 0 0
R204 2 779.49 2 2 0 784.66 779.57 0.08 0.01 1985.91 837.99 17.511 2 0 0
R205 3 987.36 3 3 0 994.93 989.98 2.62 0.27 2700.7 1105.89 20.939 4 0 0
R206 3 922.19 3 3 0 938.38 922.02 −0.17 −0.02 2762.28 1042.13 22.822 4 0 0
R207 2 843.2 2 2 0 856.63 848.67 5.47 0.65 1986.82 930.35 16.747 2 0 0
R208 2 736.12 2 2 0 749.45 741.85 5.73 0.78 1913.72 814.9 18.267 2 0 0
R209 3 867.05 2.5 2 −1 911.23 941.45 74.4 8.58 1990.87 1069.97 18.775 6 0 0
R210 3 843.65 2.17 2 −1 912.12 911.93 68.28 8.09 1965.21 1055.63 16.09 5 0 0
R211 2 827.29 2 2 0 839.72 828.43 1.14 0.14 1912.96 907.47 17.565 3 0 0

RC101 16 1723.79 14 14 −2 1680.19 1659.03 −64.76 −3.76 3031.27 1852.63 5.651 19 0 0
RC102 14 1659.53 13 13 −1 1538.75 1522.15 −137.38 −8.28 2827.6 1703.9 8.42 17 0 0
RC103 13 1350.09 11.67 11 −2 1328.12 1386.12 36.03 2.67 2503.44 1545.25 9.228 16 0 0
RC104 11 1227.25 10 10 −1 1159.45 1142.81 −84.44 −6.88 2230.3 1264.21 10.12 12 0 0
RC105 14 1471.87 12.17 12 −2 1461.02 1450.68 −21.19 −1.44 2654.86 1617.01 6.622 16 0 0
RC106 13 1423.27 12 12 −1 1369.68 1358.22 −65.05 −4.57 2580.09 1520.13 6.625 16 0 0
RC107 12 1274.25 10.83 10 −2 1201.39 1202.11 −72.14 −5.66 2296.45 1359.74 9.655 14 0 0
RC108 11 1197.41 10 10 −1 1143.97 1129.01 −68.4 −5.71 2263.67 1263.63 9.958 12 0 0
RC201 4 1441.47 4 4 0 1444.06 1430.58 −10.89 −0.76 3649.46 1581.17 14.914 6 0 0
RC202 3 1408.16 3 3 0 1415.43 1398.89 −9.27 −0.66 2854.23 1534.37 27.581 4 0 0
RC203 3 1055.19 3 3 0 1065.71 1050.58 −4.61 −0.44 2705.65 1185.33 35.093 5 0 0
RC204 3 884.53 3 3 0 885.57 878.88 −5.65 −0.64 2680.21 971.77 37.691 5 0 0
RC205 3 1256.09 3 3 0 1283.72 1231.95 −24.14 −1.92 2648.09 1398.37 23.433 6 0 0
RC206 3 1187.72 3 3 0 1214.3 1194.82 7.1 0.6 2662.55 1336.26 20.906 4 0 0
RC207 3 985.03 3 3 0 1024.59 996.44 11.41 1.16 2521.08 1089.33 26.16 4 0 0
RC208 3 836.29 3 3 0 842.3 828.99 −7.3 −0.87 2280.65 929.9 26.818 4 0 0
AVG 7.86 1069.05 7.27 7.18 −0.68 1049.75 1046.49 −22.56 −1.57 4939.32 1162.84 13.32 9.14 0 0
SUM 440 59866.66 407.34 402 −38 58785.88 58603.38 −1263.28 −88.15 276601.85 65118.95 746.05 512 0 0

which is on average 547/403 = 1.36 CSs per vehicle route. Compared to the distance mini-

mization when only rapid charger was utilized, the total traveled distance increased by 0.52%.
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4. Hybrid adaptive large neighborhood search method

The total time also increased as other slower chargers are utilized within the solution.

Table 4.22: EVRPTWDCS-FR recharging cost - results

Inst. Kdist
best recdist

best K Kbest ∆K rec recbest ∆rec ∆prec dbest totbest te m1 m2 m3

C101 12 1117.15 12 12 0 1052.36 1052.36 −64.79 −5.8 1045.98 1294.36 2.029 0 1 8
C102 10 1104.79 10 10 0 1047.17 1047.14 −57.65 −5.22 1015.32 1171.28 3.233 0 6 3
C103 10 1035.33 10 10 0 991.34 987.85 −47.48 −4.59 963.11 1147.75 5.185 0 5 4
C104 10 944.74 10 10 0 896.06 896.06 −48.68 −5.15 876.7 1104.93 5.248 1 2 4
C105 10 1133.37 10 10 0 1084.43 1078.45 −54.92 −4.85 1039.33 1131 1.88 0 7 2
C106 10 1133.89 10 10 0 1070.1 1068.2 −65.69 −5.79 1036.85 1126.95 2.006 0 6 4
C107 10 1104.77 10 10 0 1059.5 1056.1 −48.67 −4.41 1029.12 1121.66 2.521 0 5 5
C108 10 1090.05 10 10 0 1034.13 1030.57 −59.48 −5.46 999.56 1143.48 3.114 0 6 4
C109 10 1003.8 10 10 0 945.51 945.34 −58.46 −5.82 927.37 1099.01 3.539 0 3 4
C201 4 686.43 4 4 0 639.69 639.69 −46.74 −6.81 635.29 1019.91 5.222 0 1 4
C202 4 686.43 4 4 0 639.69 639.69 −46.74 −6.81 635.29 1019.91 13.933 0 1 4
C203 3 975.04 3 3 0 930.19 925.68 −49.36 −5.06 854.98 1015.04 5.261 2 5 0
C204 3 786.36 3 3 0 750.29 737.23 −49.13 −6.25 706.6 1005.47 9.815 0 4 2
C205 4 686.43 4 4 0 635.66 635.66 −50.77 −7.4 631.26 1020 6.064 0 1 3
C206 4 686.43 4 4 0 635.66 635.66 −50.77 −7.4 631.26 1020 7.551 0 1 3
C207 4 686.43 4 4 0 635.66 635.66 −50.77 −7.4 631.26 1020 8.938 0 1 3
C208 4 686.43 4 4 0 635.66 635.66 −50.77 −7.4 631.26 1020 7.185 0 1 3
R101 16 1854.42 16.6 16 0 1726.78 1750.17 −104.25 −5.62 1676.58 339.65 4.792 4 11 12
R102 14 1678.4 14.8 14 0 1494.32 1575.76 −102.64 −6.12 1505.63 298.67 9.129 1 15 7
R103 12 1327.62 12 12 0 1254.01 1238.49 −89.13 −6.71 1191.67 260.05 9.644 0 13 5
R104 10 1130.45 10 10 0 1101.75 1072.64 −57.81 −5.11 1022.56 221.35 10.94 2 6 3
R105 12 1714.35 12.8 12 0 1434.95 1658.11 −56.24 −3.28 1518.31 268.33 5.888 10 15 1
R106 12 1369.74 12 12 0 1301.12 1297 −72.74 −5.31 1248.34 253.1 9.6 0 11 8
R107 10 1203.64 10 10 0 1152.53 1145.01 −58.63 −4.87 1076.57 220.33 11.828 3 9 4
R108 9 1137.36 10 10 1 1030.81 1024.23 −113.13 −9.95 987.85 214.99 12.545 0 8 5
R109 11 1266.17 11 11 0 1225.24 1205.81 −60.36 −4.77 1138.54 242.81 8.242 2 10 4
R110 10 1149.07 10 10 0 1113.29 1101.85 −47.22 −4.11 1053.01 223.45 10.633 2 7 7
R111 10 1144.18 10 10 0 1116.62 1090.38 −53.8 −4.7 1035.11 223.47 10.12 1 11 2
R112 10 1087.99 10 10 0 1024 1016.34 −71.65 −6.59 983.83 220.68 12.052 0 8 4
R201 3 1437.57 3 3 0 1275.85 1270.62 −166.95 −11.61 1270.62 288.95 50.733 0 0 6
R202 3 1165.45 3 3 0 1055.38 1053.57 −111.88 −9.6 1053.57 292.5 43.596 0 0 4
R203 3 987.34 3 3 0 906.22 897.61 −89.73 −9.09 897.61 293.19 38.287 0 0 4
R204 2 837.99 2 2 0 785.03 779.57 −58.42 −6.97 779.57 198.59 15.833 0 0 2
R205 3 1105.89 3 3 0 995.07 987.36 −118.53 −10.72 987.36 271.83 26.767 0 0 3
R206 3 1042.13 3 3 0 932.19 925.37 −116.76 −11.2 925.37 275.29 28.824 0 0 4
R207 2 930.35 2 2 0 863.37 848.77 −81.58 −8.77 848.77 193.08 15.266 0 0 2
R208 2 814.9 2 2 0 752.59 736.12 −78.78 −9.67 736.12 187.57 16.652 0 0 2
R209 2 1069.97 2.6 2 0 925.45 991.06 −78.91 −7.37 943.64 199.39 21.154 0 5 2
R210 2 1055.63 2.2 2 0 938.16 935.02 −120.61 −11.43 906.28 198.6 18.417 0 4 3
R211 2 907.47 2 2 0 848.37 831.5 −75.97 −8.37 831.5 189.53 16.462 0 0 2

RC101 14 1852.63 14 14 0 1803.93 1740.93 −111.7 −6.03 1673.77 311.72 4.222 0 14 6
RC102 13 1703.9 13.2 13 0 1593.02 1584.12 −119.78 −7.03 1543.81 293.72 6.87 0 9 9
RC103 11 1545.25 11.8 11 0 1377.87 1489.26 −55.99 −3.62 1388.3 252.08 8.432 6 8 3
RC104 10 1264.21 10 10 0 1205.22 1191.21 −73 −5.77 1156.93 229.9 8.442 0 8 6
RC105 12 1617.01 12.8 12 0 1488.54 1537.56 −79.45 −4.91 1460.82 268.7 5.4 3 11 4
RC106 12 1520.13 12 12 0 1425.43 1418.08 −102.05 −6.71 1375.24 263.97 5.833 0 9 5
RC107 10 1359.74 10.8 10 0 1267.69 1297.31 −62.43 −4.59 1206.26 231.65 7.877 3 9 2
RC108 10 1263.63 10.2 10 0 1195.15 1178.22 −85.41 −6.76 1135.87 231.25 7.107 0 8 4
RC201 4 1581.17 4 4 0 1448.89 1439.11 −142.06 −8.98 1437.89 364.95 15.2 0 1 6
RC202 3 1534.37 3 3 0 1430.14 1408.41 −125.96 −8.21 1408.41 283.07 41.958 0 0 7
RC203 3 1185.33 3 3 0 1091.58 1069.18 −116.15 −9.8 1069.18 277.45 40.684 0 0 5
RC204 3 971.77 3 3 0 894.53 885.08 −86.69 −8.92 885.08 267.95 38.683 0 0 6
RC205 3 1398.37 3 3 0 1274.87 1246.34 −152.03 −10.87 1235.32 266.2 33.998 0 1 8
RC206 3 1336.26 3 3 0 1202.31 1187.72 −148.54 −11.12 1187.72 260.53 28.806 0 0 4
RC207 3 1089.33 3 3 0 1011.88 995.88 −93.45 −8.58 995.88 259.03 29.492 0 0 4
RC208 3 929.9 3 3 0 856.85 836.29 −93.61 −10.07 836.29 245.62 29.414 0 0 5
AVG 7.18 1162.84 7.3 7.2 0.02 1080.43 1081.86 −80.98 −7.06 1051.89 506.5 14.51 0.71 4.77 4.29
SUM 402 65118.95 408.8 403 1 60504.1 60584.06 −4534.89 −395.53 58905.72 28363.94 812.55 40 267 240
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4.10. Results

Results on EVRPTW instances for the minimization of total time in EVRPTWDCS-FR

is presented in Table 4.23. The reference values are the total times achieved with distance

minimization, labeled as Kdist
best and totdist

best . In all instances, the rapid charger type is used, and the

total time is on average reduced by 5.84%, while again, the overall charging costs are increased.

In total, 582 CSs are used, which is 35 CSs more than in the minimization of recharging costs

and 70 CSs more than in distance minimization. On instance RC103 HALNS method was not

able to produce a solution with minimal number of vehicles.
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4. Hybrid adaptive large neighborhood search method

Table 4.23: EVRPTWDCS-FR total time - results

Inst. Kdist
best totdist

best K Kbest ∆K tot rectot ∆tot ∆ptot dbest recbest te m1 m2 m3

C101 12 12570.36 12 12 0 11514.97 11487.77 −1082.59 −8.61 1572.63 1770.15 14.862 17 0 0
C102 10 11401.1 10 10 0 10431.02 10417.36 −983.74 −8.63 1193.83 1320.15 18.494 14 0 0
C103 10 11424.4 10 10 0 10337.56 10323.08 −1101.32 −9.64 1121.96 1212.79 34.872 8 0 0
C104 10 10480.83 10 10 0 10067.48 10057.67 −423.16 −4.04 947.42 1001.89 34.174 7 0 0
C105 10 11036.15 10 10 0 10405.17 10402.46 −633.69 −5.74 1235.91 1341.72 15.298 13 0 0
C106 10 10964.76 10 10 0 10343.72 10332.21 −632.55 −5.77 1159.68 1261.75 17.297 11 0 0
C107 10 11038.9 10 10 0 10236.55 10235.71 −803.19 −7.28 1109.6 1199.72 13.746 9 0 0
C108 10 10913.24 10 10 0 10199.48 10195.38 −717.86 −6.58 1075.53 1160.88 18.176 10 0 0
C109 10 10517.8 10 10 0 10122.34 10106.24 −411.56 −3.91 989.95 1061.55 18.821 7 0 0
C201 4 9912.93 4 4 0 9819.44 9819.44 −93.49 −0.94 700.83 760.86 15.834 5 0 0
C202 4 9912.93 4 4 0 9799.75 9799.75 −113.18 −1.14 730.38 796.21 41.656 5 0 0
C203 3 10044.83 3 3 0 9984.67 9975.42 −69.41 −0.69 870.86 981.9 44.89 7 0 0
C204 3 9911.85 3 3 0 9788.76 9788.76 −123.09 −1.24 712.49 795.39 46.155 5 0 0
C205 4 9722.37 4 4 0 9712.99 9712.99 −9.38 −0.1 636.21 675.61 19.686 3 0 0
C206 4 9683.38 4 4 0 9670.73 9670.73 −12.65 −0.13 633.44 672.3 22.741 3 0 0
C207 4 9769.18 4 4 0 9814.88 9683.54 −85.64 −0.88 644.84 684.1 28.516 3 0 0
C208 4 9683.38 4 4 0 9670.73 9670.73 −12.65 −0.13 633.44 672.3 23.163 3 0 0
R101 16 3368.25 16 16 0 3332.52 3320.25 −48 −1.43 1885.43 2117.29 11.413 28 0 0
R102 14 2965.63 14.8 14 0 2912.44 2811.22 −154.41 −5.21 1694.38 1916.1 18.858 26 0 0
R103 12 2518.87 12 12 0 2378.44 2363.47 −155.4 −6.17 1300.21 1455.74 28.662 22 0 0
R104 10 2148.55 10 10 0 2112.07 2082.44 −66.11 −3.08 1057.69 1183.82 32.66 14 0 0
R105 12 2667.92 12.8 12 0 2668.34 2593.69 −74.23 −2.78 1488.89 1691.09 16.841 27 0 0
R106 12 2478.16 12 12 0 2420.93 2361.89 −116.27 −4.69 1314.29 1455.01 20.485 16 0 0
R107 10 2172.35 10 10 0 2158.09 2141.51 −30.84 −1.42 1108.97 1244.38 24.025 15 0 0
R108 9 2038.1 9.8 9 0 2020.89 2023.86 −14.24 −0.7 1000.06 1125.22 26.283 16 0 0
R109 11 2395.53 11 11 0 2311.54 2296.38 −99.15 −4.14 1242.07 1378.98 16.085 17 0 0
R110 10 2160.2 10 10 0 2108.19 2098.66 −61.54 −2.85 1059.48 1176.05 23.188 14 0 0
R111 10 2196.34 10 10 0 2132.61 2120.93 −75.41 −3.43 1079.38 1196.57 25.519 14 0 0
R112 10 2180.18 10 10 0 2072.03 2036.87 −143.31 −6.57 1012.67 1113.03 17.167 12 0 0
R201 3 2890.02 3 3 0 2825.76 2822.59 −67.43 −2.33 1715.58 1973.77 39.907 9 0 0
R202 3 2912.43 3 3 0 2757.12 2739.8 −172.63 −5.93 1522.63 1716.68 51.031 5 0 0
R203 3 2912.86 3 3 0 2109.89 2095.92 −816.94 −28.05 1084.45 1234.65 73.638 6 0 0
R204 2 1985.91 2 2 0 1866.22 1856.19 −129.72 −6.53 851.17 955.77 49.252 3 0 0
R205 3 2700.7 3 3 0 2473.03 2303.01 −397.69 −14.73 1281.73 1444.71 43.502 6 0 0
R206 3 2762.28 3 3 0 2068.7 2055.63 −706.65 −25.58 1045.18 1187.53 48.235 5 0 0
R207 2 1986.82 2 2 0 1876.71 1866.95 −119.87 −6.03 863.36 940.36 37.044 2 0 0
R208 2 1913.72 2 2 0 1762.33 1754.79 −158.93 −8.3 750.59 825.68 45.532 2 0 0
R209 2 1990.87 2.8 2 0 2127.95 1985.05 −5.82 −0.29 966.73 1098.09 35.26 4 0 0
R210 2 1965.21 2.4 2 0 1977.33 1942.72 −22.49 −1.14 930.33 1057.9 45.738 7 0 0
R211 2 1912.96 2 2 0 1845.56 1835.02 −77.94 −4.07 829.92 908.57 28.049 2 0 0

RC101 14 3031.27 14 14 0 2977.32 2963.57 −67.7 −2.23 1803.5 1997.56 12.041 21 0 0
RC102 13 2827.6 13 13 0 2747.63 2698.99 −128.61 −4.55 1627.62 1810.93 16.697 16 0 0
RC103 11 2503.44 12 12 1 2463.96 2449 −54.44 −2.17 1422.25 1564.85 20.083 16 0 0
RC104 10 2230.3 10 10 0 2200.49 2186.83 −43.47 −1.95 1165.48 1289.55 20.05 13 0 0
RC105 12 2654.86 12 12 0 2626.52 2599.29 −55.57 −2.09 1522.16 1691.05 11.858 19 0 0
RC106 12 2580.09 12 12 0 2499.51 2478.39 −101.7 −3.94 1400.7 1545.9 13.422 15 0 0
RC107 10 2296.45 10.6 10 0 2282.71 2259.04 −37.41 −1.63 1225.72 1387.92 16.219 14 0 0
RC108 10 2263.67 10 10 0 2190.89 2183.77 −79.9 −3.53 1146.48 1280.93 17.635 13 0 0
RC201 4 3649.46 4 4 0 2957.38 2946.28 −703.18 −19.27 1889.03 2155.97 25.625 10 0 0
RC202 3 2854.23 3 3 0 2706.83 2704.75 −149.48 −5.24 1650.43 1858.94 53.214 5 0 0
RC203 3 2705.65 3 3 0 2426.11 2337.21 −368.44 −13.62 1323.82 1512.87 72.437 7 0 0
RC204 3 2680.21 3 3 0 2066.64 2044.32 −635.89 −23.73 1031.17 1165.55 75.401 5 0 0
RC205 3 2648.09 3 3 0 2594.13 2574.67 −73.42 −2.77 1548.61 1785.77 48.48 7 0 0
RC206 3 2662.55 3 3 0 2542.55 2539.9 −122.65 −4.61 1480.71 1690.2 37.558 6 0 0
RC207 3 2521.08 3 3 0 2248 2200.89 −320.19 −12.7 1185.02 1341.32 50.478 7 0 0
RC208 3 2280.65 3 3 0 2026.46 2005.16 −275.49 −12.08 993.63 1122.14 56.489 6 0 0
AVG 7.18 4939.32 7.27 7.2 0.02 4710.64 4685 −254.32 −5.84 1169.12 1302.99 30.97 10.39 0 0
SUM 402 276601.85 407.2 403 1 263796.06 262360.14 −14241.71 −327.01 65470.52 72967.71 1734.44 582 0 0
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4.10. Results

4.10.6 EVRPTWDCS-PR

The results on EVRPTW instances for EVRPTWDCS-PR with the minimization of recharging

costs are presented in Table 4.24. The referenced values used for the comparison are the ones

reported by Keskin et al. [22], which are the only ones that observed the problem so far. The

bold values indicate that HALNS was able to found a better solution. In 16 out of 56 instances,

the better solution was found, with in total 5 vehicles less, and an increase in recharging costs

by in average 2.05% (as a solution with a lower number of vehicles was found). Compared to

the full recharge strategy, the total number of visited CSs increased by 48, and recharging costs

significantly decreased, as well as the total traveled distance and total time. It can be noted

that HALNS was able to produce 3 vehicles less on a full variant of the problem than on the

partial variant. Compared to the partial variant without different charger types, 20 vehicles less

were used, with a slightly higher total recharging cost due to the rapid and fast recharging. The

average execution time increased significantly compared to the partial variant without different

charger types, as the search space increased with different charger types.
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4. Hybrid adaptive large neighborhood search method

Table 4.24: EVRPTWDCS-PR recharging cost - results

Inst.
BKS HALNS

K rec K Kbest ∆K rec recbest ∆rec ∆prec dbest totbest te m1 m2 m3

C101 12 1043.38 12 12 0 1043.44 1043.38 0 0 1043.38 12647.62 7.43 0 0 8
C102 10 998.48 10 10 0 1016.8 1016.8 18.32 1.83 1009.61 11622.76 5.77 1 2 8
C103 10 946.79 10 10 0 967.98 961.61 14.82 1.57 945.32 11291.73 11.58 2 2 5
C104 9 984.82 9.92 9 0 889.69 984.82 0 0 1006.12 11155.52 13.58 0 1 7
C105 10 1024.01 10 10 0 1053.53 1050.12 26.11 2.55 1043.68 11373.98 5.46 0 3 10
C106 10 1028.89 10 10 0 1047.44 1045.08 16.19 1.57 1040.18 11320.05 5.34 0 3 8
C107 10 1005.84 10 10 0 1033.64 1024.49 18.65 1.85 1013 11287.15 6.24 0 4 8
C108 10 1014.21 10 10 0 1015.26 1010.58 −3.63 −0.36 1004.05 11003.77 7.28 0 3 8
C109 10 940.38 10 10 0 927.02 925.69 −14.69 −1.56 920.91 10708.26 8.68 0 2 6
C201 4 629.95 4 4 0 629.95 629.95 0 0 629.95 10125.99 8.19 0 0 3
C202 4 629.95 4 4 0 629.95 629.95 0 0 629.95 10125.99 18.1 0 0 3
C203 4 629.95 3 3 −1 952.36 907.73 277.78 44.1 841.91 10150.29 8.31 2 5 0
C204 3 697.22 3 3 0 754.83 717.78 20.56 2.95 698.54 10139.81 14.08 0 3 3
C205 4 629.95 4 4 0 629.95 629.95 0 0 629.95 10020.61 9.24 0 0 3
C206 4 629.95 4 4 0 635.29 631.99 2.04 0.32 631.99 10027.86 13.71 0 0 3
C207 4 629.95 4 4 0 629.95 629.95 0 0 629.95 10021.43 15.81 0 0 3
C208 4 629.95 4 4 0 629.95 629.95 0 0 629.95 10021.43 10.99 0 0 3
R101 16 1788.25 16.22 16 0 1686.85 1686.77 −101.48 −5.67 1667.53 3450.39 8.04 0 10 22
R102 15 1422.69 15 15 0 1433.01 1431.9 9.21 0.65 1423.39 3132.48 14.4 0 5 18
R103 12 1195.76 12 12 0 1220 1205.92 10.16 0.85 1188.4 2563.55 13.18 1 6 17
R104 10 1015.81 10 10 0 1078.05 1041.36 25.55 2.52 1016.99 2192.39 7.47 1 6 6
R105 13 1338.52 13 13 0 1362.97 1347.72 9.2 0.69 1328.99 2757.73 72.82 0 8 15
R106 12 1246.47 12 12 0 1294.43 1262.85 16.38 1.31 1235.95 2531.6 21.34 1 11 12
R107 10 1096.09 10.38 10 0 1133.37 1125.84 29.75 2.71 1094.05 2235.47 8.87 2 7 9
R108 10 987.04 10 10 0 1024.94 998.88 11.84 1.2 984.19 2138.36 12.48 0 6 9
R109 11 1156.36 11 11 0 1210.42 1182.49 26.13 2.26 1155.19 2402.98 5.04 1 8 7
R110 10 1078.66 10 10 0 1114.02 1078.47 −0.19 −0.02 1050.51 2234.09 6.24 1 7 5
R111 11 1064.34 10.29 10 −1 1110.55 1080.68 16.34 1.54 1057.41 2215.45 7.12 0 7 10
R112 10 986.7 10 10 0 1021.22 1012.46 25.76 2.61 998.11 2198.77 6.91 0 5 10
R201 3 1257.5 3 3 0 1262.58 1257.81 0.31 0.02 1257.81 2892.61 11.9 0 0 7
R202 3 1051.46 3 3 0 1052.26 1051.46 0 0 1051.46 2882.2 33.39 0 0 3
R203 3 895.54 3 3 0 901.23 896.65 1.11 0.12 896.65 2933.08 71.7 0 0 4
R204 2 779.71 2 2 0 792.58 782.74 3.03 0.39 782.74 1980.13 28.38 0 0 4
R205 3 987.36 3 3 0 992.9 988.67 1.31 0.13 988.67 2695.58 32.91 0 0 4
R206 3 922.7 3 3 0 925.38 922.7 0 0 922.7 2787.38 45.77 0 0 3
R207 2 846.43 2 2 0 869.86 862.48 16.05 1.9 862.48 1976.21 52.74 0 0 3
R208 2 736.12 2 2 0 741.76 736.73 0.61 0.08 736.73 1903.29 45.54 0 0 3
R209 3 866.67 2.33 2 −1 971.03 1007.69 141.02 16.27 961.53 1998.21 19.31 0 5 3
R210 3 843.21 2.5 2 −1 925.3 1004.39 161.18 19.12 955.69 1987.63 25.52 0 5 2
R211 2 840.61 2 2 0 853.66 843.43 2.82 0.34 843.43 1986.42 12.92 0 0 3

RC101 14 1769.82 14.25 14 0 1711.48 1690.84 −78.98 −4.46 1665.24 3038.79 4.8 2 6 15
RC102 13 1531.9 13 13 0 1581.94 1550.07 18.17 1.19 1528.91 2806.95 6.75 0 8 11
RC103 12 1332.38 12 12 0 1368.41 1352.79 20.41 1.53 1340.06 2681.22 8 1 3 13
RC104 10 1165.39 10.22 10 0 1206.04 1179.93 14.54 1.25 1155.9 2282.62 7.22 1 6 8
RC105 13 1403.53 12.9 12 −1 1439 1491.08 87.55 6.24 1452.83 2680.5 5.71 2 9 9
RC106 12 1369.51 12 12 0 1416.58 1389.19 19.68 1.44 1370.51 2602.46 3.91 0 6 12
RC107 11 1221.72 11 11 0 1239.96 1206.48 −15.24 −1.25 1189.86 2381.04 5.4 0 6 8
RC108 10 1171.71 10.25 10 0 1196.92 1149.1 −22.61 −1.93 1144.39 2302.87 7.54 0 2 13
RC201 4 1446.84 4 4 0 1448.07 1444.69 −2.15 −0.15 1443.07 3667.99 12.36 1 0 6
RC202 3 1416.96 3 3 0 1435.89 1412.36 −4.6 −0.32 1412.36 2847.46 18.86 0 0 6
RC203 3 1064.33 3 3 0 1076.71 1069.84 5.51 0.52 1069.84 2718.96 35.02 0 0 7
RC204 3 886.19 3 3 0 896.77 888.27 2.08 0.23 888.27 2621.63 62.73 0 0 4
RC205 3 1255.15 3 3 0 1384.35 1344.25 89.1 7.1 1339.42 2709.22 16.28 0 1 9
RC206 3 1206.06 3 3 0 1207.85 1196.57 −9.49 −0.79 1195.13 2685.94 23.96 0 1 5
RC207 3 991.65 3 3 0 1004.55 998.89 7.24 0.73 998.89 2590.4 132.36 0 0 5
RC208 3 839.71 3 3 0 851.51 838.74 −0.97 −0.12 836.66 2372.47 47.64 0 1 4
AVG 7.34 1045.9 7.33 7.25 −0.09 1070.2 1062.2 16.29 2.05 1050.72 5037.69 20.22 0.34 3.09 7.2
SUM 411 58570.52 410.26 406 −5 59931.43 59483 912.48 115.05 58840.38 282110.77 1132.32 19 173 403
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Chapter 5

Time-dependent electric vehicle routing
problem with time windows

In the real world, the travel time in the traffic network changes dynamically, as it depends on

various factors, which can be predictable and unpredictable. The typical predictable factors are

urbanization, weather, time, social events, road works, etc. The unpredictable factors cover the

stochastic component of traffic, such as accidents and anomalies. In the urban environment,

due to the high population density, traffic congestion occurs regularly on the road network. The

congestion occurs due to the lack of infrastructure, which could not develop at the rate at which

urbanization and vehicle market share developed in a last few decades [168]. The congestion

has a direct impact on people’s daily lives and transport activities as it causes longer travel time

[169, 170], additional transportation costs [171, 172], noise, increased gas consumption [173],

congested queues [174], and increased CO2 emission [175, 176]. Predictable traffic factors

cover almost 85% of congestion occurring in large urban centers [177]. Due to the recurrent

nature of the traffic congestion, time-varying travel times on the road network can be estimated.

Erdelić et al. [28] conducted a test study in which test vehicles drove designated routes, and the

overall travel time was recorded. The travel times computed by a model that considers static

traffic information (average speeds) underestimated travel times by roughly 30%, compared to

the real measured times. The route travel time can significantly affect logistic operations, and if

neglected, can lead to a significant increase in overall routing cost [74]. Integrating congestion

in logistic operations led to the definition of TD-VRPTW problem [25, 75, 76], which was

already discussed in section 2.6.

The time-dependent vehicle routing problem in the context of electric vehicles has only been

studied by Shao et al. [130]. The authors defined the problem as EVRP-CTVTT, in which fixed

full recharging time was considered, and not the charging dependent on the BEV SoC value.

The authors proposed a genetic algorithm with an average execution time of 30 minutes to solve

155



5. Time-dependent electric vehicle routing problem with time windows

real-world instances with up to 50 customers and did not provide results on commonly used

benchmark EVRPTW instances. In this thesis, the Time-Dependent Electric Vehicle Routing

Problem with Time Windows and Full Recharge (TD-EVRPTW-FR) is defined, and throughout

the thesis, it is refereed as the TD-EVRPTW problem. The problem considers charging time that

linearly depends on the SoC level when entering CS. The proposed problem has not yet been

addressed in the literature. The HALNS method proposed in chapter 4 is applied to efficiently

solve the problem with an average running time of roughly 13 minutes.

Additionally, two variants of the problem are formulated for the first time: (i) Time-De-

pendent Electric Vehicle Routing Problem with Time Windows, Different Charging Stations

and Full Recharge TD-EVRPTWDCS-FR, and (ii) Time-Dependent Electric Vehicle Routing

Problem with Time Windows and Partial Recharge TD-EVRPTW-PR. All of the problems are

formulated as MIP programs, except the TD-EVRPTW-FR for which additionally the MILP

formulation is presented.

The TD-EVRPTW-PR variant is not solved by HALNS as it requires significant changes

in the penalty functions and variables, which are left for future research. In EVRPTW-PR,

when the variable aadd
i j that represents the additional charging time that needs to be added at

preceding CSs, is larger then zero, the computed value is exact as there are no different charger

types or time-dependent travel times (subsection 4.3.1). In such cases, the charging amount

can easily be computed. In EVRPTWDCS-PR, this problem was solved by complex forward-

backward looping, as the additional charging amount that needs to be recharged at preceding

CSs can be exactly computed, and optimization of the charging schedule can be conducted. In

TD-EVRPTW-PR, when variable aadd
i j is larger than zero at user j, one could apply the similar

idea as in EVRPTW-PR and add charging time at previous CSs. If this time is added at CS, due

to the time-dependent times, the forward variables of users between the CS at user j change and

need to be recomputed. However, even that is not the main problem. The problem is that these

values will be completely different from the values before, meaning that although aadd
i j value

was added as charging time at preceding CSs the arrival times did not increase by this value,

and the value of aadd
i j at user j could still be aadd

i j > 0 as the travel time periods changed. More

importantly, there is no guarantee that after the update, the value of aadd
i j will be equal to zero.
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5.1. FIFO property and travel time computation

5.1 FIFO property and travel time computation

In time-dependent routing, the delivery period, which is usually one day, is often discretized

in shorter time intervals (time buckets), where for each interval, the speed value is assigned.

In test instances, this speed value is used to compute the travel time in each of the discretized

time buckets based on the computed Euclidean distance and the assumption of uniform motion.

The researchers that deal with benchmark time-dependent problems usually consider five speed

values per planning horizon [25, 176, 178, 179, 180]. These five values usually represent the

following periods in a day: morning free-flow, morning rush hours, transition period between

morning and afternoon rush hours, afternoon rush hours, and evening free-flow. To get a more

accurate estimation, the delivery period could be discretized into shorter time buckets, i.e., for

each 5-minute interval in day, [24, 73]. In a real application, the travel time value between

users i and j is a solution to the Time-Dependent Shortest Path Problem (TD-SPP), with a set

departure time. The solution to the problem is the shortest travel time path on a road network.

Calling TD-SPP every time when there is a need for the shortest travel time path between users

when solving a TD-VRPTW problem would be extremely time-consuming. This is why the

TD-SPP is usually solved for each customer pair in each discretized time bucket in advance.

This procedure is still time-consuming, but it is done only once in the pre-processing step. The

technique proposed to speed-up the computation of real world travel time matrices based on the

data mining procedures is discussed in section 6.6. The important aspects of the time-dependent

routing are the travel time computation method and First-In First-Out (FIFO) principle.

The example of a speed profile (blue line) for a 250 m road segment is presented in Figure

5.1. Figure 5.1 shows an example of constant speeds per discretized five-minute time buckets:

08:00-08:05, 08:05-08:10, and 08:10-08:15. Due to the discretization, the speed function is

not continuous, and function break points appear. The travel times computed in a classical

way, based only on the current speed value, are presented with red lines. The uniform motion

is assumed for computing the travel times. Let a vehicle A enter the road segment at tsA =

08:09:31. The speed in that time bucket is 20 km/h, and the travel time of vehicle A would be

ttA = 250/(20/3.6) = 45 s. The vehicle A would come to the end of the road segment at the

time teA = 08:10:16. Let a vehicle B enter the road segment at tsB = 08:10:00 (29 s later). The

travel time of vehicle B would be ttB = 250/(60/3.6) = 15 s, and the vehicle would come to

the end of the road segment at time teA = 08:10:15. The vehicle A that started earlier finished

the road segment later than vehicle B that started later. This is referred to as the violation of the

FIFO principle. FIFO ensures that the vehicle that has entered the road segment first has to be

the first one that exits it. Besides the FIFO violation, the computation of travel times is not a

good approximation of real travel times as, for example, in vehicle A, the travel time function

crosses a break point at 08:10:00, where the speed changes and this change is not accounted for.
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Figure 5.1: Speed and travel time profile

To ensure the FIFO property and provide a better approximation of travel times, the travel

times can be linearized with piecewise functions [25, 181, 182]. Figliozzi [25] proposed the

computation of travel times based on the discrete speed values that satisfy the FIFO property.

The travel time ti j between two given users i and j, or on a given road segment is computed

using an iterative forward computation strategy, from the departure time at user i. The depot

working time [e0, l0] is discretized into p time buckets T = {T1, . . . ,Tp}. Each time bucket Tk

(k = {1, . . . , p}) has an associated uniform speed vk. The procedure is given by Algorithm

5.1. The algorithm assumes that the distance (path) between users i and j does not change

and has a constant value di j. First the values of distance di j and departure time are stored in

the corresponding current variables dcur and td,cur. Next, the index of a time bucket in which

departure td falls into is computed and set as k. Then, the final time t f is computed as the sum

of the departure time td and travel time computed based on distance di j and uniform speed vk in

time bucket k. Further on, the time bucket index of time t f is computed and set as knext . If k is

equal to knext , then there was no break point present in the travel time function, and the travel

time is correctly computed. If k and knext are not equal, the loop (lines 7-19) continues until

they are. In the loop, first, the travel time tk is computed as the amount of travel time spent in

time bucket k, up to the break point Tk. Based on this travel time, the distance traversed in the

time bucket k is computed as tk · vk, and the overall distance dcur that still has to be traversed

is reduced by this amount. The new departure time td,cur is set as a current break point time

Tk, and the new final time is computed by using this new departure time and the travel time in

time bucket knext . Then, the knext is set as k, and new value for knext is computed. The if clause
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Algorithm 5.1 Computation of forward travel times
Input: Departure time td , distance di j

1: dcur← di j
2: td,cur← td
3: k← Get time bucket index of time td
4: t f ← td+ di j

vk
5: knext ← Get time bucket index of time t f
6: if knext > k+1 then
7: knext = k+1
8: end if
9: while k 6= knext do

10: tk← Tk− td,cur
11: dcur← dcur− tk · vk
12: td,cur← Tk

13: t f ← td,cur +
dcur

vknext
14: k← knext
15: knext ← Get time bucket index of time t f
16: if knext > k+1 then
17: knext = k+1
18: end if
19: end while
20: ti j← t f − td

knext > k+ 1 covers the possibility that the next time bucket knext might not be the succeeding

time bucket to time bucket k (if travel time on a road segment is longer than the succeeding

time bucket interval), in which case the succeeding time bucket is set as knext . The example of

computed travel times are presented in Figure 5.1 as green lines. It can be seen that a travel

time function is linearized around break points. For previously observed example, the travel

time for vehicle A would be ttA = 29+5.33 = 34.33 s, where 29 s is the time driven in the first

time bucket with the speed of 20 km/h and covered distance of 161.11 m, and 5.33 s is the time

driven in the second time bucket with the speed of 60 km/h and the covered distance of 88.89

m. As a result the vehicle A would come to the end at teA = 08:10:05.33, and no FIFO violation

would occur as teA < teB . In the travel time function teB , there is no brake point in the observed

period, so the travel time remains the same.

The other, not so common approach is to ensure FIFO within the data or the road segments

in the digital map. For a road segment with length l to satisfy the FIFO between two vehicles A

and B with departure times tsA and tsB (tsA < tsB), the equation 5.1 has to be satisfied [73]. From

the equation 5.1, it can be seen that the lower the link length is, the lower the possibility for

FIFO violation is. The delay between departure times and the difference in speed between two

consecutive time buckets also significantly affect the FIFO property. The possibility of FIFO

violation can be reduced by decreasing transition values between the speeds on the same or
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different road segments, by averaging or smoothing [24, 28, 73, 183]. Although this procedure

satisfies FIFO property, the travel time approximation is still not realistic, and in the real world,

it is hard to satisfy FIFO through raw data on all road segments in a digital map.

l <
vtsA · vtsB

vtsB− vtsA

(tsB− tsA) (5.1)

5.2 MIP formulations

In the following subsections, MIP formulations for three TD-EVRPTW problems are presented.

5.2.1 TD-EVRPTW-FR

The TD-EVRPTW-FR problem considers travel time between users dependent on the departure

time. The formulated MIP program for TD-EVRPTW-FR is an extension of the MILP program

for EVRPTW-FR (section 2.2). The MIP program for TD-VRPWTW (section 2.6) was not

considered, as it includes one additional variable k for the number of vehicles, which in a

tighter formulation can be removed. The TD-EVRPTW-FR problem is defined as compact

MIP program, where only the equations that differ from the original EVRPTW are given by

equations 5.2-5.5. First of all, equation for vehicle minimization remains the same (equation

2.2). Instead of distance minimization two minimization functions are considered: (i) sum of

travel time (equation 5.2) which does not include service or waiting times for start of the service,

and (ii) total time which includes all routing times (equation 5.3). The equation for total time

is modified to include several instances of the end depot (AD), in order to track arrival times at

those instances. Figliozzi [25] who first proposed the TD-VRPTW formulation, considers the

minimization of total times, but later on, in the numerical tests, the authors minimized the sum

of travel times. The travel times are easier to evaluate than total times, as total times require

whole route evaluation. The only two equations that changed compared to the EVRPTW MILP

formulation are the ones that contain travel time ti j for an arc (i, j). Instead of a constant travel

time, the travel time that depends on the departure time from user i is used ti j(τi + si), where

τi+si represents the departure time from user i, and τi is the begin time variable. The ti j(τi+si)

is a function of the departure time, which is often non-linear (as in Figure 5.1). Therefore the

program is formulated as a MIP program and can not be solved by commercial solvers, such as

CPLEX and MATLAB, which require a MILP formulation.

min ∑
i∈V0∪F ′, j∈VN+1∪F ′,i6= j

ti j(τi + si)xi j (5.2)
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min ∑
i∈V∪F ′

∑
j∈AD

(τ j− τ0)xi j (5.3)

τi +(ti j(τi + si)+ si)xi j− l0 · (1− xi j)≤ τ j,∀i ∈V0,∀ j ∈VN+1∪F ′, i 6= j (5.4)

τi +g(Q− yi)+ xi jti j(τi + si)− (l0 +gQ)(1− xi j)≤ τ j, ∀i ∈ F ′,∀ j ∈VN+1∪F ′, i 6= j (5.5)

An alternative MILP formulation of TD-EVRPTWFR can be obtained by discretizing the

planning horizon [e0, l0] into p time buckets T = {T1, . . . ,Tp}. The travel time between users

i and j is then also discretized as ti j = {t1
i j, . . . , t

p
i j}. Further on, the travel times tk

i j within

each time bucket are linearized, k ∈ P,P = {1, . . . , p}. The travel time tk
i j can be computed by

equation 5.6, where θ k
i j and ηk

i j are linear travel time function coefficients computed for the

interval Tk = [wk,wk+1], where wk and wk+1 are consecutive time function break points.

tk
i j(td) = θ

k
i jtd +η

k
i j,∀td ∈ Tk, (5.6)

To formulate the MILP model, the procedure proposed by Monter et al. [184] for time-

dependent TSP is used. The binary variable xk
i j is set to a value of one, if arc (i, j) is traversed

within the time bucket k (equation 5.7), and zero otherwise. The travel time function ti j(τi) in

MILP program can be defined by equation 5.8. The new variable tk
i j is used and defined by

equation 5.9 to have a continuity in the model. The variable tk
i j is constrained by equations

5.10 and 5.11. The first one ensures the correct relation between variables tk
i j and xk

i j, while the

second ensures correct arrival times at each vertex and arc. The routing costs consist only of

travel time on arcs (equation 5.13) but could easily be rewritten to include the total time. The

rest of the equations follow the basic MILP model for EVRPTW-FR, with added p discretized

time intervals, given by equations 5.12, and 5.14-5.23.

xk
i j ∈ {0,1}, ∀i ∈V0∪F ′, j ∈VN+1∪F ′, i 6= j,∀k ∈ P (5.7)

ti j(τi) = ∑
k∈P

(θ k
i jt

k
i j +η

k
i jx

k
i j) (5.8)

tk
i j =

τi + si xk
i j = 1

0 else
(5.9)

xk
i j max(ei + si,wk)≤ tk

i j ≤ xk
i j min(li + si,wk+1), ∀i ∈V0∪F ′, j ∈VN+1∪F ′, i 6= j,∀k ∈ P

(5.10)
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τi = ∑
j∈VN+1∪F ′,i6= j

∑
k∈P

tk
i j, ∀i ∈V0 (5.11)

min ∑
k∈P

∑
j∈V∪F ′

xk
0 j (5.12)

min ∑
k∈P

∑
i∈V0∪F ′

∑
j∈VN+1∪F ′,i 6= j

ti j(τi)xk
i j (5.13)

∑
k∈P

∑
j∈VN+1∪F ′,i 6= j

xk
i j = 1, i ∈V (5.14)

∑
k∈P

∑
j∈VN+1∪F ′,i 6= j

xk
i j ≤ 1, i ∈ F ′ (5.15)

∑
k∈P

∑
i∈VN+1∪F ′,i6= j

xk
ji−∑

k∈P
∑

i∈V0∪F ′,i 6= j
xk

i j = 0, j ∈V ∪F ′ (5.16)

tk
i j +θ

k
i jt

k
i j +η

k
i jx

k
i j− l0 · (1− xk

i j)≤ τ j,∀i ∈V0,∀ j ∈VN+1∪F ′, i 6= j,k ∈ P (5.17)

g(Q− yi)+ tk
i j +θ

k
i jt

k
i j +η

k
i jx

k
i j− (l0 +gQ)(1− xk

i j)≤ τ j, ∀i ∈ F ′,∀ j ∈VN+1∪F ′, i 6= j,k ∈ P

(5.18)

e j ≤ τ j ≤ l j,∀ j ∈V0,N+1∪F ′ (5.19)

0≤ u j ≤ ui− xk
i j(qi +C)+C, ∀i ∈V0∪F ′,∀ j ∈VN+1∪F ′, i 6= j,k ∈ P (5.20)

0≤ u0 ≤C (5.21)

0≤ y j ≤ yi− (ei j +Q)xk
i j +Q,∀ j ∈VN+1∪F ′,∀i ∈V, i 6= j,k ∈ P (5.22)

0≤ y j ≤ Q− ei jxk
i j,∀ j ∈VN+1∪F ′,∀i ∈ 0∪F ′, i 6= j,k ∈ P (5.23)
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5.2.2 TD-EVRPTWDCS-FR

The TD-EVRPTWDCS-FR is an extension of TD-EVRPTW-FR variant which considers differ-

ent charger types at CSs. Here, the methodology similar to the one for the EVRPTWDCS-PR

presented in section 2.5, is used. Each virtual CS i∈ F ′ has a possibility to use only one charger

type m ∈ M, with related charging rate and charging cost, gm and cm, respectively. As TD-

EVRPTWDCS-FR MIP formulation is also an extension of EVRPTW-FR and EVRPTWDCS-

PR MILP formulations, only the equations that differ are presented. The objective function

considers minimizing total charging costs given by equation 5.24. As multiple depot end in-

stances have to be considered, set AD is added to track the rest battery capacity variable at those

instances. As there is no need for the variable that determines the charging amount at each CS,

the objective is rewritten to include the charging costs for each selected charger type at CSs.

The equations 5.27 and 5.28 represent the charger type selection based on the binary variables

ai and bi. The only additional equations that differ from the original EVRPTW MILP formula-

tion are equation for the preservation of travel time flow 5.25 and equation for the preservation

of energy flow 5.26.

min ∑
i∈F ′

(aic1 +bic2 +(1−ai−bi)c3)(Q− yi)+ c3

(
Q ∑

j∈V ′
x0 j− ∑

i∈AD
yi

)
(5.24)

τi +(ti j(τi + si)+ si)xi j− l0 · (1− xi j)≤ τ j,∀i ∈V0,∀ j ∈VAD∪F ′, i 6= j (5.25)

τi +(aig1 +big2 +(1−ai−bi)g3)(Q− yi)+ xi jti j(τi + si)− (l0 +g3Q)(1− xi j)≤ τ j,

∀i ∈ F ′,∀ j ∈VAD∪F ′, i 6= j (5.26)

ai,bi ∈ {0,1}, ∀i ∈ F ′ (5.27)

ai +bi ≤ 1, ∀i ∈ F ′ (5.28)
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5.2.3 TD-EVRPTW-PR

The MIP formulation of TD-EVRPTW-PR is an extension of a MILP formulation for EVRPTW-

PR problem, presented in section 2.4. The minimization objective is the same as in equation

5.2, the preservation of travel time flow is given by equation 5.4, the only new equation is the

equation for the preservation of energy flow given by 5.29.

τi + xi jti j(τi + si)− (l0 +gQ)(1− xi j)+g(Yi− yi)≤ τ j, ∀i ∈ F ′,∀ j ∈VN+1∪F ′, i 6= j (5.29)

5.3 HALNS modification

To efficiently solve the TD-EVRPTW-FR problem, the HALNS method developed in chapter 4

is used. To apply the HALNS method on TD-EVRPTW-FR, the computation of both forward

and backward travel time has to be changed. The computation of forward travel times is given

by Algorithm 5.1. The computation of backward travel times in a time-dependent context has

not yet been addressed in the literature. The backward travel time computation follows a similar

assumption as proposed forward travel time computation that the distance between users does

not change. Instead of using departure time at user i, and computing the arrival time at user j,

the backward travel time computation is given the latest arrival time at user j, and computes the

latest departure time at user i. These two functions are inverse functions because if computed

forward arrival travel time at user j based on the departure time from user i, is given as the latest

arrival time at user j; the backward travel time computation produces the latest arrival time at

user i which is equal to the starting departure time at user i.

The computation of backward travel times is given by Algorithm 5.2. The inputs are the

latest arrival time ta and distance di j between users i and j. Instead of the sum of travel times,

the travel times are subtracted from the latest arrival time to get the departure time at user i.

Here, the travel time in bucket k is computed as the final time (departure time) minus the travel

time brake point before, Tkbe f . If clauses are used to limit the skip to only the preceding time

bucket.

The exact procedure based on DP can easily be used as in full recharge strategy the amount

of charging is known when evaluating certain users in forward direction. Therefore, the time-

dependent travel times can affect only the arrival times at users but are known exactly when

evaluating users in a path.
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Algorithm 5.2 Computation of backward travel times
Input: Latest arrival time ta, distance di j

1: dcur← di j
2: ta,cur← ta
3: k← Get time bucket index of time ta
4: t f ← ta−

di j
vk

5: kbe f ← Get time bucket index of time t f
6: if kbe f < k−1 then
7: kbe f = k−1
8: end if
9: while k 6= kbe f do

10: tk← t f −Tkbe f

11: dcur← dcur− tk · vk
12: ta,cur← Tkbe f

13: t f ← ta,cur− dcur
vkbe f

14: k← kbe f
15: kbe f ← Get time bucket index of time t f
16: if kbe f < k−1 then
17: kbe f = k−1
18: end if
19: end while
20: ti j← ta− t f

5.4 Testing

To see if the proposed HALNS method can be used in time-dependent routing, two test instances

are solved with HALNS: (i) Solomon VRPTW instances [31], and (ii) TD-VRPTW instances of

Figliozzi [25]. For the observed cases, the simplified variables and operators are used without

the charging procedure. As this procedure has not yet been applied to solve the TD-VRPTW

problem, here variables and concatenation operators for the TD-VRPTW problem are presented.

The variables are presented in Table 5.1, while the variables are given by equations 5.30-5.34.

Similar non-shifted variables and equations were already introduced in section 3.5, but did not

include variable travel times and shifting technique to the latest feasible point in time. The

forward and backward time window violation are computed by equations 5.35 and 5.36, re-

spectively. The time window violation of two concatenated partial routes φ1 = (u0,u1, . . . ,x)

and φ2 = (y, . . . ,uN+1) can be computed by equation 5.37. First, the forward variables are com-

puted for user y, based on the forward variables for user x. Then, the time window computation

of concatenated routes is computed as the sum of forward time window violation
−−→
TW (φ1) of

route φ1, backward time window violation
←−−
TW (φ2) of route φ2, and difference between arrival

time at user y and latest shifted arrival time at user y.
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Table 5.1: Variables in TD-VRPTW

Symbol Description
ta j Earliest arrival time at user j
tb j Earliest begin time at user j
t̃b j Shifted earliest begin time at user j
tlai Latest arrival time at user i
t̃lai Shifted latest arrival time at user i

ta j = t̃bi + si + ti j(t̃bi + si) (5.30)

tb j = max(e j, ta j) (5.31)

t̃b j = min(l j, tb j) (5.32)

tlai = min(t̃la j − ti j(t̃la j)− si, li) (5.33)

t̃lai = max(tlai,ei) (5.34)

−−→
TW (φ) = ∑

u∈φ

max(tbu− lu,0) (5.35)

←−−
TW (φ) = ∑

u∈φ

max(eu− tlau ,0) (5.36)

TW (φ1⊗φ2) =
−−→
TW (φ1)+

←−−
TW (φ2)+max(0, tay− t̃lay) (5.37)

The TD-VRPTW instances consider Solomon instances with in total 12 different speed

configurations, from A1 to D3, presented in Table 2.3. The VRPTW instances can be observed

as a special case of TD-VRPTW in which all speeds have a value of 1. The computation of

forward and backward travel times have no effect in VRPTW instances, as time-dependent

travel times are not considered. However, they are used for travel time computation to test

the proposed method. The presented variables and concatenation operator evaluate most of the

basic moves in O(1), but not in all cases. During the development, it was noted that in a small

number of cases, due to the time-dependent backward travel time, the time-window penalty is

accounted for, although if fully evaluated, the penalty does not exist. It can be noted that these

special cases can be distinguished and included in the concatenation operator. In this thesis,
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this drawback has been solved by the use of the restricted list of moves that will be evaluated

in O(n). The inspection of special cases of time window violation and the development of

appropriate concatenation operators is left for future research. If the objective function is purely

distance-based, then this could be achieved, but if it is time-based, like travel time or total time,

then still the O(1) evaluation can be used, but latter O(n) evaluation of best moves is needed,

as due to the time-dependent travel times the exact total time is unknown until the whole route

is evaluated.

5.4.1 VRPTW

The results on VRPTW instances are presented in Table 5.2. The same parameter values as

for the original HALNS are used. The column Inst. represents the instance observed. The

columns BKS represent the BKS values for the vehicle number K and distance value d, taken

from the SINTEF page that acts as a central repository for storing BKS solutions in VRPTW.

The columns K, d and tot present the average result out of 10 runs for the number of vehicles,

total traveled distance, and total time. The columns Kbest and dbest represent the best values

out of 10 runs for the number of vehicles and total traveled distance. The columns ∆K and

∆d represent the relative difference between the HALNS values and BKS values, while the

column ∆pd represents the relative percentage distance difference between HALNS and BKS.

The column te represents the average execution time in minutes. The summary of the results

is presented in the last two rows as average and cumulative values. The results indicate that

HALNS is able to efficiently solve VRPTW instances with relatively fast execution time. In

the sum of average runs, it produced 3 vehicles more than BKSs, as sometimes on R and RC

instances, it was not able to achieve minimal vehicle number, for example in instance RC105. If

only the best runs are analyzed, it can be seen that at least once the BKS solution with minimal

vehicle number is achieved, resulting in the same total vehicle number. The overall average

total distance percentage difference to the BKS solutions is 0.13. In VRPTW, the total distance

traveled is equal to the sum of travel times, as constant speed values of 1 are used. To put it into

the context of time, the average total time of achieved solutions is presented. It can be seen that

total time is significantly larger than the travel time due to the service and waiting times. The

average execution time of 5.44 minutes is not the best one, but it is comparable to other applied

methods in the literature [132, 150, 152].
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Table 5.2: VRPTW results - distance

Inst.
BKS HALNS

K d K Kbest ∆K d dbest ∆d ∆pd totbest te
C101 10 828.94 10 10 0 828.94 828.94 0 0 9828.94 0.007
C102 10 828.94 10 10 0 828.94 828.94 0 0 9828.94 0.033
C103 10 828.06 10 10 0 828.06 828.06 0 0 9963.03 0.021
C104 10 824.78 10 10 0 824.78 824.78 0 0 10178.21 0.099
C105 10 828.94 10 10 0 828.94 828.94 0 0 9828.94 0.006
C106 10 828.94 10 10 0 828.94 828.94 0 0 9828.94 0.006
C107 10 828.94 10 10 0 828.94 828.94 0 0 9828.94 0.007
C108 10 828.94 10 10 0 828.94 828.94 0 0 9828.94 0.009
C109 10 828.94 10 10 0 828.94 828.94 0 0 9828.94 0.039
C201 3 591.56 3 3 0 591.56 591.56 0 0 9591.56 0.008
C202 3 591.56 3 3 0 591.56 591.56 0 0 9591.56 0.014
C203 3 591.17 3 3 0 591.17 591.17 0 0 9601.72 0.021
C204 3 590.6 3 3 0 590.6 590.6 0 0 9590.6 1.361
C205 3 588.88 3 3 0 588.88 588.88 0 0 9588.88 0.002
C206 3 588.49 3 3 0 588.49 588.49 0 0 9588.49 0.003
C207 3 588.29 3 3 0 588.29 588.29 0 0 9660.4 0.006
C208 3 588.32 3 3 0 588.32 588.32 0 0 9744.23 0.001
R101 19 1650.8 19 19 0 1650.8 1650.8 0 0 3599.45 1.2
R102 17 1486.12 17 17 0 1486.36 1486.12 0 0 3202.51 1.602
R103 13 1292.68 13.5 13 0 1238.17 1292.68 0 0 2755.79 2.816
R104 9 1007.31 9.4 9 0 999.08 1007.31 0 0 2055.48 7.271
R105 14 1377.11 14 14 0 1377.11 1377.11 0 0 2631.56 0.173
R106 12 1252.03 12 12 0 1256.18 1252.03 0 0 2360.62 1.793
R107 10 1104.66 10 10 0 1114.07 1104.66 0 0 2252.28 5.213
R108 9 960.88 9 9 0 963.51 960.88 0 0 2006.98 5.515
R109 11 1194.73 11 11 0 1204.52 1194.73 0 0 2256.67 3.376
R110 10 1118.84 10 10 0 1127.86 1118.84 0 0 2201.7 3.745
R111 10 1096.72 10 10 0 1096.73 1096.73 0.01 0 2198.5 10.156
R112 9 982.14 9.2 9 0 992.94 982.94 0.8 0.08 2001.37 7.611
R201 4 1252.37 4 4 0 1252.37 1252.37 0 0 3570.66 0.489
R202 3 1191.7 3 3 0 1194.43 1191.7 0 0 2744.86 7.833
R203 3 939.5 3 3 0 942.89 941.41 1.91 0.2 2772.01 13.273
R204 2 825.52 2 2 0 832.48 827.12 1.6 0.19 1971.53 17.652
R205 3 994.43 3 3 0 1005.47 994.43 0 0 2511.17 7.67
R206 3 906.14 3 3 0 915.01 906.14 0 0 2493.58 8.034
R207 2 890.61 2 2 0 895.57 890.61 0 0 1988.54 16.484
R208 2 726.82 2 2 0 732.86 726.82 0 0 1833.37 26.622
R209 3 909.16 3 3 0 913.44 909.16 0 0 2405.36 14.714
R210 3 939.37 3 3 0 942.73 939.37 0 0 2708.37 8.337
R211 2 885.71 2 2 0 906.39 891.89 6.18 0.7 1902.35 19.108

RC101 14 1696.95 14.6 14 0 1631.48 1697.43 0.48 0.03 2990.97 6.428
RC102 12 1554.75 12.5 12 0 1486.08 1562.96 8.21 0.53 2779.66 2.252
RC103 11 1261.67 11 11 0 1263.38 1261.67 0 0 2473.49 5.995
RC104 10 1135.48 10 10 0 1135.49 1135.48 0 0 2271.25 3.009
RC105 13 1629.44 13.7 13 0 1554.99 1661.65 32.21 1.98 2911.8 4.678
RC106 11 1424.73 11.4 11 0 1389.88 1470.7 45.97 3.23 2571.2 5.355
RC107 11 1230.48 11 11 0 1231.84 1230.54 0.06 0 2344.93 1.647
RC108 10 1139.82 10 10 0 1139.82 1139.82 0 0 2260.95 3.85
RC201 4 1406.94 4 4 0 1406.94 1406.94 0 0 3358.41 2.574
RC202 3 1365.65 3 3 0 1374 1365.65 0 0 2674.82 2.596
RC203 3 1049.62 3 3 0 1058.8 1051.82 2.2 0.21 2669.47 8.971
RC204 3 798.46 3 3 0 798.5 798.46 0 0 2515.93 14.614
RC205 4 1297.65 4 4 0 1297.65 1297.65 0 0 3464.61 7.325
RC206 3 1146.32 3 3 0 1146.99 1146.32 0 0 2447.95 5.868
RC207 3 1061.14 3 3 0 1066.06 1061.14 0 0 2416 13.988
RC208 3 828.14 3 3 0 834.31 829 0.86 0.1 2275.54 23.396
AVG 7.23 1021.19 7.29 7.23 0 1018.42 1022.99 1.79 0.13 4727.73 5.44
SUM 405 57186.88 408.3 405 0 57031.47 57287.37 100.49 7.25 264752.95 304.87
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5.4.2 TD-VRPTW

The results on TD-VRPTW instances are presented in Table 5.3. The minimization objective is

the sum of travel times (equation 2.58). As there is no benchmark website containing BKSs for

TD-VRPTW, as there is for VRPTW, the BKS solution out of three research papers that dealt

with TD-VRPTW is selected: CARI [26], RINC [180], and FIGL [25]. Due to the 12 different

speed configurations, the TD-VRPTW researchers report only the cumulative sum of vehicle

number K, total distance traveled d, and travel time tt. Here, similar measures per whole in-

stance set are considered, with an additional measure of average and best cumulative travel time

tt and ttbest , cumulative best total time totbest and cumulative average execution time te which is

not reported in any of the related researches. The difference between BKSs and HALNS are re-

ported as difference in cumulative vehicle number ∆K, travel time ∆tt, traveled distance ∆d and

percentage travel time ∆ptt. Detailed tables per configuration types are presented in appendix

B, Tables 1-12. The HALNS method, in almost all configurations outperforms other methods

from the literature, as it was able to further decrease the number of vehicles, with in total 43

vehicles less. Also, the HALNS was able to achieve significantly better configurations with a

fewer vehicles in terms of total travel time, and total traveled distance. The average percentage

decrease in travel time is 2.46%, while the average percentage decrease in the distance is around

1.56%. Results of conducted tests show that HALNS can be applied for solving time-dependent

routing problems.

Table 5.3: TD-VRPTW results - travel time

Type BKS HALNS Difference
Name K d tt K Kbest tt ttbest dbest totbest te ∆K ∆tt ∆d ∆ptt

A1 CARI 385 58780 47322 380.8 379 46622.17 46402.14 57443.08 249637.83 378.94 −6 −919.86 −1336.92 −1.94
A2 CARI 360 57969 39573 357.9 356 38914.28 38674.78 56680.61 241341.05 376.46 −4 −898.22 −1288.39 −2.27
A3 CARI 348 58447 34984 348.1 347 33866.45 33706.51 56620.33 237316.19 379.58 −1 −1277.49 −1826.67 −3.65
B1 CARI 399 59101 48293 400.3 395 47254.16 47213.29 57898.38 261555.8 397.33 −4 −1079.71 −1202.62 −2.24
B2 RINC 378 59179 41878 378.8 375 40614.67 40491.77 58803.03 253935.28 379.35 −3 −1386.23 −375.97 −3.31
B3 RINC 370 59018 37480 369.7 368 36228.49 36055.37 59603.35 252316.73 369.54 −2 −1424.63 585.35 −3.80
C1 RINC 387 57842 47051 382.9 380 46790.84 46592.45 57543.3 251727.98 385.8 −7 −458.55 −298.7 −0.97
C2 CARI 359 58524 40548 359.5 358 39422.34 39155.76 56540.24 244503.51 386.64 −1 −1392.24 −1983.76 −3.43
C3 CARI 350 58108 35780 349 348 35203.76 34984.84 56988.78 240408.03 384.38 −2 −795.16 −1119.22 −2.22
D1 RINC 401 57639 48841 401.4 398 48344.91 48155.52 57160.95 257659.12 385.37 −3 −685.48 −478.05 −1.40
D2 CARI 382 58476 43074 381.27 377 42410.77 42266.11 57584.72 250345.55 346.22 −5 −807.89 −891.28 −1.88
D3 RINC 375 58369 39473 372.92 370 38701.49 38501.64 57622.32 246895.73 357.35 −5 −971.36 −746.68 −2.46

AVG 374.5 58454.33 42024.75 373.55 370.92 41197.86 41016.68 57540.76 248970.23 377.25 −3.58 −1008.07 −913.58 −2.46
SUM 4494 701452 504297 4482.59 4451 494374.33 492200.18 690489.09 2987642.8 4526.96 −43 −12096.82 −10962.91 −29.57

Although the travel time objective is commonly used as a measure of time in TD-VRPTW,

the minimization of total time can produce different results. The example of results on TD-

VRPTW with total time minimization on A1, B1, C1 and D1 configurations are presented in

Table 5.4, while the detailed tables are presented in Appendix section C, Tables 13-16. The

reference values for the comparison are the best number of vehicles Kbest
tt and best total times

totbest
tt achieved by the travel time minimization. It can be seen that the total time decreased

between 2.34% and 4.8%, at the expense that HALNS was not able to produce the lowest

number of vehicles on configurations A1, B1 and C1, resulting in total of 7 vehicles more. As
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expected, the total traveled distance increased, as well as the execution time.

Table 5.4: TD-VRPTW results - total time

Type Kbest
tt totbest

tt K Kbest tot totbest ∆tot ∆ptot dbest te

A1 379 249637.83 382 382 243926.43 243787.73 −5850.1 −2.34 62127.56 1100.94
B1 395 261555.8 397.33 397 249353.33 249007.17 −12548.63 −4.8 64356.01 1058.98
C1 380 251727.98 383.18 382 246665.22 246276.96 −5451.02 −2.17 63685.24 1026.38
D1 398 257659.12 400.57 398 247072.11 246437.62 −11221.5 −4.36 61931.19 1009.19

5.5 TD-EVRPTW-FR and TD-EVRPTWDCS-FR

To solve the TD-EVRPTW-FR, the same HALNS as for EVRPTW-FR is used, with only differ-

ence in travel time computation. As this is a new problem, the instances for this problem were

not presented so far. To overcome this problem, in this thesis, EVRPTW instances are coupled

with TD-VRPTW to create instances for TD-EVRPTW. The configuration of users in EVRPTW

instances is used as a base, and on top of that, the speed coefficients from TD-VRPTW instances

are added. As already mentioned in section 2.6 the delivery period is discretized into five time

buckets that represent typical urban traffic periods: morning free-flow, morning rush, transi-

tion period between morning and afternoon rush, afternoon rush, and evening free-flow. In the

prepossessing step, all instance arcs per configuration were checked whether they satisfy all

constraints or not, and whether the triangle inequality is valid for the travel times or not [185].

The summary of results per each of the 12 configuration types are presented in Table 5.5, while

the detailed tables are presented in Appendix in section D, Tables 17-28. The reference values

used for the comparison are the BKSs from EVRPTW-FR problem. It can be seen that in all

instances, the vehicle number is decreased, as higher speed values are used than in EVRPTW-

FR, with in total 415 vehicle less. Due to the same reason, the total travel time also decreased

by 28.92%, as well as the total time. In all cases, the configuration types with label 3 (A3, B3,

C3, and D3) produced the lowest number of vehicles as the highest speed values are used in

those sets. The comparison between the configuration types A, B, C, and D shows that the best

results are achieved with set A, which has the highest speed values in the morning and afternoon

rush periods, and slightly lower speed values in transition period between morning and after-

noon rush hours. The worst results are achieved for configuration D, which has higher speed

values towards the end of the planning horizon and lower speed values at the beginning of the

delivery. This happens, as in most instances, the customers that have an early late time window

have to be visited right away, and a lot of time is consumed to visit such customers, especially

if at the beginning the speed values are the lowest. Compared to the EVRPTW-FR without

time-dependent travel times, in all configuration types, the number of visited CS increased, on

average in all instances by 60 CSs. The reason is the average increase in total traveled distance
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of 0.39%, and favoring shorter travel time routes instead of the shorter distance routes.

Table 5.5: TD-EVRPTW-FR results - travel time

Type EVRPTW-FR HALNS Difference
K d K Kbest tt ttbest dbest totbest m te ∆K ∆tt ∆ptt ∆d ∆pd

A1 440 59866.66 420.65 415 49097.54 49020.26 59869.34 284591.93 545 580.82 −25 −10846.4 −18.12 2.68 0.004
A2 440 59866.66 401.19 397 42259.03 42230.02 60104.02 275338.69 574 636.65 −43 −17636.64 −29.46 237.36 0.396
A3 440 59866.66 389.5 387 37647.91 37442.74 60243.05 272433.03 602 646.7 −53 −22423.92 −37.46 376.39 0.629
B1 440 59866.66 426.12 423 47624.37 47405.64 60079.81 291726.01 554 565.37 −17 −12461.02 −20.81 213.15 0.356
B2 440 59866.66 407.3 403 40159.52 39825.8 60624.32 284971.03 589 731.06 −37 −20040.86 −33.48 757.66 1.266
B3 440 59866.66 400.34 397 35535.5 35415.51 62140.05 284309.25 639 758.39 −43 −24451.15 −40.84 2273.39 3.797
C1 440 59866.66 423.17 422 48548.28 48421.24 59740.69 288780.47 542 724.31 −18 −11445.42 −19.12 −125.97 −0.21
C2 440 59866.66 405 405 41705.95 41579.87 59724.31 279456.15 567 781.08 −35 −18286.79 −30.55 −142.35 −0.238
C3 440 59866.66 395.16 391 37304.89 37244.26 59683.65 275183.33 578 869.14 −49 −22622.4 −37.79 −183.01 −0.306
D1 440 59866.66 427.91 425 49755.77 49507.08 59518.3 291664.43 526 847.82 −15 −10359.58 −17.3 −348.36 −0.582
D2 440 59866.66 408.75 407 43348.04 43268.85 59776.84 285391.7 562 762.37 −33 −16597.81 −27.72 −89.82 −0.15
D3 440 59866.66 397.05 393 39381.94 39269.81 59714.31 281938.26 583 623.85 −47 −20596.85 −34.4 −152.35 −0.254

AVG 440 59866.66 408.51 405.42 42697.4 42552.59 60101.56 282982.02 571.75 710.63 −34.58 −17314.07 −28.92 234.9 0.39
SUM 5280 718399.92 4902.14 4865 512368.74 510631.08 721218.69 3395784.28 6861 8527.56 −415 −207768.84 −347.05 2818.77 4.71

Additionally the total time in TD-EVRPTW-FR and recharging costs in TD-EVRPTWDCS-

FR are minimized, with the results for four travel time configurations A1, B1, C1 and D1 pre-

sented in Table 5.6. The detailed tables for each configuration type are presented in Appendix

in sections E and F, in Tables 29-36. The first part of the Table 5.6 is related to the total time

minimization in TD-EVRPTW-FR, where reference values are the best total time value of TD-

EVRPTW-FR with travel time minimization. It can be seen that HALNS was not able to achieve

the same number of vehicles on the A1 configuration, as it produced three vehicles more, while

on each of the other configurations, it produced one vehicle less. As expected, the total time

was reduced in all configurations ranging from 4.56% to 6.67% decrease, at the expense of an

increase in total traveled distance and total travel time. Interestingly, in all configuration types,

the number of visits to CSs increased.

The second part of the table presents results for the recharging cost minimization with dif-

ferent charger types in CSs for TD-EVRPTWDCS-FR. The reference values for the comparison

are the best recharging costs of TD-EVRPTW-FR with travel time minimization. The recharg-

ing costs increased up to 1.77% mostly due to the fact that rapid and fast charging are utilized

much more, which led to a significant reduction in the number of vehicles, up to 41, which

is similar to the reduction of vehicles between EVRPTW-FR and EVRPTWDCS-FR. The to-

tal distance traveled, and the number of visited CSs are also slightly reduced, at the expense

of an increase in total travel time. At first glance, the 374 vehicles for A1 configuration in

TD-EVRPTWDCS-FR seems impossible as in TD-VRPTW the best found solution for A1 is

379 vehicles, and TD-VRPTW has fewer constraints. The same goes for the other configuration

types. The problem is that these two values are hardly directly comparable, as the used Solomon

instances are not completely the same. More precisely, as Schneider et al. [18] pointed out, the

locations of customers in the instance are the same, but the time-window values were relaxed in

EVRPTW instances, as some instances were always infeasible in the original Solomon instances

if BEVs are included. This problem does not come to the fore when a standard recharging rate,
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set in EVRPTW instances, is used, but rather when rapid and fast charging rates are used, which

then produce a solution configuration with a lower number of vehicles. If noted closely, this can

also be seen in the comparison between VRPTW, where the BKSs contain 405 vehicles (Table

5.2), and the BKSs for EVRPTWDCS-PR which contain 402 vehicles [22] (Table 4.24), or the

BKSs for EVRPTWDCS-FR with also up to 402 vehicles (Tables 4.21 and 4.22).

Table 5.6: TD-EVRPTW-FR total time and TD-EVRPTWDCS-FR recharging cost - results

Type
ttbest HALNS Difference

K tot/rec f K Kbest f fbest dbest ttbest m te ∆K ∆ f ∆p f
A1 415 284591.93 tot 418 418 272122.84 271613.75 66069.57 54185.65 620 1339.93 3 −12978.18 −4.56
B1 423 291726.01 tot 422 422 271989.62 271472.73 65962.24 53344.87 613 1371.29 −1 −20253.28 −6.94
C1 422 288780.47 tot 422.1 421 274014.88 273120.12 67850.62 54366.82 619 1171 −1 −15660.35 −5.42
D1 425 291664.43 tot 424 424 272881.07 272207.06 64865.74 54890.51 583 1015.29 −1 −19457.37 −6.67
A1 415 59869.34 rec 378.7 374 60794.88 60437.62 58817.27 49419.61 549 727.61 −41 568.28 0.95
B1 423 60079.81 rec 391.4 390 60832.17 60475.88 59199.17 47980.01 552 696.62 −33 396.07 0.66
C1 422 59740.69 rec 384 384 60872.36 60799.26 59369.46 48861.39 557 639.93 −38 1058.57 1.77
D1 425 59518.3 rec 387.67 387 60816.46 60507.86 59065.21 49698.46 543 726.58 −38 989.56 1.66
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Chapter 6

Adapted real-world delivery problem

To show the application of the developed HALNS method in real-world delivery problems,

one delivery problem from the real world is selected and adapted. The real-world problems

often include additional special constraints by the company that performs the delivery. These

constraints are most often simplified and added to the model of the problem. The selected

real-world problem represents the post delivery problem in the City of Zagreb. In total, 225

customers are considered, representing ministries, city offices, and large companies that have a

contract with the post service. The observed delivery problem is presented in Figure 6.1. The

depot is represented by a black pin, while the customers are colored from red to green pins,

with red indicating customers that need to be visited sooner due to the earlier closing service

time and green indicating customers that can be visited later. The mail is delivered in bags,

which are considered as a load unit size in the problem. The example of demand (bags) per

customer is presented in Figure 6.2. The customers’ demands range from zero to six bags, with

zero representing the delivery demand of a couple of letters. The service time at each customer

is 3 minutes, and the delivery is performed between 06:00 and 11:00. The fleet consists of 16

vehicles with equal load capacities of 20 bags. The position of each customer is geocoded. This

process is important as a wrong location can have a significant impact on routing plans. In the

original dataset, some customers were geocoded on links that are not accessible by the private

vehicle, i.e., in a pedestrian zone, private company area, one-way roads, etc. In such occasions,

the correction of the geographic coordinates was performed to improve the accuracy. In the

real case, the delivery is performed by 16 vehicles, and the total traveled distance is 240.79

km. The used real world delivery data were collected on projects with industry conducted at the

Faculty of Transport and Traffic Sciences, University of Zagreb, and cannot be used outside the

institution.
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Figure 6.1: Observed delivery problem

Figure 6.2: Demand per customers in the post delivery problem

6.1 Digital map

The digital road network map of the Republic of Croatia is provided by Mireo Inc.. The digital

map consists of 625702 road segments (links) covering 55049 km, with a median link length

of 88 m. The link represents a segment of the road between two consecutive intersections. The

line interpolation between the link start point and link end point is used to represent the real

road segment. Each link contains a unique identifier, static speed and speed limit, all set by the

digital map provider. Links are divided into seven categories, from highways to local streets.

Directions for two-way roads are represented by separate links which have identical geometric

representation but different orientation. Each link also contains the name of the street that it
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belongs to.

The example of the digital traffic map for the City of Zagreb that will be used in this thesis is

presented in Figure 6.3. The map consists of 66799 links which are colored based on their type.

Highways are colored with orange color, main avenues and streets with dark blue color, main

neighborhood streets with purple color, and local streets with light blue color. For background

map representation as in Figure 6.1, the web Mireo map is used, coupled with JavaScript code

for visual representation.

Figure 6.3: Road network in the City of Zagreb

To use the road links in the digital map for routing applications, commonly, the road traffic

network is modeled as a graph. In this thesis, links in the road network are modeled as vertices,

while the edges represent connections between links. The connection between two links for the

same road segment that represent two different directions is removed to overcome the cycling

in a graph. Such connections are only allowed for the starting link, for which most often there

is a possibility to go on either of the links for different directions. This means that vehicle at the

start can choose in which direction to go unless it is a one-way road, or there are two different

links for different directions, if there is an unused road surface that divides directions, like a

road fence that divides the avenues, or full white line.
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6.2 VRPTW

The basic version of the problem can be modeled as the VRPTW problem. To solve the VRPTW

problem the shortest path distance between each customer in the problem has to be computed,

as well as the corresponding travel time. These values are commonly stored in the distance and

time matrix M = n×n, where n is the number of customers in the problem instance. In this case,

the matrix has a size of M = 226×226, as there are 225 customers and 1 depot in the observed

problem. The matrices are asymmetric as different paths are traversed between customers in

opposite directions. The shortest distance path between customers is expressed as a set of

consecutive links in the digital map that minimize the total traveled distance. To compute the

shortest path between customers, the most commonly applied algorithms are Dijkstra, Bellman-

Ford, A∗, contraction hierarchies, etc. [186, 187]. In this thesis, the Dijkstra+s algorithm given

by Algorithm 6.1 is used to compute the shortest distance path. First, all vertices in graph G

are added to the list of unprocessed vertices Q. The first vertex is set to have zero value, while

all the other vertices are set to have an infinity value. The preceding vertex of each vertex in

the graph is set to None. Then, the algorithm loops through the list Q, and in each iteration,

removes the vertex u that has the lowest value. If the distance is minimized, the vertex that has

the lowest total traveled distance up to it is removed. After the vertex is removed, values and

preceding vertices of neighboring unprocessed vertices of u are updated, only if the computed

new value is lower than the current value of a vertex. The new value is computed as the current

value of vertex u plus the arc weight wu,v representing the cost of traversing the arc. As a result,

Dijkstra algorithm computes the shortest paths from starting vertex vo to every other vertex in

the graph G. The path from starting vertex vo to any other vertex vn is determined by backward

looping of preceding vertices, starting from the vertex vn and ending in vertex v0. This means

that Dijkstra algorithm does not need to be recomputed if a starting vertex in the graph does

not change. Therefore, in VRP problems, the computation time can be reduced, as the Dijkstra

algorithm needs to be computed for each customer, meaning that the shortest paths to all other

customers are just restored from an already solved graph with a set starting vertex. The Dijkstra

algorithm works on a graph that contains only non-negative arc weights, as otherwise, cycling

in the graph can occur.

The most common implementation of the Dijkstra algorithm for a list of the unprocessed

Q vertices uses an unsorted array, which has the complexity O(n) for extraction of the vertex

with the lowest value. If |V | represents the number of vertices in graph G, the complexity of

such implementation would be O(|V |+ |V |2) = O(|V |2). Instead of an unsorted array, in this

thesis, the minimum priority queue is used. The idea is based on the minimum heap structure,

which stores the data based on their priority. Here, the minimum values are stored at the back

of the priority queue. The vertex with the lowest value can be determined in O(1) time, while
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the insertion of a vertex in such queue is performed in O(logn) time, where n is the number

of elements in the queue. Therefore, the complexity of such implementation of Dijkstra algo-

rithm is O(|V |log|V |+ |E|log|V |) = O((|V |+ |E|)log|V |), where |E| is the number of arcs in

the graph G. If an assumption is made that is |E| ≈ |V |, then the complexity of the Dijkstra

algorithm is O(|V |log|V |). This assumption is valid in traffic road network graphs as one vertex

usually contains only several neighboring vertices. For a dense graph in which |E| = |V |2 the

complexity of the algorithm increases to O(|V |2log|V |).

Algorithm 6.1 Dijkstra algorithm
Input: Graph G and start vertex v0

1: Q← Initialize list of unprocessed vertices
2: for each vertex v in graph G do
3: if v = v0 then
4: value(v)← 0
5: else
6: value(v)← ∞

7: end if
8: preceding(v)← None
9: Add v to Q

10: end for
11: while Q is not empty do
12: u← Remove vertex form Q with the lowest value
13: for each unprocessed neighboring vertex v of vertex u do
14: valnew← value(u)+wu,v
15: if valnew < value(v) then
16: value(v)← valnew
17: preceding(v)← u
18: end if
19: end for
20: end while

The Dijkstra algorithm computes the shortest distance path between customers based on the

sum of the links’ lengths in the path. In VRPTW, beside the distance measure, the travel time

on a path is needed to check the time window constraints. To compute the travel time on a

path, first, the set link speed by the map provider is used. This is a static speed determined

by the experience. As linearized travel times are not considered in VRPTW, the travel time on

the link is computed as a ratio of link’s length and speed. The result of running the Dijkstra

algorithm on the problem are two matrices: distance (which is minimized) and travel time, and

both are used as an input for the HALNS method. The average running time of an implemented

Dijkstra algorithm on a graph for the observed road network of Zagreb (Figure 6.3) is 2.97 s.

The graph contains 66799 vertices and 107736 arcs, which is in average 1.61 arc per vertex,

meaning that the graph is not dense. It is important to note that there are faster implementations

of the shortest path algorithm that include heuristic methods and searching in both directions,
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start and end, but they were not considered in this thesis, as the purpose of this chapter is to

show the applicability of HALNS in the real world.

The VRPTW solution of the delivery problem with used set digital map speeds, solved by

HALNS, is presented in Table 6.1. The distances are expressed in kilometers, total and travel

times in hours, and execution time in minutes. As in previous testings, the HALNS was run ten

times; therefore, the average value of vehicle number and total distance traveled is presented.

The best VRPTW solution is presented in Figure 6.4. In total, 12 vehicles are used for the

delivery with the total traveled distance of 223.05 km in the best solution and 226.15 km on

average. The total travel time in the best solution is 7.32 h, while the total time is 38.34 h. At

first glance, total travel time seems relatively small, but if put into context of relatively close

customers in the urban center of Zagreb, it can be seen that not much time is spent on driving,

and more time is spent on the service and waiting times. If computed, the average driving

speed would be 30.53 km/h. Compared to the real performed delivery, the vehicle number is

reduced by 4 vehicles, and additionally, the total traveled distance is reduced by 17.74 km,

which is a 7.37 percentage decrease. The results are hardly comparable to previous researches

that dealt with this real-life problem [150, 158], as first of all, speeds on the road network

changed from the time in which the studies were conducted, and second, slightly different

Dijkstra computation is used, that approximates customer position with the whole closest link

in the digital map, and not just the part of the link that is traversed. This generally means

that results should be worse than the results in previous studies, but still, in some cases, better

solutions were found, which shows the good performance of the HALNS method.

Table 6.1: VRPTW real example with set map speeds - results

Real HALNS
K d K Kbest ∆K d dbest ∆d ∆pd ttbest totbest te

16 240.79 12 12 −4 226.15 223.05 −17.74 −7.37 7.32 38.34 6.411

6.3 Speed profiles

To better estimate traffic conditions on a road network, Floating Car Data (FCD) can be used,

as by tracking vehicles equipped with Global Navigation Satellite System (GNSS) devices, the

real-time traffic data can be recorded [174, 188, 189, 190]. FCD act as location-based mobile

sensors on the road network and record formatted data: geographic coordinates, timestamp, in-

stantaneous velocity, heading, etc. Collecting FCD in a larger period of time results in volumi-

nous and detailed traffic data, which then imposes on the application of data-mining procedures

to extract spatio-temporal traffic patterns [188, 189, 191, 192, 193, 194].

In this thesis, FCD collected from vehicles equipped with GNSS devices are used to estimate
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Figure 6.4: VRPTW solution - set map speeds

speed values on a road network. These data are collected as a part of the SORDITO project.

The used historical FCD were recorded during a five-year period between August 2009 and

October 2014 by 4908 vehicles. The GNSS tracking devices were installed in freight delivery

vehicles, delivery vans, taxis, personal cars, etc. This resulted in 6.55 billion GNSS records,

with a storage volume of 320 GB. The records for vehicles in the driving mode were sampled

approximately every 100 m, while the records for stationary vehicles were sampled every 5 min.

The FCD data were used to compute links’ speed profiles. Road speed profile can be defined

as expected vehicle speed for a particular link during the observed time period [195]. This way,

the temporal behavior of recurrent traffic conditions can be taken into consideration.

Two features that influence recurrent congestion were taken into account when computing

speed profiles: seasons and days of the week. First, the data were divided into two seasons:

summer, containing July and August, and rest of the year. Due to the lower number of data

during the night [175, 196], the one-day period was divided into two: daytime period (05:30-

22:00 - working hours of vehicles in the dataset) and nighttime period (22:00-05:30). Further

on, the daytime period was observed for different days in the week, from Monday to Sunday. A

discretization of speed profiles in five-minute time buckets was selected as a balance between

the estimation quality and the number of data [197, 198]. In the end for each time bucket tk the

space mean speed v(tk) was computed by equation 6.1. Usually, mean travel time speed is used

to average speeds in the observed time bucket [191, 199], but in the project, the space mean

speed was used as: (i) it is the arithmetic mean speed of all vehicles occupying a given link

[198, 200], and (ii) it gives higher weight to slower vehicles which is suitable for quantifying

179

https://www.fpz.unizg.hr/sordito/about-the-project/


6. Adapted real-world delivery problem

congestion [201]. For more details on the computation of speed profiles, the reader is referred

to [24, 28, 158].

v(tk) =
n

∑
n
i=1

1
vi(tk)

(6.1)

In total, 564112 speed profiles were computed for the rest of the year season and 185708 for

the summer season. 73.64% of the higher priority links (from minor city artery to motorway)

were covered with the rest of the year speed profiles and 51.15% with the summer speed profiles.

The example of computed absolute speed profiles through days of the week for one of the most

frequently used link in Zagreb is presented in Figure 6.5a. On the x-axis is the time of day

and on the y-axis is the value of speed in km/h. To better visualize speed profiles, the values

are plotted as interpolated dotted lines between the discrete point values. Two distinct speed

drops from 70 km/h to 20-30 km/h can be distinguished, corresponding to the morning and

afternoon rush periods, with the afternoon rush period having higher intensity. During the

weekend and between the rush periods, almost free-flow conditions are present. Also, the slight

changes between the work-days are present. Monday and Tuesday show the largest congestion

occurring in the morning after the weekend as: (i) at the beginning of the week, most of the

job activities in the city have to be performed early in the morning, and (ii) many commuters

from nearby cities return to the city. On the contrary, the largest afternoon congestion occurs

on Friday as many people go on the vacation during the weekend or return to their homes in

nearby cities.

Figure 6.5b presents seasonal variability between the summer and the rest of the year season

on Monday for an already observed continental link in the City of Zagreb and link located near

the City of Zadar on the Adriatic coast. It can be noted that there are almost no speed drops

during the summer for the continental link, while during the rest of the year, the speed drops

significantly. The opposite holds for the link on the coast, where congestion occurs only during

the summer season and is shifted later in the day.

(a) Day-to-day variability in speed profiles (b) Seasonal variability in speed profiles

Figure 6.5: Speed profiles

One additional application of speed profiles is the spatio-temporal analysis on the micro
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(link) level in different seasons for one of the most used route in the City of Zagreb on Monday,

which is presented in Figure 6.6. On the x-axis is the time of day, and on the y-axis is the

distance from the start. The route length is 20.95 km spreading from the east entry point to

the west exit point of the city, with the route’s links represented as horizontal lines. The color

changes from red to green, with red representing congestion (relative speed value ≤ 60) and

green representing free-flow conditions (relative speed value ≥ 100). The horizontal red lines

represent links in the route at which traffic lights are located, and the congestion spreads in

time (horizontal) and space (vertical), causing queues and waiting times [170, 174]. During the

morning rush period for the rest of the year (Figure 6.6a) the part of the route leading to the

city center (≈ 10 km) is heavily congested with congestion length up to 2.5 km and almost no

congestion for part of the route leading out of the city. The opposite holds for the afternoon

rush period and west-east direction, as the part of the route leading out of the city is heavily

congested, and there is no congestion for part of the route leading into the city. Also, the

summer season (Figure 6.6b) is significantly less congested than the rest of the year season

(Figure 6.6a).

(a) Rest of the year (b) Summer

Figure 6.6: Spatio-temporal route analysis in different seasons

6.4 TD-VRPTW

First, to show the importance of using a more accurate speed, the previous VRPTW problem

is solved by using average daily speeds per link computed from the speed profile and not the

speed values set by the provider. The results are presented in Table 6.2 and the best solution is

presented in Figure 6.7. Again in all runs, the solution with 12 vehicles is found. The distance

in the best solution increased to 232.76 km, mostly due to the more realistic lower speed values,

which as a consequence, has a harder time window completion. This means that if the previous

solution with provider speeds is evaluated with average daily speeds, the produced solution
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would be infeasible, mostly due to the violation of time windows. The time values increased, as

the total travel time in the best solution is 13.39 h, and the total time is 40.42 h. This means that

vehicles spent 6.07 h more on the road network than in the case with set provider speed, which

is in average 30 min more per vehicle. Here, the average routing speed dropped to 17.38 km/h.

Again compared to the real delivery case, the vehicle number is reduced by 4 vehicles and the

total traveled distance by 8 km, which is a 3.33% decrease.

Table 6.2: VRPTW real example with average daily speeds - results

Real HALNS
K d K Kbest ∆K d dbest ∆d ∆pd ttbest totbest te

16 240.79 12 12 −4 235.08 232.76 −8.03 −3.33 13.39 40.42 7.304

Figure 6.7: VRPTW solution with average daily speeds

To solve the TD-VRPTW problem, the distance and travel time matrices have to be com-

puted for each time bucket. Therefore, these matrices can be represented as three-dimensional

matrices M = k× n× n, where n is the number of customers in the problem instance, and k is

the number of time buckets. The previously used Dijkstra’s algorithm has to be modified to

minimize travel times. In a time-dependent context, the travel time depends on the departure

time, which led to the definition of TD-SPP [202, 203] and Time-Dependent Dijkstra algorithm

(TDD) [26, 130, 178, 204]. The only difference, in the TDD algorithm, to the classical one

is the computation of weights between vertices. Instead of a static distance weight in distance

minimization, in travel time minimization, the weight is expressed as a travel time function that
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depends on the departure time. As presented by the Algorithm 6.2 the TDD algorithm, addi-

tionally as an input, requires the start time t0 for the start vertex v0. The edge weight between

vertices is expressed as a function of the starting time wu,v(start_time(u)), and when the update

is conducted, additionally the future starting time is also updated (line 20). It is important to

note that the travel time was computed in the same way as proposed by Figlliozzi [25] given by

Algorithm 5.1, which linearizes travels times and satisfies FIFO principle.

Algorithm 6.2 Time-dependent Dijkstra algorithm
Input: Graph G, start vertex v0 and start time t0

1: Q← Initialize list of unprocessed vertices
2: for each vertex v in graph G do
3: if v = v0 then
4: value(v)← 0
5: start_time(v)← t0
6: else
7: value(v)← ∞

8: start_time(v)← ∞

9: end if
10: preceding(v)← None
11: Add v to Q
12: end for
13: while Q is not empty do
14: u← Remove vertex form Q with the lowest value
15: for each unprocessed neighboring vertex v of vertex u do
16: valnew← value(u)+wu,v(start_time(u))
17: if valnew < value(v) then
18: value(v)← valnew
19: preceding(v)← u
20: start_time(v)← start_time(u)+ valnew
21: end if
22: end for
23: end while

To solve the real-world delivery problem, a M = 199× 226× 226 matrix is generated, as

speed profiles are discretized in 198 five-minute intervals for a daytime period and 1 time inter-

val for nighttime period. As there are speed profiles for different days in the week and seasons,

for the analyzed delivery problem, the Monday and rest of the year season speed sets were

selected. With an average Dijkstra running time of 2.79 s, the computation of such matrix

took approximately 34.85 h. The results are presented in Table 6.3 for different minimization

objectives: distance d, travel time tt and total time tot, with column f representing average cor-

responding objective value. In all cases, the BKSs with 12 vehicles are achieved. As it can be

seen, using time-dependent speeds for distance minimization, instead of a static average speed,

further increased both the average and the best total traveled distance by approximately 3 km.

The total travel time decreased by almost 2 h compared to the static average speed, while the
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difference in total time is only 3 min. Compared to the distance minimization, the minimization

of travel times shows that travel times can be further decreased to at best 11.37 h, which is a

decrease of 8.4 minutes, at the expense of the increase in total traveled distance by 3.72 km and

decrease in total time by 47.4 min. The best solution with the minimization of total travel times

is presented in Figure 6.8. The minimization of total times, which is the most complex, inter-

estingly further reduced the total time by 2.73 h, at the expense of the increase in total traveled

distance and total travel time by 121.31 km and 4.9 h, respectively. This means that the aim is

to visit users that close soon and not leave them to the other vehicles. One explanation would

be that vehicle visits one customer in the east part of the city, then one in the west part of the

city, and then again goes back to the east part. As a result, vehicles spend much more time on

the road network and cover larger distances but are able to finish delivery sooner. The example

of the best solution with the minimization of total times is presented in Figure 6.9.

Table 6.3: TD-VRPTW real example with link speed profiles - results

Min.
Real HALNS

K d K Kbest ∆K f dbest ∆d ∆pd ttbest totbest te

d 16 240.79 12 12 −4 238.84 235.12 −5.67 −2.35 11.51 40.47 7.922
tt 16 240.79 12 12 −4 11.44 238.84 −1.95 −0.81 11.37 39.68 7.589

tot 16 240.79 12 12 −4 37.15 360.15 119.36 49.57 16.27 36.95 13.917

Figure 6.8: TD-VRPTW solution with link speed profiles - travel time
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Figure 6.9: TD-VRPTW solution with link speed profiles - total time

6.5 EVRPTW

As the original delivery problem is not performed by BEVs, the problem is adapted to handle

BEV routing constraints. This is manifested with the replacement of a purely ICEV fleet with

a purely BEV fleet, as well as the determination of available CS in the road network of Zagreb

[88].

6.5.1 Adaptation

The selected delivery problem is adapted to include EVs and CSs. First, the CSs in the urban

area of Zagreb are extracted from Google map, Puni.hr and Charge map. Beside the extracted

CSs, one additional CS is added at the depot location resulting in a total of 21 CSs. The list of

all used CSs is presented in Table 6.4. In Figure 6.10 geographic distribution of CSs (blue pins)

is presented.

Another important part of EVRP problem, is energy consumption related to BEVs. In the

available literature regarding the application of BEVs in routing applications, energy consump-

tion is often estimated using Longitudinal Dynamics Model (LDM). In this thesis, the LDM

presented by Asamer et al. [205] is used. Force F needed to accelerate and to overcome re-

sistances (grade, rolling and air) is given by equation 6.2, where m is the vehicle mass (mostly

empty vehicle), a acceleration, v vehicle speed, g gravitational constant, f the inertia force of

vehicle rotating parts (up to 5% of the total vehicle mass), α road slope, cr rolling friction coef-
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Table 6.4: CSs in the City of Zagreb

ID X Y Name
1 15.981179 45.805281 Croatian post in Branimir street
2 15.96977005 45.81631713 Tuškanac parking garage
3 15.98241505 45.81448747 Ribnjak parking garage
4 15.99697897 45.81433979 Eugen Kvaternik square
5 15.99758927 45.81314805 Parking garage in Martićeva street
6 16.01115057 45.81537343 Road traffic school
7 15.9801913 45.80817855 Petrinjska parking garage
8 15.9890445 45.80367234 Strojarska street
9 15.97784908 45.80065808 City government 1

10 15.97780352 45.80138075 City government 2
11 16.00090236 45.80443909 Zaharova street
12 16.00108945 45.80283973 Green gold
13 16.00748604 45.80318021 Vukovarska street - Konzum
14 16.01693561 45.79540224 Capraška street
15 16.05000131 45.80194785 City Centar One East
16 15.9489664 45.79782361 Park Stara Trešnjevka
17 15.93297902 45.76928532 Blato - Kaufland
18 15.94357295 45.76712674 Station for technical inspection - Remetinec
19 15.96878552 45.77794117 Zagreb fair
20 15.9829782 45.76060619 Lidl in Oreškovićeva street
21 16.00381769 45.77051112 Travno - Konzum

Figure 6.10: Post delivery problem with CSs
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ficient, cd air drag coefficient, ρ air density, and A vehicle frontal air surface. If condition F ≥ 0

is satisfied, the vehicle is accelerating and power is needed for the movement of BEV (motor

mode); otherwise, if condition F < 0 is satisfied, deceleration (braking) or driving downhill is

occurring, and energy is returned into the BEV’s battery as the electric engine has the ability to

return the energy (generator mode). By process of regeneration, up to 15% of totally consumed

energy can be returned [143, 186]. Electric power that comes from the battery is divided into the

auxiliary power P0 and mechanical power Pm = Fv. Auxiliary power is spent on the electronic

devices in the vehicle: heating, ventilation, light, etc., which can shorten the BEV’s range up

to 30% [62]. Battery power Pb can be computed by equation 6.3, where µm is the transmission

coefficient between the electric motor and drive-train, and µg is the conversion ratio from me-

chanical energy on wheels to chemical energy stored in the battery. Energy is returned into the

battery only if the force F is lower than zero and speed is higher than the experimentally deter-

mined value vmin [205]. Instant energy consumption E can be computed as power multiplied by

the elapsed time ∆t, given by equation 6.4.

F = mgsinα︸ ︷︷ ︸
Grade

+crmgcosα︸ ︷︷ ︸
Rolling

+0.5cdρAv2︸ ︷︷ ︸
Air

+ f ma︸︷︷︸
Acc.

(6.2)

Pb =


Fv
µm

+P0, if F ≥ 00, if v≤ vmin

µgFv+P0, else
, if F < 0

(6.3)

E = Pb∆t (6.4)

In Asamer et al. [205], Figure 6.11 is presented, which shows the relation between the av-

erage trip speed on x-axis and energy consumption in kWh per 100 km on y-axis. Additionally,

each part of the LDM model is represented with different colors: rolling (gray), grade (red), air

drag (green), acceleration (blue), and auxiliary (light blue). The energy consumption of BEVs

corresponding to the grade resistance force is responsible for 5% to 10% of the total energy

consumption on all vehicle speeds. This value can vary significantly depending on the terrain

configuration and routing scenario. The acceleration force is the main cause of energy con-

sumption at lower speeds, up to 40 km/h, where also the auxiliary power consumption has an

important role. At speeds higher than 40 km/h, the air drag force is the dominant cause of en-

ergy consumption. Energy consumption corresponding to the rolling friction remains the same

for all speed values.

To compute the energy consumption on a real road network, first, the BEV type used for

the observed delivery problem needs to be selected. The Nissan Leaf 2014 was selected for

the delivery problem with specifications listed in Table 6.5. The Nisan Leaf was selected as it
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Figure 6.11: Average energy shares in dependence of average trip speed, [205]

was analyzed in several related researches that consider routing applications [13, 89, 98, 205,

206, 207, 208]. The same load capacity is used as for the conventional vehicles. Due to the

specific delivery problem in which delivery is performed in a close urban environment, the

total traveled distance of best solutions in different problem types is in the [220,250] km range.

As the used BEV has a range of 200 km [206], the whole delivery without load constraints

could be made with one vehicle and one charging at CS. Due to the load capacity, the total

number of used vehicles is 12, and as a result, in EVRPTW, no recharging at CS would be

needed if battery capacity is set to 24 kWh. To validate the HALNS on the real-world example,

the battery capacity of a BEV is reduced to 3 kWh, representing a range of roughly 25 km.

This way, BEVs need to visit CSs during the routing. In basic EVRPTW variants, all CSs are

considered to have an identical charging power of 16 kW as a balance between the rapid and

slow recharging rate. For variants with different charger types, this value was considered as the

fast charger type (middle value), while the rapid and slow charging powers are set to 50 kW and

11 kW, respectively. The considered charging cost coefficients are: (i) rapid - 0.192 N/kWh,

(ii) fast - 0.176 N/kWh, and (iii) slow - 0.160 N/kWh, reported by Felipe et al. [23].

In equation 6.2, the air density is set to 1.2 kg/m3, while the gravitational acceleration g

is set to 9.81 m/s2. The values of v, a, and α are not related to the vehicle specifications but

rather to the characteristics of traversed road segment (link). For the computation of speed and

acceleration values on links, the derived speed profiles from FCD are used. The example of the

computed speed and acceleration profile for the road link in Figure 6.5a for Monday in the rest

of the year season is presented in Figure 6.12a. As it can be seen, acceleration has low values

due to the smoothed changes in the speed profile and does not reflect the real acceleration of
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Table 6.5: Specifications of Nissan Leaf 2014

Attribute Label Value
Battery capacity Q 24 kWh

Mass m 1145 kg
Rolling friction coeff. cr 0.008

Air drag coeff. cd 0.35
Air frontal surface A 1.9 m2

Inertia force of rotating parts f 1.01
Motor to drive-train coeff. µm 0.9
Drive-train to motor coeff. µg 0.8

Auxiliary power P0 450 W
Minimum speed for generator mode vmin 2.78 m/s (10 km/h)

the vehicle. The speed from FCD could not be used for the acceleration computation as the

recorded speed is the "spot" speed, and the sampling rate was quite large, on average, 100 m

[28]. Instead, an average acceleration for Nissan Leaf vehicle per speed category is used [205],

presented in Table 6.6 and Figure 6.12b for the observed speed profile example. Additionally,

the acceleration on the observed link is limited to the maximum possible acceleration, computed

with the assumption that the vehicle has the speed value of zero (0) at the beginning of the link,

and average v(tk) speed at the end of the link, in time bucket tk.

Table 6.6: Accelerations per speed intervals for Nissan Leaf 2014, [205]

Speed interval [km/h] Avg. acceleration [m/s2]
[0,30〉 0.61
[30,51〉 0.53
[51,72〉 0.37
[72,93〉 0.41
[93,102〉 0.28
[102,∞〉 0.05

(a) Example 1 (b) Example 2

Figure 6.12: Speed and acceleration profiles
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For the computation of road link grade, the digital elevation data by EU Copernicus service

is used. The raster data is represented with 25 m resolution and vertical accuracy of ±7 m.

The example of data for the urban area of Zagreb is presented in Figure 6.13, where the high-

est points are represented with red color, and the lowest points with blue color and decreased

opacity value.

Figure 6.13: Copernicus elevation model

Each start and end points of links in the used road map of Zagreb are associated with the

elevation value from the raster data. Based on the difference in the elevation ∆h and aerial link

distance d the grade of the link is computed by equation 6.5. The computed link grades are

presented in Figure 6.14. The links with negative grades, representing downhill direction, are

represented with color ranging from blue (the steepest) to yellow (the flattest) in Figure 6.14a,

while the links with positive grades are represented with color ranging from red (the steepest)

to green (the flattest) in Figure 6.14b.

α = arctan
∆h
d

(6.5)

As a result of the previous computation, each link has an associated speed, acceleration, and

energy consumption profile. The example of energy profile for already observed link in Figure

6.12, is presented in Figure 6.15.
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(a) Negative grade

(b) Positive grade

Figure 6.14: Link grades for the road network in the City of Zagreb

Figure 6.15: Example of energy consumption profile
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6.5.2 Results

Results of applying the HALNS method on different EVRPTW variants are presented in Ta-

ble 6.7. The columns for problem variant, best recharging cost (N) and configuration of CSs

(mb
1,mb

2,mb
3) in best solution are added, where m1 represents the rapid charger type and m3

the slowest charger type. The FR represents full recharge strategy, PR partial recharge strat-

egy, DCS different charges types, and TD time-dependent variants. For comparison, the best

VRPTW solution computed with the SORDITO average speed is selected. The non time-

dependent variants are solved using average SORDITO speed values, while the time-dependent

variants are solved using SORDITO speed profiles. In all variants, in best solutions, 12 vehicles

are found. The FR strategy shows that a minimal number of vehicles is harder to achieve than

in the VRPTW problem, as in some cases, the final solution contained 13 vehicles; therefore,

the average vehicle number in FR strategy is 12.3 vehicles. Due to the visit to the CSs and

additional recharging time, the total traveled distance, total travel time, and total time increased

in all variants. In EVRPTW-FR, the total traveled distance increased by 15 km, the total travel

time by 6.94 h and total time by 2.31 h. This means that on average, each vehicle spends

roughly 30 min more on driving and ends its delivery 20 min later. The total recharging cost is

7.04 N recharged at CSs or used from the initial full battery capacity. The EVRPTW-PR again

showed its benefits by decreasing all values, especially the total traveled distance by 5.6 km, as

well as recharging costs by 0.22 N. Interestingly the number of visits to CSs decreased, which

was not expected as reported in subsubsection 4.10.3. This occurred as HALNS was able to

found a better customer and CS configuration for this particular problem. The example of the

best solutions for EVRPTW-FR and EVRPTW-PR are presented in Figures 6.16 and 6.17. The

problems with different charger types used distance minimization matrices with appropriate en-

ergy cost values. The EVRPTWDCS-FR and EVRPTWDCS-PR were able to decrease overall

recharging costs at the expense of an increase in total traveled distance and total time. Lastly,

the results for time-dependent variants are presented. In TD-EVRPTW-FR problem, the total

travel time decreased to 11.91 h as well as recharging costs, although more CSs are visited.

In TD-EVRPTWDCS-FR, the recharging cost is further decreased, but it is interesting that the

total time is the lowest as the use of rapid charger enables easier completion of some customers.

Table 6.7: TD-/EVRPTW-DCS/PR/FR real example - results

Prob. Min.
VRPTW HALNS
K d K Kbest ∆K f dbest ∆d ∆pd ttbest totbest recbest mb

1 mb
2 mb

3 te

FR d 12 232.76 12.3 12 0 249.87 246.97 13.99 6.01 14.26 40.65 7.64 − 8 − 11.85
PR d 12 232.76 12 12 0 254.89 245.06 12.3 5.28 13.95 40.63 7.42 − 7 − 9.23

DCS-FR rec 12 232.76 12 12 0 6.96 257.27 24.51 10.53 14.93 41.35 6.96 0 1 9 12.98
DCS-PR rec 12 232.76 12 12 0 7.04 257.87 25.11 10.79 14.95 42.39 7.04 2 0 11 13.32
TD-FR tt 12 232.76 12 12 0 11.91 249.38 16.62 7.14 11.79 40.76 7.09 − 12 − 15.36

TD-DCS-FR rec 12 232.76 12 12 0 6.40 253.53 20.77 8.92 13.00 40.37 6.40 2 0 10 18.80
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6.5. EVRPTW

Figure 6.16: EVRPTW-FR solution with link speeds - total distance traveled

Figure 6.17: EVRPTW-PR solution with link speeds - total distance traveled
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6.5.3 Minimization of energy consumption

None of the EVRP variants considered the minimization of the total energy consumed. The

closest objective is the recharging cost minimization with different charger types in CSs. The

main reason is that theoretically developed EVRP variants consider energy consumed on the

arc as a linear function of the total traveled distance. Therefore, the minimization of the total

traveled distance corresponds to the minimization of total energy consumed. In this thesis, to

approximate the real energy consumption of the vehicle on the link level, the LDM model was

used, and as a result, the total energy consumption does not depend linearly on the total distance

traveled. Therefore, there is a need to determine the solution to the Energy Shortest Path Prob-

lem (ESPP) on a graph that can contain negative weights as energy is returned into the battery

when the EV works in generator mode. Here the problem rises, as the Dijkstra’s algorithm,

cannot be applied on graphs with negative weights, more precisely on graphs where negative

cycles can occur. The negative cycle means that the sum of cycle weights is lower than zero,

which could happen in practice in directed graphs due to the discretization, double rounding

errors, etc. The best-known algorithm for finding the shortest path in a directed graph with

negative edge weights is the Bellman-Ford algorithm [209], given by Algorithm 6.3, which has

O(|V | · |E|) complexity. The only difference to Dijkstra algorithm is that it does not necessarily

select the vertex with the lowest value to be removed from the list of the unprocessed vertices

Q and that it searches through all neighboring vertices of u, and not only the unprocessed ones.

To further improve the efficiency of computing the shortest path on a negative graph cycle

Johnson’s technique can be used [210]. First, a new vertex q is added to the graph, connected

by zero-weight edges to each other vertex. Then, the Bellman-Ford algorithm is run on such

a graph, starting from vertex q. The result is a minimum weight path from vertex q to each

other vertex in a graph. Next, the weights of the graph are recomputed based on the minimum

path values between vertices u and v and previous weight value w(u,v) given by equation 6.6,

where BF_value represents the Bellman-Ford minimum path value. In the end, the vertex q

and its edges are removed from the graph, and Dijkstra algorithm can be applied to find the

shortest path from each starting vertex to each other vertex. The shortest path value produced

by Dijkstra, has to be returned to the original range by reducing each edge weight in a path by

the added value BF_value(u)−BF_value(v). Although, Bellman-Ford algorithm shows larger

complexity, this way it has to be run only once in the preprocessing step to prepare the graph

values for Dijkstra algorithm.

w′u,v = wu,v +BF_value(u)−BF_value(v) (6.6)

The described algorithm was used to determine the energy shortest path in a road network of

Zagreb, with a similar running time as for the shortest distance and travel time paths. The only
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Algorithm 6.3 Bellman-Ford algorithm
Input: Graph G and start vertex v0

1: Q← Initialize list of unprocessed vertices
2: for each vertex v in graph G do
3: if v = v0 then
4: value(v)← 0
5: else
6: value(v)← ∞

7: end if
8: preceding(v)← None
9: Add v to Q

10: end for
11: while Q is not empty do
12: u← Remove vertex form Q
13: for each neighboring vertex v of vertex u do
14: valnew← value(u)+wu,v
15: if valnew < value(v) then
16: value(v)← valnew
17: preceding(v)← u
18: end if
19: end for
20: end while

difference is the computation of Bellman-Ford values in advance, which took approximately

7.19 s. The result for the EVRPTW-FR and EVRPTW-PR problems are presented in Table

6.8. It can be seen that the energy shortest paths reduce the energy consumption as well as

the recharging cost at the expense of an increase in total traveled distance and total time. The

example of the solution for EVRPTW-FR is presented in Figure 6.18.

Table 6.8: EVRPTW-PR/FR with energy consumption minimization

Prob. K Kbest e ebest dbest ttbest totbest recbest m te

FR 12 12 40.05 39.12 256.88 15.39 40.76 5.60 7 9.23
PR 12 12 38.34 37.85 251.64 15.5 40.6 6.66 10 7.42
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Figure 6.18: EVRPTW-FR solution with link speeds - energy consumption

6.6 Note on the computation of time-dependent matrices

Describing the traffic conditions with as little data as possible is important because it lowers

memory requirements. The researchers that deal with benchmark time-dependent problems

usually consider less than ten speed or travel time indexes per planning horizon [25, 176, 178,

179, 180, 211]. Others that tried to incorporate real-time traffic data into routing problems

aggregated speed data into discretized time buckets (up to 15 min) and observed relatively

small-sized road networks (up to 70000 links) [27, 204, 212, 213, 214].

In this thesis, a TDD algorithm was used to solve the TD-SPP with an average running time

of 2.97 s. The time to compute one line of matrix is roughly the same on small problems, as the

Dijkstra algorithm does not require the re-computation of graph values if the start vertex has not

changed. For problems with a larger number of users, the computation of one line can last some

additional time, depending on the problem, but here that time was not considered. As reported,

the computation of matrices for 226 customers in 199 time buckets took approximately 34.85

h. Such time is too long in real applications, as sometimes the configuration of users changes

frequently, which then requires matrices recomputation. One could say that used exact Dijkstra

algorithm is slow and that much faster heuristic implementations can be applied. To prove that

this computation time is still very long, the TDD algorithm developed as a part of the SORDITO

project is used. The used TDD has an average running time of 0.724 s, determined based on

the shortest path solution to 100000 random origin-destination pairs on the whole road network

in Croatia, with on average 111 km distance between the origin and destination. Table 6.9
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presents the pre-processing computation time in hours for a road network of Croatia by using

a TDD algorithm that depends on the speed profiles with different discretization time periods

ranging from 1 to 60 min. It can be seen that with the increase in the number of users, the

computation time increases significantly.

Table 6.9: Pre-processing computation time [h] in time-dependent routing operations

Approach
Number of users

100 1000 10000
SP-60 0.48 4.83 48.26
SP-15 1.93 19.31 193.06
SP-5 5.79 57.92 579.2
SP-1 28.96 289.6 2896
TTI-7 0.14 1.41 14.08

To reduce the computation time, the congestion zones and time-varying Travel Time Indexes

(TTIs) can be used, which are developed as a part of the SORDITO project, and here they will

be briefly mentioned. For detailed description, the reader is referred to Erdelić et al. [28].

The congestion zones can be estimated based on the speed profiles for links in the digital map

by fishnet divide of the observed area and the application of image processing methods. The

example of extracted zones for whole Croatia is presented in Figure 6.19a, while the specific

zone for the urban area of Zagreb is presented in Figure 6.19b. The fishnet cells are colored from

red to green, representing congestion intensity. The congestion zone’s borders are represented

with blue line and the real city border with magenta line. Next, in each congestion zone, a

Monte-Carlo approach was used to simulate 100000 routes, record their travel times and express

(a) Croatia’s congestion zones (b) Congestion zone of city of Zagreb

Figure 6.19: Congestion zones
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it in relation to the free-flow route travel time. As a result, in several congestion zones, the

temporal clustering could be performed to determine distinct time periods in day in which traffic

conditions are similar, presented in Figure 6.20. Seven distinct time periods divided by black

lines can be depicted. For each determined time period, the mean value is given in Table 6.10.

As it can be seen, in the rush hours, travel time increases by almost 32%, compared to the free

flow travel time. The developed TTIs were validated in the real driven test study, in which the

TTIs produced a relative percentage error of 4.13%.

As developed TTIs use only seven mean values to represent daily traffic conditions the

overall matrices computation time can be significantly reduced, as shown in the latest row in

the Table 6.9. The computation time for 1000 users is 1.41 h. The further application of TTIs

in time-dependent routing applications is presented in [26, 158].

Figure 6.20: Custered TTIs

Table 6.10: Mean TTI values

Period TTI[%]
05:30-06:45 −0.09
06:45-07:25 17.90
07:25-08:20 31.66
08:20-15:30 18.08
15:30-17:05 31.58
17:05-19:00 16.24
19:00-22:00 1.42
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Chapter 7

Conclusion

The vehicle routing problem is a logistic optimization problem that considers the problem of ev-

eryday goods delivery from the depot to the customers. The inclusion of real-world constraints

such as vehicle load capacity and customer time windows led to the definition of several basic

variants of the problem. With the rise of ecological awareness and new regulations related to

more sustainable and greener transport, especially in the EU, the research field of green logistics

emerged. The important part of green logistics is the integration of electric vehicles in the distri-

bution proces. Electric vehicles are considered as a cleaner mode of transport than conventional

vehicles with internal combustion engine due to the reduced greenhouse gas emission, mini-

mal noise, refueling from renewable energy sources, and resistance to the fluctuating oil price

and politically unstable countries. The integration of electric vehicles in logistics has led to

the definition of a new variant of the vehicle routing problem that includes electric vehicles -

the electric vehicle routing problem. As the vehicle routing problem is an NP-hard problem,

meaning that a solution cannot be obtained in the polynomial time, a large number of heuristic

and metaheuristic procedures were developed over the years to solve the problem.

The electric vehicle routing problem has to account for the limited battery capacity of elec-

tric vehicles, which severely shortens the driving range of electric vehicles compared to the

conventional ones. This manifests in the need for the recharging at charging stations. Although

the electric variant of the problem has been introduced only recently, there are already several

variants of the problem that are mainly focused on the different recharging strategies or the

fleet composition regarding the mix of conventional and electric vehicles. Most of the proposed

solution procedures combine specially defined heuristic and metaheuristic procedures for each

of the problem variants. Therefore, there is an open gap for the development of a more gen-

eral metaheuristic that will efficiently solve different problem variants. The integration of exact

procedures for optimal charging station placement, which improves the solution quality, has

only been addressed in a few studies. The heuristic based on the ruin-recreate principle cou-
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pled with exact procedures for optimal charging station placement can be generalized to apply

it on several problem variants. The only method components that need to be changed between

the problem variants are the applied penalty functions and the so-called concatenation opera-

tors that evaluate the changes in the solution. With slight modifications, the developed HALNS

method was able to efficiently solve such problems and achieve several unpublished best known

results.

Additionally, the time-dependent traffic conditions in the electric vehicle routing problem

have not been addressed so far. It is a well-known fact that the travel time changes depending

on the departure time, especially in the urban traffic environment where the traffic congestion

occurs regularly. As traffic has a recurrent nature, the travel time on the road network can be

predicted and integrated into the electric vehicle routing problem. If neglected, this can lead

to a significant increase in routing cost due to the penalties for late deliveries in time-precise

distribution. With slight modifications, the developed HALNS method was able to efficiently

solve such problems and achieve several unpublished best known results.

Lastly, to show the application in real life, a real-world delivery problem was adapted to

the specific EVRPTW model characteristics and solved with the developed HALNS method.

The time-dependent traffic conditions on the road network were expressed as speed profiles

derived from the historical GNSS data. Routing of electric vehicles on the real road network

additionally required charging station locations, road grades, electric vehicle specifications,

and energy consumption model. The results show the application of the developed method to

solve real-world delivery problem modeled as several problem variants: VRPTW, TD-VRPTW,

EVRPTW, and TD-EVRPTW.

7.1 Achieved contributions and main conclusions

The first objective of the thesis was to develop a hybrid metaheuristic procedure to efficiently

solve different variants of the electric vehicle routing problem. This objective of the thesis

was achieved by developing a method based on the ruin-recreate principle and coupled with

the exact procedure for optimal charging station placement. Additionally, problem-specific

variables, penalty functions, and concatenation operators were defined. It should be highlighted

that although the proposed procedure has been tested out on only several problem variants, the

procedure can be applied on other problem variants with only a change in problem-specific

penalty functions and concatenation operators.

The second objective of the thesis was the formulation of a new time-dependent electric

vehicle routing problem with time windows. This objective is achieved by mixed integer for-

mulation of the basic time-dependent problem and several problem variants. The closely related

third objective was to apply a developed hybrid metaheuristic to solve the newly defined prob-
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lem. This was achieved by solving newly-defined test instances with the proposed solution

method. The rest of the section lists major contributions achieved in this thesis, and gives a

conclusion about each of the achieved contributions. The whole list of all thesis major and

minor contributions is given in the Appendix section A.

7.1.1 Hybrid ALNS method development for solving different existing
variants of the electric vehicle routing problem

The hybrid adaptive large neighborhood search method was developed for solving different

electric vehicle routing problems. The main contributions are the development and the applica-

tion of new variables for several observed variants: full recharge, different charger types with

full recharge, and different charger types with partial recharge. The problem with different

charger types and full recharge has not been previously addressed in the literature. The contri-

butions manifest in the new best known solutions on several instances and problem variants, as

well as the relatively low method execution time.

Based on the obtained results, it can be concluded that the developed method is able to

efficiently solve different variants of the electric vehicle routing problem, with the modifica-

tion of only penalty functions and concatenation operators. Additionally, the proposed method

shows stability when minimizing different objectives: total distance traveled, total time, and

total recharging costs.

7.1.2 Development of the mixed integer program based model for time-
dependent electric vehicle routing problem with time windows

As the time-dependent electric vehicle routing problem with time windows has not been previ-

ously addressed in the literature, the common approach when introducing a new vehicle routing

problem is to formulate it as mixed integer program, or if possible, as a linear variant. The

problem considers the travel time that depends on the departure time, which function in most

occasions is nonlinear. Therefore, first, the mixed integer formulation for the basic problem

variant with full recharge strategy is presented, as the extension of the mixed integer linear

model for the electric vehicle routing problem with time windows and full recharge. Next, the

linearized model, which considers the lineraization of travel times in several time buckets, is

presented. Lastly, the mixed integer formulations for the partial recharge strategy and differ-

ent charger types with full recharge are presented as the extension of their non-time-dependent

linear versions.
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7.1.3 Solving the developed model of time-dependent electric vehicle rout-
ing problem with time windows using adapted hybrid ALNS method

The developed hybrid adaptive large neighborhood search method was applied to solve the

newly defined time-dependent electric vehicle routing problem with time windows and full

recharge. The piece-wise linearization of travel times was considered, which satisfies the FIFO

principle and ensures algorithm stability. The observed delivery period was discretized into five

time periods that represent typical daily urban traffic conditions. The problem was efficiently

solved on a newly-defined problem instances, showing the impact of time-dependent travel time

on routing decisions.

7.2 Future research

This thesis has addressed several open issues in the field of electric vehicle routing problem.

Regardless, there are still many open research areas that need further consideration. This section

will outline possible future research direction.

The first possible future research direction is the application of the developed method on

other electric vehicle routing problem variants. What naturally comes to mind is the hetero-

geneous routing problem which considers a fleet of both electric and conventional vehicles or

the problem, which considers non-linear charging function. The first one is the most logical

extension, as most of the companies are gradually integrating electric vehicles in the existing

fleet, while the second one takes into account the non-linear charging time after approximately

80% of the SOC value, which can seriously influence the routing decisions. Also, an exten-

sion of the problem that deals with capacitated charging stations, possible waiting times, and

public or private CS property has received a little attention in the literature. The built charg-

ing stations usually have two to three chargers, which limits the number of vehicles charging

simultaneously. Additionally, the highest demand for recharging occurs in similar time periods

in a day, when drivers take a break. On that note, the charging reservation, as well as the com-

patibility of chargers, have received a little interest in the research community. To apply the

developed method on such problems, new penalty functions and concatenation operators need

to be developed as well as possibly new destroy, repair, and local search operators.

Second, the developed method itself can be further improved. The penalty functions and

concatenation evaluation showed the best evaluation performance in O(1) for partial recharge

strategy, while for the full recharge strategy, in some cases, the evaluation until the latest charg-

ing station in route in O(n), still has to be performed. Detecting all cases in which evaluation

is not adequately determined could lead to new penalty functions and concatenation operators

for full recharge with O(1) complexity. This also goes for the partial recharge strategy with
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different charger types where the evaluation is not efficient if the charger types are not compat-

ible. In the basic time-dependent vehicle routing problem, there are only a few cases in which

evaluation is not adequate, which could be inspected and dealt with, in the future research. The

time-dependent electric vehicle routing problem with partial recharge could not be solved as the

exact procedure to evaluate the changes done in the solution has not been found yet, as charging

time and travel time are dependent variables. Also the exact procedure for optimal charging

station placement, which has been proven to increase the quality of the solution, has not yet

been proposed for the problem variant. The most basic problems consider minimization of dis-

tance or travel times because they are the easiest to evaluate, but the literature lacks efficient

evaluation procedures when total time is minimized.

Third, the exact procedure for optimal charging station placement can be viewed as the

bottleneck of the proposed method. The procedure has proven to significantly improve the

solution quality but has a long computation time compared to the other method components. To

improve the computation time of the exact procedure, and generally all evaluations performed

during the search process, the caching technique can be used, which stores evaluation values

of a dozen of the latest evaluations performed during the search. For the application on large

instances, the parallelization of the method should be considered to speed up the execution time.

Forth, in most of the problem variants, the energy consumption model that linearly depends

on the total distance traveled is considered. This helps to strip some of the problem constraints

and focus on the algorithm itself. However, for the application in the real world, a more ac-

curate energy consumption model should be considered. In this thesis, for real-world energy

consumption, the longitudinal dynamics model was used. The used model is better than the

previously used linear model, but still, much better models for energy consumption exists in the

literature which include machine learning procedures and simulation models.

Fifth, the application of population metaheuristics such as genetic algorithm, ant colony, or

swarm particle optimization on the electric vehicle routing problem is scarce. Such algorithms

could further provide more generic procedures for solving the observed problem variants.

Sixth, as the vehicle routing problem is a well-researched problem, the researchers estab-

lished a benchmark website where the best known solutions are stored. This helps a research

community to faster test their developed algorithms and to compare them to the other applied

algorithms. For the electric vehicle routing problem, such center of benchmark data is not

available, and future efforts could be made in that direction.
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[141] Mladenović, N., Hansen, P., “Variable neighborhood search”, Computers &

Operations Research, Vol. 24, No. 11, 1997, pp. 1097 - 1100, available at:

http://www.sciencedirect.com/science/article/pii/S0305054897000312

[142] Schneider, M., Stenger, A., Hof, J., “An adaptive VNS algorithm for vehicle routing

problems with intermediate stops”, OR Spectrum, Vol. 37, No. 2, Mar 2015, pp. 353–

387.

[143] Bruglieri, M., Pezzella, F., Pisacane, O., Suraci, S., “A variable neighborhood

search branching for the electric vehicle routing problem with time windows”,

Electronic Notes in Discrete Mathematics, Vol. 47, 2015, pp. 221 - 228, available at:

http://www.sciencedirect.com/science/article/pii/S1571065314000717

[144] Lourenço, H. R., Martin, O. C., Stützle, T., Iterated Local Search: Framework

and Applications. Boston, MA: Springer US, 2010, pp. 363–397, available at:

https://doi.org/10.1007/978-1-4419-1665-5_12

[145] Shaw, P., “Using constraint programming and local search methods to solve vehicle rout-

ing problems”, in Principles and Practice of Constraint Programming — CP98, Maher,

M., Puget, J.-F., (ed.). Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 417–

431.

[146] Christiaens, J., Vanden Berghe, G., “Slack Induction by String Re-

movals for Vehicle Routing Problems”, KU Leuven, Department of

Computer Science, CODeS & imec, Tehnical Report, 2018, available

at: https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1988666&context=L&

vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US

219

https://ideas.repec.org/b/ito/pbooks/2399.html
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1287/ijoc.1.3.190
http://www.sciencedirect.com/science/article/pii/S0305054897000312
http://www.sciencedirect.com/science/article/pii/S1571065314000717
https://doi.org/10.1007/978-1-4419-1665-5_12
https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1988666&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US
https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS1988666&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US


Bibliography

[147] Pisinger, D., Ropke, S., “A general heuristic for vehicle routing problems”, Computers

& Operations Research, Vol. 34, No. 8, 2007, pp. 2403 - 2435, available at:

http://www.sciencedirect.com/science/article/pii/S0305054805003023

[148] Lipowski, A., Lipowska, D., “Roulette-wheel selection via stochastic acceptance”,

Physica A: Statistical Mechanics and its Applications, Vol. 391, No. 6, Mar 2012, pp.

2193–2196, available at: http://dx.doi.org/10.1016/j.physa.2011.12.004

[149] Cordeau, J.-F., Laporte, G., Mercier, A., “A unified tabu search heuristic

for vehicle routing problems with time windows”, Journal of the Operational

Research Society, Vol. 52, No. 8, 2001, pp. 928-936, available at: https:

//doi.org/10.1057/palgrave.jors.2601163
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Appendix

A List of all thesis contributions

• New Pseudo-Greedy Time-Oriented Nearest Neighbor Heuristic for the creation of the

initial EVRPTW solution

• Slightly modified penalty functions for EVRPTW-PR, which has not been presented in

the literature

• Four new variables in penalty functions for EVRPTW-PR that are used to determine the

charging amount

• Slightly modified penalty functions for EVRPTW-FR, with the strategy for the evaluation

in O(1)

• Introducing a new variant of the EVRP problem - the EVRPTWDCS-FR, with proposed

penalty functions and the strategy for the evaluation in O(1)

• New penalty functions for EVRPTWDCS-PR with the strategy for the evaluation in O(1)

if chargers are compatible and O(n2) (in practice) if chargers are incompatible

• New ALNS based route removal operator

• Comparing different route removal operators for solving EVRPTW variants

• New local search operator for problems with different charger types

• New resource extension functions in DP for EVRPTWDCS-FR

• Improvement in the MILP formulation for the optimal CS placement in EVRPTWDCS-

PR

• Analyzing the impact of virtual CS number in MILP formulations for EVRPTW-FR,

EVRPTW-PR, and EVRPTWDCS-PR

• Solving EVRPTW-FR, EVRPTW-PR, EVRPTWDCS-FR, and EVRPTWDCS-PR prob-

lems using the HALNS method

• Possibly 44 new BKSs on benchmark instances for EVRPTW-PR - the actual number is

lower, but the direct comparison could not be made

• Minimization of the total routing time in EVRPTW-FR, EVRPTW-PR, EVRPTWDCS-

FR, and EVRPTWDCS-PR problems

• 9 new BKSs on benchmark instances for EVRPTW-FR
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• 16 new BKSs on benchmark instances for EVRPTWDCS-PR

• MIP formulations for TD-EVRPTW-FR, TD-EVRPTW-PR, and TD-EVRPTWDCS-FR

problems

• MILP formulation for TD-EVRPTW-FR problem

• Backward travel time computation in time-dependent problems

• New penalty functions and concatenation operators for TD-VRPTW problem

• Solving VRPTW and TD-VRPTW problem instances using the HALNS method

• Outperforming procedures applied to solve the TD-VRPTW problem in the literature and

providing several BKSs on each of the 12 configuration types of TD-VRPTW benchmark

instances

• Developing energy consumption model for routing purpose that includes data derived

from GNSS data and digital elevation model

• Using the HALNS method to solve the adapted real-world delivery problems modeled as

VRPTW, TD-VRPTW, EVRPTW, and TD-EVRPTW

• Solving a real world EVRPTW problem with the minimization of energy consumption

• Shortest energy paths for BEVs on the road network of the City of Zagreb
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B TD-VRPTW travel time

Table 1: TDVRPTW - A1 - travel time - results

Inst. K Kbest tt ttbest d dbest tot totbest te

C101 10 10 685.24 685.24 828.94 828.94 9685.24 9685.24 0.19
C102 10 10 683.26 683.26 835.46 835.46 9683.26 9683.26 0.72
C103 10 10 681.88 681.88 835.46 835.46 9750.96 9750.96 2.17
C104 10 10 679.94 679.94 833.88 833.88 9816.21 9816.21 4.32
C105 10 10 682.83 682.83 833.01 833.01 9763.24 9763.24 0.37
C106 10 10 685.24 685.24 828.94 828.94 9685.24 9685.24 0.44
C107 10 10 682.83 682.83 833.01 833.01 9697.6 9697.6 0.88
C108 10 10 680.74 680.74 833.03 833.03 9684.38 9684.38 1.4
C109 10 10 680.74 680.74 833.03 833.03 9680.74 9680.74 2.48
C201 3 3 502.9 502.9 591.56 591.56 9502.9 9502.9 0.44
C202 3 3 502.9 502.9 591.56 591.56 9502.9 9502.9 2.13
C203 3 3 502.05 502.05 591.17 591.17 9539.88 9539.88 4.32
C204 3 3 500.84 500.84 590.97 590.97 8550.76 9500.84 7.86
C205 3 3 500.34 500.34 588.88 588.88 9500.34 9500.34 1.13
C206 3 3 499.49 499.49 588.49 588.49 9499.49 9499.49 1.72
C207 3 3 498.33 498.33 588.32 588.32 9500.54 9500.54 2.1
C208 3 3 499.49 499.49 588.49 588.49 9499.49 9499.49 2.31
R101 18 18 1324.59 1312.04 1606.85 1582.12 3019.26 3370.77 1.85
R102 16 16 1185.05 1185.05 1432.68 1432.68 2753.78 3059.76 4.16
R103 13 13 1020.18 1020.18 1240.92 1240.92 2568.37 2568.37 7.4
R104 9 9 805.78 801.51 977.24 975.32 1724.12 1935.73 8.91
R105 12 12 1096.05 1084.71 1378.03 1370.65 2084.81 2306.89 2.44
R106 10.9 10 1012.42 1158.35 1261.94 1408.43 1920.04 2091.51 5.82
R107 9 9 925.45 908.92 1123.51 1102.49 1770.81 1960.62 6.22
R108 8.6 8 775.51 792.34 939.39 948.59 1644.68 1798.77 8.9
R109 10 10 943.06 930.22 1172.31 1162.84 1813.47 2008.31 4.96
R110 9 9 918.85 898.65 1116.19 1098 1767.69 1943.07 5.18
R111 9 9 886.68 872.9 1085.29 1068.02 1756.38 1942.09 5.43
R112 9 9 759.72 754.75 939.79 935.21 1668.01 1842.62 9.26
R201 3 3 1116.14 1115.8 1387.1 1382.83 2395.32 2661.46 4.92
R202 3 3 919.7 919.7 1141.19 1141.19 2451.46 2723.84 12.68
R203 2 2 905.73 901.7 1136.26 1134.1 1744.47 1931.76 15.87
R204 2 2 648.95 637.12 827.59 813.12 1660.66 1897.78 22.18
R205 3 3 754.95 747.37 1023.95 1020.64 2170.52 2404.95 10.46
R206 2 2 799.88 773.15 1009.73 983.01 1686.88 1844.31 10.59
R207 2 2 697.96 687.29 891.14 886.85 1652.84 1848.31 14.99
R208 2 2 573.35 566.64 747.26 742.7 1561.85 1709.08 17.73
R209 2.1 2 858.95 851.51 1077.05 1060.62 1742.95 1860.48 8.96
R210 2 2 884.16 872.28 1094.92 1080.35 1724.68 1901.54 10.43
R211 2 2 675.37 666.18 864.68 846.25 1562.71 1710.63 17.19

RC101 13.2 13 1324.59 1304.23 1653.55 1620.11 2345.13 2557.91 2.03
RC102 11 11 1190.53 1188.38 1458.1 1448.92 2123.3 2368.31 2.88
RC103 10 10 997.86 991.06 1225.56 1213.43 1923.83 2142.61 6.21
RC104 9 9 917.94 912.05 1111.93 1101.93 1798.45 2005.38 5.22
RC105 13 13 1204.23 1180.03 1483.01 1448.09 2364.09 2656.73 3.37
RC106 11 11 1045.17 1043.52 1323.07 1320.51 2013.35 2247.98 4.04
RC107 10 10 982.69 969.53 1223.36 1215 1885.39 2079.54 7.01
RC108 9 9 932.81 899.44 1137.94 1106.94 1791.42 1969.88 3.36
RC201 3 3 1259.92 1250.11 1573.55 1566.25 2343.87 2604.29 4.53
RC202 3 3 1015.96 1013.46 1282.59 1302.55 2348.64 2609.6 12.44
RC203 3 3 811.28 800.3 1017.51 998.17 2363.03 2665.36 14.98
RC204 2 2 734.67 725.18 927.44 916.09 1686.5 1915.11 16.8
RC205 3 3 1145.56 1137.53 1445.49 1417.19 2409.49 2669.7 9.46
RC206 3 3 852.53 848.99 1138.92 1138.9 2126.74 2326.66 10.2
RC207 3 3 782.97 772.43 1057.33 1036.03 2021.83 2235.27 14.85
RC208 2 2 785.94 758.5 985.19 961.84 1617.44 1767.6 10.05
AVG 6.8 6.77 832.54 828.61 1030.96 1025.77 4295.56 4457.82 6.77
SUM 380.8 379 46622.17 46402.14 57733.75 57443.08 240551.43 249637.83 378.94
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Table 2: TDVRPTW - A2 - travel time - results

Inst. K Kbest tt ttbest d dbest tot totbest te

C101 10 10 615.28 615.28 828.94 828.94 9615.28 9615.28 0.19
C102 10 10 607.92 607.92 833.03 833.03 9607.92 9607.92 0.66
C103 10 10 606.61 606.61 833.03 833.03 9676.87 9676.87 1.88
C104 10 10 605.31 605.31 860.76 860.76 9670.56 9670.56 4.87
C105 10 10 608.39 608.39 834.99 834.99 9752.95 9752.95 0.37
C106 10 10 612.37 612.37 831.68 831.68 9685.69 9685.69 0.5
C107 10 10 608.39 608.39 834.99 834.99 9644.72 9644.72 0.96
C108 10 10 605.59 605.59 835.01 835.01 9612.59 9612.59 1.61
C109 10 10 605.59 605.59 835.01 835.01 9605.59 9605.59 2.73
C201 3 3 441.46 441.46 591.56 591.56 9441.46 9441.46 0.43
C202 3 3 441.46 441.46 591.56 591.56 9441.46 9441.46 2.17
C203 3 3 438.92 438.92 592.89 592.89 9503.05 9503.05 4.8
C204 3 3 437.21 437.21 588.05 588.05 9437.21 9437.21 8.54
C205 3 3 439.17 439.17 588.49 588.49 9439.17 9439.17 1.15
C206 3 3 439.17 439.17 588.49 588.49 9439.17 9439.17 1.74
C207 3 3 438.54 438.54 588.32 588.32 9459.43 9459.43 2.13
C208 3 3 439.17 439.17 588.49 588.49 9439.17 9439.17 2.25
R101 15 15 1113.21 1104.57 1608.86 1585.86 2597.15 2876.84 1.98
R102 14 14 964.79 959.9 1374.44 1372.49 2407.48 2673.39 4.24
R103 11.1 11 870.54 868.72 1253.5 1251.4 2019.03 2165.54 6.51
R104 8.4 8 713.14 718.42 1010.1 1018.04 1615.18 1792.96 7.03
R105 11 11 896.51 886.13 1365.18 1355.38 1885.9 2098.52 2.34
R106 9.3 9 843.15 851.28 1227.89 1229.15 1745.8 1939.63 3.72
R107 8.7 8 734.72 763.24 1057.49 1078.47 1637.09 1769.25 5.59
R108 8 8 638.86 635.11 919.6 910.93 1506.4 1674.76 6.85
R109 9.1 9 800.52 790.81 1167.72 1147.73 1674.73 1848.08 3.99
R110 9 9 709.63 703.38 1053.81 1056.74 1634.11 1763.25 6.38
R111 9 9 697.46 695.33 1030.73 1030.25 1629.55 1804.17 8.14
R112 8 8 654.66 645.29 928.96 923.36 1710.83 1710 6.47
R201 3 3 870.6 870.46 1308.53 1307.85 2366.09 2628.98 6.04
R202 3 3 774.56 772.25 1143.69 1130.5 2436.96 2717.11 13.55
R203 2 2 719.29 717.06 1073 1074.35 1678.17 1831.77 16.94
R204 2 2 521.14 515 819.78 797.47 1620.68 1838.31 17.3
R205 2.2 2 751.08 759.95 1149.8 1139.58 1735.79 1765.63 6.42
R206 2 2 636.73 625.65 997.9 991.05 1562.87 1739.53 11.64
R207 2 2 561.32 541.68 891.47 878.82 1523.26 1707.15 16.49
R208 2 2 454.73 448.5 745.67 736.95 1458.84 1614.43 17.68
R209 2 2 645.02 634.3 999.64 982.21 1580.65 1752.6 10.99
R210 2 2 684.47 678.44 1057.65 1051.67 1677.08 1861.48 13.63
R211 2 2 525 515.07 836.01 807.97 1496.97 1630.35 17.16

RC101 12 12 1001.09 1001.09 1516.51 1516.51 2331.15 2331.15 2.61
RC102 10.1 10 1017.12 986.15 1469.26 1414.53 1934.76 2116.36 3.02
RC103 9 9 854.54 839.01 1235.73 1222.96 1729.76 1907.01 1.32
RC104 9 9 761.02 759.5 1135.9 1133.82 1656.25 1829.74 6.45
RC105 10 10 1050.54 1039.9 1491.17 1475.95 1930.87 2146.92 2.95
RC106 10 10 879.21 867.59 1330.05 1302.74 1777.1 1995.75 2.91
RC107 9 9 866.01 836.55 1270.26 1245.34 1739.32 1873.86 2.04
RC108 9 9 721.86 714.43 1077.66 1060.01 1626.92 1809.3 4.21
RC201 3 3 1012.67 1012.15 1506.91 1506.86 2343.87 2604.29 5.69
RC202 3 3 836.85 831.12 1255.31 1257.29 2346.36 2605.14 12.64
RC203 2 2 788.6 788.15 1162.33 1167.65 1699.46 1855.63 14.79
RC204 2 2 589.72 576.41 907.78 860.58 1654.92 1840.99 18.15
RC205 3 3 875.32 874.47 1352.04 1352.31 2397.8 2663.77 10.96
RC206 3 3 680.49 673 1142.94 1135.47 2061.96 2274.48 10.41
RC207 3 3 608.78 603.41 1036.97 1029.42 1968.6 2193.71 15.09
RC208 2 2 598.78 580.76 920.48 895.66 1512.24 1616.93 15.16
AVG 6.39 6.36 694.9 690.62 1019.25 1012.15 4185.43 4309.66 6.72
SUM 357.9 356 38914.28 38674.78 57078.01 56680.61 234384.24 241341.05 376.46
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Table 3: TDVRPTW - A3 - travel time - results

Inst. K Kbest tt ttbest d dbest tot totbest te

C101 10 10 569.68 569.68 828.94 828.94 9569.68 9569.68 0.2
C102 10 10 560.03 560.03 833.03 833.03 9560.03 9560.03 0.66
C103 10 10 558.41 558.41 838.04 838.04 9630.44 9630.44 2.07
C104 10 10 551.75 551.75 867.55 867.55 9616.59 9616.59 5.8
C105 10 10 554.7 554.7 834.99 834.99 9710.47 9710.47 0.37
C106 10 10 559.49 559.49 831.68 831.68 9641.86 9641.86 0.49
C107 10 10 554.7 554.7 834.99 834.99 9598.31 9598.31 0.88
C108 10 10 551.34 551.34 835.01 835.01 9560.31 9560.31 1.5
C109 10 10 547.54 547.54 892.27 892.27 9733.99 9733.99 3.06
C201 3 3 404.47 404.47 591.56 591.56 9404.47 9404.47 0.43
C202 3 3 404.47 404.47 591.56 591.56 9404.47 9404.47 2.08
C203 3 3 400.64 400.64 588.88 588.88 9400.64 9400.64 4.33
C204 3 3 398.53 398.24 590.56 587.71 8458.71 9398.24 6.37
C205 3 3 400.11 400.11 588.49 588.49 9400.11 9400.11 1.14
C206 3 3 400.11 400.11 588.49 588.49 9400.11 9400.11 1.74
C207 3 3 402.56 402.56 588.49 588.49 9419.98 9419.98 2.12
C208 3 3 400.11 400.11 588.49 588.49 9400.11 9400.11 2.24
R101 14 14 955.98 955.13 1554.65 1553.84 2430.13 2702.29 1.96
R102 13 13 856.06 852.57 1356.43 1349.29 2499.58 2505.64 4.27
R103 10 10 729.42 727.2 1168.88 1168.01 1859.05 2087.71 7.38
R104 8 8 609.63 604.29 984.73 964.58 1516.37 1659.78 7.1
R105 11 11 731.39 728.24 1313.93 1334.67 1836.8 2041.2 3.38
R106 9 9 698.02 695.14 1198.91 1185.37 1612.97 1799.9 4.41
R107 8 8 646.15 636.49 1056.17 1043.98 1528.88 1673.5 2.97
R108 8 8 553.79 549.94 937.91 946.05 1425.26 1580.11 7.39
R109 9 9 651.01 645.68 1131.08 1122.26 1545.23 1699.01 4.64
R110 8 8 664.83 656.03 1080.19 1071.6 1713.96 1702.11 2.45
R111 8 8 645.2 638 1054.54 1045.27 1539.28 1708.42 3.68
R112 8 8 549.29 546.19 919.17 927.25 1457.6 1601.52 7.42
R201 3 3 758.05 756.96 1290.78 1293.96 2357.65 2619.61 6.63
R202 3 3 693.27 689.67 1167.24 1156.34 2346.4 2594.81 14.06
R203 2 2 617.73 613.82 1078.31 1064.38 1652.39 1856.7 17.31
R204 2 2 445.1 442 815.42 801.23 1617.58 1806.25 19.86
R205 2 2 625.68 611.72 1130.99 1113.37 1708.68 1703.97 7.03
R206 2 2 533.3 520.47 1001.83 1001.82 1515.28 1652.85 13.69
R207 2 2 464.4 458.39 895.41 900.37 1508.9 1632.6 17.93
R208 2 2 379.55 372.46 748.17 736.23 1451.37 1598.02 17.9
R209 2 2 523.61 513.26 977.96 960.72 1508.58 1667.18 10.86
R210 2 2 568.74 561.62 1061.26 1054.78 1656.36 1818.9 13.5
R211 2 2 427.94 423.82 827.53 814.61 1441.75 1596.29 15.4

RC101 11 11 882.82 867.24 1555.01 1525.68 1895.99 2108.59 2.38
RC102 9.9 9 837.68 972.39 1412.83 1512.34 1789.07 1995.39 3.76
RC103 9 9 722.91 719.29 1248.39 1243.48 1803.39 1801.32 4.39
RC104 9 9 638.33 634.33 1140.62 1120.98 1543.79 1704.61 7.04
RC105 10 10 835.21 819.81 1414.98 1399.37 1832.92 2036.3 3.82
RC106 9.2 9 819.55 811.89 1370.22 1345.36 1714.23 1891.27 2.73
RC107 9 9 698.54 677.63 1230.46 1190.38 1794.54 1787.02 2.98
RC108 9 9 599.82 591.8 1093.19 1109.33 1546.98 1729.62 5.8
RC201 3 3 880.97 877.38 1486.33 1469.53 2343.87 2604.29 6.03
RC202 3 3 736.25 730.22 1244.98 1232.81 2343.91 2605.55 12.79
RC203 2 2 692.08 689.04 1147.15 1139 1680.59 1889.31 16.3
RC204 2 2 495.41 493.33 911.13 907.82 1623.13 1798.06 18.46
RC205 3 3 753.48 747.86 1347.73 1337.22 2389.34 2654.82 11.6
RC206 3 3 559.94 553.77 1140.96 1153.67 2029.64 2286.83 10.31
RC207 2 2 670.62 619.53 1177.84 1115.46 1540.83 1682.92 9.4
RC208 2 2 496.06 483.56 917.01 897.75 1452.03 1582.11 15.09
AVG 6.22 6.2 604.76 601.9 1016.13 1011.08 4106.51 4237.79 6.78
SUM 348.1 347 33866.45 33706.51 56903.34 56620.33 229964.58 237316.19 379.58
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Table 4: TDVRPTW - B1 - travel time - results

Inst. K Kbest tt ttbest d dbest tot totbest te

C101 10 10 679.05 679.05 829.7 829.7 9851.43 9851.43 0.18
C102 10 10 669.25 669.25 841.3 841.3 10078.54 10078.54 0.75
C103 10 10 657.57 657.57 864.89 864.89 10599.34 10599.34 2.47
C104 10 10 618.23 618.23 856.52 856.52 11156.25 11156.25 3.49
C105 10 10 684.17 684.17 828.94 828.94 9773.81 9773.81 0.26
C106 10 10 670.99 670.99 833.79 833.79 9850.77 9850.77 0.43
C107 10 10 674.43 674.43 835.28 835.28 9761.07 9761.07 0.95
C108 10 10 671.01 671.01 845.84 845.84 9924.35 9924.35 1.39
C109 10 10 666.89 666.89 835.26 835.26 9752.78 9752.78 2.36
C201 3 3 489.88 489.88 591.56 591.56 9500.85 9500.85 0.41
C202 3 3 489.88 489.88 591.56 591.56 9500.85 9500.85 2.08
C203 3 3 487.33 487.33 588.88 588.88 9494.55 9494.55 4.81
C204 3 3 485.32 485.32 588.72 588.72 9530.31 9530.31 7.6
C205 3 3 486.61 486.61 589.89 589.89 9497.58 9497.58 1.13
C206 3 3 485.77 485.77 591.65 591.65 9576.6 9576.6 1.72
C207 3 3 484.1 484.1 589.68 589.68 9586.44 9586.44 2.06
C208 3 3 480.8 480.8 589.72 589.72 9662.3 9662.3 2.4
R101 18 18 1365.71 1363.18 1636.11 1633.6 3017.16 3384.72 1.68
R102 17 17 1209.38 1205.79 1496.05 1485.49 2992.24 3286.31 3.16
R103 13.5 13 982.88 1016.01 1247.38 1284.76 2487.05 2720.37 6.89
R104 9 9 780.77 770.9 981.42 968.61 1768.41 1981.95 7.82
R105 13.4 13 1184.45 1195.9 1409.74 1428.4 2277.55 2534.82 2.25
R106 11.9 11 1025.91 1114.64 1253.46 1353.68 2120.35 2342.06 6.38
R107 9.9 9 866.96 955.12 1078.25 1186.29 1884.27 2126.05 8.81
R108 9 9 754.95 748.43 941.74 930.25 1711.33 1957.84 11.14
R109 11 11 981.53 976.28 1187.03 1186.19 1951.77 2171.98 4.19
R110 10 10 915.46 908.26 1121.34 1114.25 1890.45 2071.54 4.98
R111 10 10 901.93 892.96 1103.28 1091.03 1914.96 2127.44 5.43
R112 9 9 787.36 777.06 975.57 958.89 1715.49 1904.18 7.97
R201 4 4 1054.88 1054.73 1255.79 1257.3 3147.85 3497.61 4.22
R202 3 3 1005.25 1002.55 1198.59 1195.45 2449.61 2701.67 11.55
R203 3 3 747.99 746.23 942.48 939.31 2509.48 2791.87 18.37
R204 2 2 699.72 683.24 855.59 834.46 1776.65 1981.75 23.3
R205 3 3 862.14 851.7 1035.66 1033.69 2277.51 2520.05 10.02
R206 2 2 871.39 854.28 1058.32 1044.46 1752.94 1961.17 12.84
R207 2 2 729.61 716.14 899.63 881.54 1733.42 1895.15 17.61
R208 2 2 601.37 590.37 761.44 748.44 1751.86 1934.92 16.96
R209 3 3 798.57 791.88 953.09 936.26 2109.2 2384.31 14.66
R210 3 3 789.2 783.49 974.58 974.43 2434.39 2709.62 14.94
R211 2 2 735.63 729.84 889.11 877.69 1629.85 1815.23 20.21

RC101 14.7 14 1377.91 1396.64 1675.83 1697.73 2637.15 2871.37 2.09
RC102 12 12 1197.12 1176.04 1498.82 1480.46 2310.64 2586.71 3.09
RC103 10 10 1017.29 994.67 1290.58 1276.4 2000.71 2251.46 3.58
RC104 9 9 911.78 876.14 1167.47 1130.41 1839.15 2048.48 2.85
RC105 13.7 13 1279.52 1313.19 1583.78 1624.04 2530.29 2704.76 2.85
RC106 11.7 11 1135.97 1139.6 1401.86 1397.77 2186.15 2344.45 2.67
RC107 10.5 10 1010.49 1019.15 1272.83 1294.65 2020.5 2211.86 3.56
RC108 10 10 906.18 896.83 1140.96 1132.86 1954.94 2147.89 6.41
RC201 4 4 1189.45 1188.43 1393.73 1376.69 3026.01 3308.19 4.2
RC202 3 3 1177.09 1150.01 1395.53 1337.89 2370.05 2626.87 9.56
RC203 3 3 859.2 851.42 1073.01 1042 2412.07 2615.14 18.14
RC204 2 2 792.74 762.6 955.25 924.02 1709.57 1892.32 19.71
RC205 4 4 1106.96 1105.24 1303.88 1317.26 3087.49 3413.79 8.37
RC206 3 3 981.26 976.92 1147.03 1138.3 2205.89 2435.93 10.54
RC207 3 3 939.63 938.19 1084.52 1082.76 2139.7 2366.44 16.53
RC208 2 2 837.25 817.96 1031.16 1007.49 1669.31 1829.71 13.31
AVG 7.15 7.05 843.82 843.09 1035.09 1033.9 4508.95 4670.64 7.1
SUM 400.3 395 47254.16 47213.29 57965.07 57898.38 252501.23 261555.8 397.33
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Table 5: TDVRPTW - B2 - travel time - results

Inst. K Kbest tt ttbest d dbest tot totbest te

C101 10 10 607.37 607.37 829.7 829.7 9816.72 9816.72 0.18
C102 10 10 583.44 583.44 868.85 868.85 10448.58 10448.58 0.79
C103 10 10 567.28 567.28 877.96 877.96 10695.76 10695.76 3.21
C104 10 10 515.26 515.26 868.35 868.35 11355.56 11355.56 4.02
C105 10 10 613.4 613.4 831.3 831.3 9798.45 9798.45 0.25
C106 10 10 592.43 592.43 853.13 853.13 9902.15 9902.15 0.42
C107 10 10 601.94 601.94 835.28 835.28 9720.27 9720.27 0.99
C108 10 10 582.72 582.72 882.06 882.06 10062.93 10062.93 1.48
C109 10 10 581.52 581.52 848.99 848.99 9708.7 9708.7 2.25
C201 3 3 425.61 425.61 591.56 591.56 9440.38 9440.38 0.4
C202 3 3 425.61 425.61 591.56 591.56 9440.38 9440.38 1.99
C203 3 3 422.93 422.93 596.65 596.65 9747.61 9747.61 4.59
C204 3 3 420.78 420.78 593.98 593.98 9718.42 9718.42 7.92
C205 3 3 422.31 422.31 602.44 602.44 9504.56 9504.56 1.4
C206 3 3 421.37 421.37 591.65 591.65 9533.98 9533.98 1.75
C207 3 3 418.91 418.91 593.9 593.9 9650.87 9650.87 1.97
C208 3 3 417.28 417.28 589.72 589.72 9618.55 9618.55 2.48
R101 17.9 17 1154.38 1213.58 1621.85 1692.48 2977.83 3300.72 2.03
R102 16 16 977.17 974.08 1441.49 1434.08 2701.13 2978.78 3.59
R103 12 12 805.64 802.87 1222.36 1222.13 2161.59 2374.79 6.97
R104 8.5 8 654.01 670.94 987.94 1013.01 1687.04 1760.54 7.6
R105 13 13 962.62 959.98 1363.53 1363.74 2161.95 2416.72 2.16
R106 11 11 847.76 843 1242.21 1245.62 1921.31 2124.7 3.96
R107 9 9 750.74 736.78 1108.98 1092.21 1746.7 1961.81 5.38
R108 8 8 629.66 625.32 943.44 942.11 1554.2 1724.1 3.73
R109 10.1 10 856.54 848.69 1228.17 1225.61 1819.74 2007.68 3.2
R110 9 9 778.41 769.33 1128.97 1116.56 1731.6 1925.11 4.5
R111 9 9 755.81 742.5 1107.33 1093.72 1726.19 1904.17 5
R112 8.5 8 657.86 665.64 974.79 991.36 1594.75 1732.08 6.08
R201 3 3 1036.28 1018.08 1455.46 1422.87 2403.54 2672.56 4.46
R202 3 3 840.6 837.4 1188.72 1187.6 2416.33 2667.89 11.81
R203 2 2 771.81 766.37 1113.42 1109.09 1776.51 1977.92 11.98
R204 2 2 563.42 550.05 849.33 826.86 1768.49 1964.18 21.63
R205 3 3 726.75 717.54 1063.61 1068.3 2241.13 2513.62 10.62
R206 2 2 705.1 699.69 1024.86 1016.86 1730.51 1922.08 13.75
R207 2 2 611.42 598.25 931.13 902.55 1752.61 1927.61 19.6
R208 2 2 495.75 486.81 772.73 779.76 1772.81 1985.67 18.93
R209 2 2 762.75 747.54 1079.08 1050.47 1626.64 1786.67 10.97
R210 2 2 790.04 768.79 1131.19 1105.31 1716.65 1917.43 11.03
R211 2 2 608.92 598.23 879.82 884.5 1533.58 1692.73 22.24

RC101 13.9 13 1151.36 1204 1650.94 1711.49 2438.28 2734.39 2.19
RC102 11.1 11 1013.6 1009.06 1488.04 1479.61 2125.66 2346.4 3.48
RC103 9 9 882.13 870.85 1319.54 1290.9 1800.09 2014.65 2.42
RC104 9 9 734.72 718.92 1127.72 1108.99 1786.43 2005.89 5.81
RC105 12.8 12 1022.99 1072.63 1519.88 1553.75 2328.57 2497.96 3.94
RC106 11 11 939 935.38 1357.65 1365.53 2032.16 2268.34 3.24
RC107 10 10 839.91 832.42 1250.72 1224.5 1899.27 2070.55 5.23
RC108 9 9 787.66 769.02 1176.58 1150.21 1774.24 1960.9 2.82
RC201 4 4 1004.79 1004.51 1411.67 1411.27 2917.33 3198.03 4.42
RC202 3 3 978.09 970.48 1359.86 1336.98 2365.54 2613.5 12
RC203 2 2 851.08 850.95 1232.24 1232.87 1713.62 1904.54 12.53
RC204 2 2 638.81 625.67 923.11 906.48 1707.59 1896.39 19.93
RC205 3 3 1076.81 1067.55 1514.02 1514.01 2412.1 2672.26 9.68
RC206 3 3 850.76 841.83 1187.36 1158.86 2116.27 2282.94 10.32
RC207 3 3 793.28 786.38 1129.33 1147.14 2078.77 2309.19 16.48
RC208 2 2 686.08 670.5 974.17 976.56 1591.07 1755.92 17.55
AVG 6.76 6.7 725.26 723.07 1052.33 1050.05 4388.82 4534.56 6.77
SUM 378.8 375 40614.67 40491.77 58930.32 58803.03 245773.69 253935.28 379.35
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Table 6: TDVRPTW - B3 - travel time - results

Inst. K Kbest tt ttbest d dbest tot totbest te

C101 10 10 560.93 560.93 829.7 829.7 8818.02 9797.8 0.17
C102 10 10 519.59 519.59 946.71 946.71 10770.9 10770.9 0.83
C103 10 10 498.79 498.36 929.8 929.1 10059.33 11094.99 3.01
C104 10 10 440.55 440.55 869.75 869.75 11328.96 11328.96 3.93
C105 10 10 559.52 559.52 841.18 841.18 9806.2 9806.2 0.34
C106 10 10 539.19 539.19 854.88 854.88 9875.6 9875.6 0.46
C107 10 10 547.97 547.94 945.45 944.92 9954.84 9954.54 0.83
C108 10 10 524.48 524.48 883.73 883.73 10030.83 10030.83 1.2
C109 10 10 511.59 510.93 982.86 979.36 8743.38 9777.79 2.59
C201 3 3 389.2 389.2 591.56 591.56 9407.02 9407.02 0.4
C202 3 3 389.2 389.2 591.56 591.56 9407.02 9407.02 1.89
C203 3 3 383.5 383.5 601.97 601.97 9784.32 9784.32 4.8
C204 3 3 380.7 380.23 627.68 633.68 8980.24 10062.47 8.09
C205 3 3 382.92 382.92 602.44 602.44 9476.63 9476.63 1.34
C206 3 3 384.24 384.24 591.65 591.65 9507.85 9507.85 1.79
C207 3 3 380.82 380.82 593.9 593.9 9625.07 9625.07 2.02
C208 3 3 379.23 379.23 624.42 624.42 9872.32 9872.32 2.61
R101 17 17 1049.16 1048.79 1627.45 1627.77 2867.18 3197.15 1.79
R102 16 16 855.89 853.81 1437.05 1430.94 2706.9 2997.17 3.7
R103 12 12 693.5 687.28 1219.14 1209.38 2105.51 2356.98 7.94
R104 8 8 587.64 571.66 1030.86 1017.24 1571.03 1750.46 5.08
R105 12.6 12 864.37 877.09 1361.38 1365.69 2102.5 2234.14 2.56
R106 10 10 751.05 750.64 1243.94 1245.28 1801.48 1993.83 4.43
R107 8 8 669.01 652.15 1126.37 1104.45 1576.1 1754.22 3.1
R108 8 8 544.08 537.98 940.72 930.21 1546.69 1717.95 6.1
R109 10 10 737.57 726.65 1210.19 1216.2 1751.84 1922.43 3.96
R110 9 9 680.97 666.73 1107.82 1093.81 1679.26 1871.36 5.25
R111 9 9 653.62 646.91 1087.93 1090.41 1717.66 1931.69 5.38
R112 8 8 597.54 589.49 1006.12 979.56 1528.54 1686.48 2.74
R201 3 3 907.35 905.68 1425.69 1427.64 2398.16 2664.62 5.32
R202 3 3 749.8 748.95 1172.09 1169.7 2399.65 2669.81 14.8
R203 2 2 669.19 664.5 1113.99 1116.16 1762.56 1966.63 13.78
R204 2 2 489.64 476.13 855.3 833.49 1760.94 1956.9 17.47
R205 2 2 760.07 747.1 1212.11 1169.19 1640.29 1869.32 6.8
R206 2 2 625.19 619.73 1033.29 1036.75 1698.22 1898.75 13.62
R207 2 2 528.75 522.19 950.94 920.89 1762.33 1948.94 19.14
R208 2 2 429.22 414.79 789.57 786.98 1775.82 1979.46 17.72
R209 2 2 668.53 662.05 1078.9 1072.49 1604.39 1772.73 10.65
R210 2 2 680.84 663.77 1103.75 1069.54 1715.03 1913.77 13.43
R211 2 2 536.71 523.98 900.14 897.24 1507.59 1634.12 19.38

RC101 13 13 1029.46 1021.93 1628.25 1624.34 2305.51 2552.65 1.96
RC102 11 11 890.79 875.85 1458.45 1444.36 2068.22 2244.53 3.65
RC103 9 9 746.54 735.48 1285.51 1284.76 1772.29 1965.69 2.42
RC104 9 9 625.92 623.16 1121.24 1104.04 1783.43 1974.72 6.06
RC105 11 11 943.05 927.55 1551.15 1509.39 2071.21 2296.73 2.67
RC106 11 11 833.93 824.95 1347.14 1345.53 1989.93 2212.41 2.95
RC107 9.9 9 741.82 828.21 1270.21 1421.74 1840.63 1982.61 5.01
RC108 9 9 675.52 663.68 1150.93 1145.47 1736.76 1904.84 2.46
RC201 3.2 3 1035.6 1068.5 1583.81 1629.81 2704.38 2576.58 5.44
RC202 3 3 880.88 879.23 1372.04 1376.65 2355.84 2624.77 11.73
RC203 2 2 738.89 735.94 1214.77 1222.38 1696.18 1891.88 11.3
RC204 2 2 559.4 544.73 941.8 914.87 1703.97 1900.42 17.79
RC205 3 3 957.24 952.73 1513.47 1487.83 2386.59 2626.62 10.36
RC206 3 3 761.83 756.72 1242.96 1214.54 2084.7 2269.58 10.36
RC207 3 3 693.26 685.48 1156.4 1160.42 2045.68 2275.4 18.73
RC208 2 2 612.25 602.35 1008.11 995.7 1579.32 1748.08 16.21
AVG 6.6 6.57 646.94 643.85 1067.68 1064.35 4295.59 4505.66 6.6
SUM 369.7 368 36228.49 36055.37 59790.22 59603.35 240552.84 252316.73 369.54
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Table 7: TDVRPTW - C1 - travel time - results

Inst. K Kbest tt ttbest d dbest tot totbest te

C101 10 10 667.9 667.9 828.94 828.94 9757.54 9757.54 0.19
C102 10 10 667.9 667.9 828.94 828.94 9741.25 9741.25 0.63
C103 10 10 665.86 665.86 828.06 828.06 9756.36 9756.36 2.18
C104 10 10 663.21 663.21 825.11 825.11 9823.53 9823.53 3.71
C105 10 10 667.9 667.9 828.94 828.94 9757.54 9757.54 0.35
C106 10 10 667.9 667.9 828.94 828.94 9757.54 9757.54 0.47
C107 10 10 667.9 667.9 828.94 828.94 9757.54 9757.54 0.89
C108 10 10 667.9 667.9 828.94 828.94 9757.54 9757.54 1.34
C109 10 10 667.9 667.9 828.94 828.94 9757.54 9757.54 2.04
C201 3 3 499.52 499.52 591.56 591.56 9510.49 9510.49 0.43
C202 3 3 499.52 499.52 591.56 591.56 9510.49 9510.49 2.06
C203 3 3 496.58 496.58 588.49 588.49 9539.85 9539.85 4.37
C204 3 3 495.96 495.96 587.71 587.71 9500.33 9500.33 7.42
C205 3 3 496.97 496.97 588.88 588.88 9507.93 9507.93 1.19
C206 3 3 496.58 496.58 588.49 588.49 9507.55 9507.55 1.72
C207 3 3 496.57 496.57 588.32 588.32 9530.65 9530.65 2.11
C208 3 3 496.58 496.58 588.49 588.49 9507.55 9507.55 2.34
R101 18 18 1303.5 1293.54 1607.66 1587.14 3063.85 3368.52 2.01
R102 16 16 1169.74 1169.74 1442.99 1442.99 3077.68 3077.68 4.57
R103 13 13 960.7 960.66 1225.97 1226.17 2295.13 2552.61 7.85
R104 9 9 768.54 765.98 963.44 956.02 1700.1 1884.64 8.96
R105 12 12 1114.92 1101.14 1377.26 1362.87 2151.51 2374.95 2.28
R106 10.9 10 994.38 1054.45 1242.62 1299.45 1983.19 2159.92 5.87
R107 9 9 897.42 880.9 1117.61 1102.23 1777.25 1949.83 4.95
R108 8.4 8 767.31 770.16 955.32 953.55 1633.62 1783.36 6.12
R109 10 10 992.15 963.33 1218.04 1188.64 1900.38 2082.83 3.65
R110 10 10 883.61 877.85 1091.82 1075.02 1827.31 2038.77 6.44
R111 9.8 9 864.84 921.84 1068.31 1140.75 1841.92 2031.53 7.36
R112 9 9 763.03 756.79 954.97 947.28 1655.65 1847.86 9.75
R201 3 3 1111.56 1104.26 1384.43 1382.62 2466.09 2742.74 5.41
R202 3 3 912.62 910.12 1128.55 1127.37 2470.68 2741.28 11.67
R203 2.1 2 881 896.13 1102.44 1122.16 1833.75 1934.89 14.21
R204 2 2 652.45 628.83 829.45 802.08 1693.71 1842.95 18.23
R205 3 3 792.18 784.8 1008.86 995.38 2273.29 2511.17 9.94
R206 2 2 792.68 789.95 994.56 992.74 1682.76 1860.42 13.07
R207 2 2 702.25 697.44 883.86 875.27 1693.27 1867.94 17
R208 2 2 570 561.59 745.49 739.59 1607.62 1819.3 18.6
R209 2 2 891.99 873.23 1094.99 1070.57 1720.92 1888.44 9.95
R210 2 2 874.17 853.2 1083.35 1050.75 1736.11 1963.58 12.89
R211 2 2 685.7 676.46 860.76 850.36 1569.11 1743.96 18.29

RC101 13.2 13 1367.55 1339.97 1673.02 1627.97 2499.6 2732.94 2.21
RC102 11 11 1208.34 1185.43 1494.8 1466.1 2165.46 2429.2 3.07
RC103 10 10 993.63 991.7 1240.07 1247.56 1952 2167.45 6.33
RC104 9 9 927.35 916.01 1137.02 1119.83 1823.3 2028.15 4.51
RC105 13 13 1237.69 1229.88 1493.77 1490.34 2477.19 2729.54 3.63
RC106 11 11 1095.19 1090.81 1344.58 1343.2 2093.07 2288.51 3.42
RC107 10 10 1028.84 1010.99 1257.78 1242.04 1976.57 2175.7 3.77
RC108 9.5 9 916.06 932.61 1140.52 1171.43 1826.86 1992.13 5.21
RC201 3 3 1331.52 1325.99 1616.11 1608.18 2404.43 2655.77 4.79
RC202 3 3 1074.15 1068.87 1297.36 1289.32 2389.86 2649.95 11.12
RC203 3 3 790.22 782.89 995.52 988.46 2406.66 2673.93 16.53
RC204 2 2 743.61 718.28 927.13 892.29 1682.5 1910.14 17.43
RC205 3 3 1193.12 1191.95 1463.83 1466.08 2419.95 2684.88 11.2
RC206 3 3 901.43 894.71 1111.61 1101.69 2218.43 2455.62 10.22
RC207 3 3 865.36 863.16 1064.68 1062.3 2082.62 2312.41 15.51
RC208 2 2 787.39 774.16 973.54 966.26 1627.36 1791.27 14.34
AVG 6.84 6.79 835.55 832.01 1031.85 1027.56 4351.46 4495.14 6.89
SUM 382.9 380 46790.84 46592.45 57783.34 57543.3 243681.98 251727.98 385.8
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Table 8: TDVRPTW - C2 - travel time - results

Inst. K Kbest tt ttbest d dbest tot totbest te

C101 10 10 594.01 594.01 828.94 828.94 9714.92 9714.92 0.19
C102 10 10 593.03 593.03 832.5 832.5 9693.21 9693.21 0.71
C103 10 10 589.46 589.46 831.62 831.62 9701.38 9701.38 2.39
C104 10 10 587.21 587.12 831.21 828.66 8770.74 9762.07 4.37
C105 10 10 594.01 594.01 828.94 828.94 9714.92 9714.92 0.39
C106 10 10 594.01 594.01 828.94 828.94 9714.92 9714.92 0.56
C107 10 10 594.01 594.01 828.94 828.94 9714.92 9714.92 0.97
C108 10 10 594.01 594.01 828.94 828.94 9714.92 9714.92 1.51
C109 10 10 593.07 593.07 829.39 829.39 9698.63 9698.63 2.14
C201 3 3 438.46 438.46 591.56 591.56 9453.23 9453.23 0.43
C202 3 3 438.46 438.46 591.56 591.56 9453.23 9453.23 1.97
C203 3 3 434.37 434.37 588.83 588.83 9496.16 9496.16 4.21
C204 3 3 433.8 433.8 588.25 588.25 9439.7 9439.7 7.46
C205 3 3 436.29 436.29 588.49 588.49 9451.06 9451.06 1.19
C206 3 3 436.29 436.29 588.49 588.49 9451.06 9451.06 1.8
C207 3 3 436.29 436.29 588.49 588.49 9483.19 9483.19 2.09
C208 3 3 436.29 436.29 588.49 588.49 9451.06 9451.06 2.36
R101 15 15 1103.55 1102.75 1600.94 1602.01 2973.44 2970.79 2.01
R102 14 14 936.37 936.37 1368.51 1368.51 2702.85 2702.85 5.35
R103 11 11 808.7 800.33 1220.69 1203.52 2015.66 2270.65 6.39
R104 8.2 8 661.24 663.55 990.85 991.14 1572.64 1789.9 5.62
R105 11 11 923.41 914.96 1345.3 1330.11 1983.58 2192.92 2.17
R106 9.2 9 843.82 844.15 1226.59 1232.15 1769.32 1951.15 3.84
R107 8.6 8 719.99 746.08 1071.2 1089.09 1649.91 1774.52 5.61
R108 8 8 618.85 611.97 920.35 906.62 1498.27 1651.39 6.81
R109 9.5 9 815.63 842.04 1174.53 1193.05 1762.98 1980.67 5.14
R110 9 9 748.07 732.78 1083.02 1071.12 1680.78 1840.16 7.52
R111 9 9 722 717.62 1049.23 1036.59 1694.93 1886.64 7.72
R112 8 8 662.22 649.49 965.12 947.04 1549.23 1708.87 4.01
R201 3 3 882.41 880.04 1299.53 1298.79 2468.46 2742.74 5.95
R202 3 3 760.26 756.78 1112.33 1115.99 2458.37 2727.7 13.46
R203 2 2 702.95 698.38 1065.23 1056.33 1753.52 1962.94 16.57
R204 2 2 510.44 497.58 825.5 805.67 1629.04 1799.18 20.06
R205 2 2 764.45 740.46 1124.91 1079.24 1650.76 1826.47 7.53
R206 2 2 658.98 649.91 984.15 963.49 1625.7 1836.85 12.7
R207 2 2 580.65 570.87 891.74 880.38 1635.86 1744.15 17.56
R208 2 2 453.75 446.52 745.22 730.09 1531.95 1727.65 20.32
R209 2 2 696.22 675.73 1037.59 1001.76 1581.57 1740.68 12.59
R210 2 2 705.79 697.02 1045.02 1030.11 1705.47 1900 12.08
R211 2 2 557.09 547.41 850.48 824.26 1480.14 1616.87 17.94

RC101 12 12 1097.54 1077.49 1537.81 1508.43 2312.12 2563.63 2.3
RC102 10 10 1016.03 1009.11 1422.34 1399.64 2002.57 2230.43 3.51
RC103 9 9 856.35 847.7 1239.54 1214.38 1791.45 2018.67 3.4
RC104 9 9 770.75 764.6 1145.16 1145 1687.11 1866.53 6.38
RC105 11 11 1032.16 1029.49 1443.86 1448.53 2168.71 2385.95 3.47
RC106 10 10 946.94 919.51 1338.9 1312.09 1918.86 2125.01 3.23
RC107 10 10 827.02 819.63 1213.02 1210.53 1797.15 1991.2 6.6
RC108 9 9 755.61 742.01 1097.46 1061.4 1689.5 1916.45 2.56
RC201 3 3 1074.77 1071.66 1532.33 1535.93 2326.46 2610.22 5.59
RC202 3 3 914.31 910.33 1279.64 1268.74 2368.14 2670.01 12.58
RC203 2 2 792.99 787.43 1158.36 1156.44 1693.2 1902.44 11.38
RC204 2 2 575.74 566.29 883.71 873.77 1620.58 1822.19 17.16
RC205 3 3 977.4 975.73 1389.34 1386.35 2386.56 2684.88 11.05
RC206 3 3 773.71 766.15 1113.36 1099.99 2176.01 2438.93 9.4
RC207 3 3 711.17 698.58 1051.6 1034.26 1976.01 2187.35 17.48
RC208 2 2 639.94 624.28 944.69 946.67 1497.43 1635.3 16.86
AVG 6.42 6.39 703.97 699.21 1017.37 1009.65 4212.56 4366.13 6.9
SUM 359.5 358 39422.34 39155.76 56972.73 56540.24 235903.54 244503.51 386.64
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Table 9: TDVRPTW - C3 - travel time - results

Inst. K Kbest tt ttbest d dbest tot totbest te

C101 10 10 543.45 543.45 828.94 828.94 9689.38 9689.38 0.2
C102 10 10 540.6 540.6 832.5 832.5 9665.94 9665.94 0.68
C103 10 10 536.1 536.1 873.26 873.26 9678.13 9678.13 2.77
C104 10 10 533.2 533.11 854.65 846.37 8673.47 9570.54 4.72
C105 10 10 543.45 543.45 828.94 828.94 9689.38 9689.38 0.41
C106 10 10 543.45 543.45 828.94 828.94 9689.38 9689.38 0.59
C107 10 10 543.41 543.41 831.64 831.64 9682.14 9682.14 1.09
C108 10 10 542.57 542.57 862.37 862.37 9681.45 9681.45 1.75
C109 10 10 539.35 539.35 858.31 858.31 9668.6 9668.6 2.78
C201 3 3 404.26 404.26 591.56 591.56 9422.08 9422.08 0.41
C202 3 3 404.26 404.26 591.56 591.56 9422.08 9422.08 1.91
C203 3 3 398.95 398.95 591.59 591.59 9473.03 9473.03 4.11
C204 3 3 398.37 398.37 591.02 591.02 9398.37 9398.37 6.72
C205 3 3 402.34 402.34 588.49 588.49 9420.16 9420.16 1.17
C206 3 3 402.34 402.34 588.49 588.49 9420.16 9420.16 1.78
C207 3 3 402.34 402.34 588.49 588.49 9461.49 9461.49 2.06
C208 3 3 402.34 402.34 588.49 588.49 9420.16 9420.16 2.35
R101 14 14 975.58 974.86 1573.11 1569.74 2816.58 2823.06 2.17
R102 13 13 824.47 824.47 1352.77 1352.77 2509.4 2509.4 5.18
R103 10 10 672.63 671.78 1169.9 1167.27 1796.01 1994.88 6.63
R104 8 8 560.78 558.4 967.6 958.17 1472.13 1655.2 5.3
R105 10.6 10 817.74 854.66 1329.41 1371.24 1923.83 2079.59 2.66
R106 9 9 719.22 716.49 1203.95 1200.82 1648.63 1838.77 6.17
R107 8 8 631.23 623.03 1071.96 1056.95 1560.85 1718.77 4.34
R108 8 8 532.81 528.24 928.94 922.93 1435.72 1595.76 8.46
R109 9 9 716.31 704.11 1155.15 1135.55 1677.82 1852.05 4.25
R110 9 9 630.23 628.85 1060.01 1059.5 1583.94 1756.6 7.41
R111 8.1 8 671.25 670.67 1103.31 1115.17 1595.06 1758.1 3.77
R112 8 8 548.78 543.53 928.8 912.58 1462.89 1630.5 6.92
R201 3 3 779.94 776.56 1280.84 1272.47 2468.46 2742.74 6.13
R202 3 3 677.56 675.93 1117.73 1112.79 2453.73 2727.7 12.96
R203 2 2 607.77 606.64 1058.03 1058.48 1738.14 1935.66 16.93
R204 2 2 419.82 415.19 815.74 805.29 1612.71 1791.9 20.31
R205 2 2 658.25 634.64 1093.18 1078.2 1643.2 1815.71 8
R206 2 2 570.76 565.36 973.71 967.84 1595.17 1757.19 13.68
R207 2 2 509.14 499.07 897.79 871.53 1628.75 1786.29 18.66
R208 2 2 382.81 377.79 744.48 727.41 1485.15 1649.11 17.04
R209 2 2 598.93 580.04 1022.9 984.99 1545.23 1709.53 12.8
R210 2 2 609.72 602.28 1039.59 1039.66 1710.81 1915.15 12.89
R211 2 2 479.08 474.69 855.77 874.06 1427.2 1552.07 17.31

RC101 11 11 1019.03 1005.37 1576.94 1548.34 2152.96 2398.38 2.17
RC102 10 10 892.98 882.12 1398.45 1375.78 1962.23 2183.03 4.24
RC103 9 9 750.59 744.52 1251.85 1251.82 1731.09 1954.7 3.92
RC104 9 9 658.88 654.26 1123.03 1108.18 1619.41 1841.77 7.44
RC105 10.3 10 958.32 960.38 1499.64 1496.27 2067.35 2263.58 3.5
RC106 10 10 802.58 797.5 1299.89 1283.66 1877.18 2078.47 5.21
RC107 9 9 775.67 756.58 1254 1220.8 1753.61 1932.98 2.68
RC108 9 9 659.66 645.36 1117.96 1090.17 1623.39 1789.37 5.8
RC201 3 3 956.06 955.85 1519.44 1520.8 2349.2 2610.22 6.03
RC202 3 3 818.01 816.92 1274.95 1273.15 2369.73 2638.91 11.85
RC203 2 2 685.89 682.16 1133.58 1126.2 1696.86 1893.4 14.12
RC204 2 2 487.97 480.03 879.94 868.18 1614.98 1810.23 19.14
RC205 3 3 874.6 871.27 1410.42 1403.65 2388.23 2688.35 10.74
RC206 2 2 844.36 828.32 1330.96 1292.53 1683.5 1894.33 7.63
RC207 2 2 807.13 789.94 1294.55 1271.78 1628.11 1813.22 8.46
RC208 2 2 536.44 526.29 940.27 931.1 1415.21 1568.89 15.98
AVG 6.23 6.21 628.64 624.73 1024.46 1017.66 4147.85 4293 6.86
SUM 349 348 35203.76 34984.84 57369.78 56988.78 232279.85 240408.03 384.38
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Table 10: TDVRPTW - D1 - travel time - results

Inst. K Kbest tt ttbest d dbest tot totbest te

C101 10 10 699.3 699.3 828.94 828.94 9699.3 9699.3 0.19
C102 10 10 699.3 699.3 828.94 828.94 9699.3 9699.3 0.67
C103 10 10 698.5 698.5 828.06 828.06 9833.85 9833.85 2.46
C104 10 10 691.53 691.53 828.07 828.07 10306.29 10306.29 3.94
C105 10 10 699.3 699.3 828.94 828.94 9699.3 9699.3 0.32
C106 10 10 699.3 699.3 828.94 828.94 9699.3 9699.3 0.4
C107 10 10 699.3 699.3 828.94 828.94 9699.3 9699.3 0.8
C108 10 10 699.26 699.26 828.94 828.94 9699.26 9699.26 1.25
C109 10 10 699.26 699.26 828.94 828.94 9699.26 9699.26 2.23
C201 3 3 493.26 493.26 591.56 591.56 9493.26 9493.26 0.43
C202 3 3 493.26 493.26 591.56 591.56 9493.26 9493.26 2.26
C203 3 3 493.02 493.02 591.17 591.17 9517.43 9517.43 5.02
C204 3 3 492.66 492.66 590.6 590.6 9492.66 9492.66 8.07
C205 3 3 490.71 490.71 588.88 588.88 9490.71 9490.71 1.11
C206 3 3 490.47 490.47 588.49 588.49 9490.47 9490.47 1.69
C207 3 3 487.63 487.63 588.29 588.29 9561.6 9561.6 2.18
C208 3 3 486.81 486.81 590.89 590.89 9791.65 9791.65 2.23
R101 18 18 1419.19 1416.75 1632.62 1629.92 3008.13 3361 1.72
R102 17 17 1268.82 1268.82 1464.78 1464.74 2890.86 3212.07 3.47
R103 13.4 13 1068.02 1083.18 1244.02 1261.34 2339.82 2533.94 5.98
R104 9 9 794.52 785.7 967.21 952.91 1789.41 1990.36 7.16
R105 14 14 1183.69 1181.6 1368.69 1365.92 2554.79 2558.14 2.8
R106 12 12 1071.84 1069.36 1247.67 1246.79 2090.25 2325.18 6.12
R107 10 10 906.24 904.39 1075.78 1085.9 1886.23 2093.62 8.7
R108 9 9 749.9 747.78 914.03 909.52 1727.06 1911.16 10.5
R109 11 11 1001.52 995.78 1186.71 1185.72 2122.8 2137.08 4.74
R110 10 10 883.77 880.88 1094.13 1090.2 1880.53 2093.96 7.18
R111 10 10 892.85 884.83 1072.83 1055.24 1865.6 2055.36 6.5
R112 9 9 772.37 764.39 956.5 953.61 1725.1 1917.39 8.41
R201 4 4 1096.59 1092.89 1247.12 1247.99 3048.21 3466.07 3.82
R202 3 3 1031.53 1025.2 1189.62 1184.75 2388.51 2728.41 11.67
R203 3 3 810.72 807.42 945.03 937.76 2409.74 2757.15 18.55
R204 2 2 693.43 685.94 842.43 836.76 1718.93 1968.43 20.43
R205 3 3 888.31 873.01 1026.65 994.43 2162.77 2490.53 11.97
R206 2 2 940.33 926.94 1112.48 1091.79 1703.37 1926.94 6.62
R207 2 2 748.96 737.53 891.79 880.72 1656.01 1914.52 16.71
R208 2 2 604.52 590.29 753.93 749.57 1719.8 1979.63 18.12
R209 3 3 781.36 773.05 912.46 909.14 2061.67 2358.02 14.31
R210 3 3 825.17 816.3 964.78 953.93 2345.45 2666.74 15.61
R211 2 2 744.16 733.12 885.58 865.49 1563.89 1779.11 17.41

RC101 14.75 14 1430.66 1435.51 1676.87 1689.54 2487.79 2737.03 1.88
RC102 12.62 12 1241.23 1275.05 1488.16 1518.89 2264.52 2476.83 3.6
RC103 10 10 1032.97 1029.09 1251.95 1243.71 1905.91 2166.46 4.55
RC104 9 9 912.97 904.12 1114.11 1105.53 1788.15 2040.63 4.6
RC105 13.88 13 1314.72 1344.89 1560.8 1603.65 2425.5 2738.01 3.5
RC106 11.75 11 1157.7 1187.71 1395.38 1440.11 2069.12 2292.68 2.56
RC107 10 10 1036.59 1023.54 1267.46 1242.5 1884.5 2113.84 3.7
RC108 10 10 922.36 914.69 1123.73 1110.42 1851.16 2121.37 7.82
RC201 4 4 1195.73 1195.73 1377.49 1377.49 2889.76 3302.59 3.84
RC202 3 3 1168.74 1113.41 1369.92 1311.85 2245.19 2640.01 9.04
RC203 3 3 911.23 900.78 1062.56 1045.99 2280.11 2687.65 15.95
RC204 2 2 789.45 765.54 960.61 932.63 1631.11 1896.86 15.8
RC205 4 4 1099.8 1099.51 1293.01 1297.28 2881.23 3424.69 7.9
RC206 3 3 981.33 974.52 1145.27 1136.85 2022.12 2343.87 10.61
RC207 3 3 901.38 897.52 1054.53 1045.45 1940.71 2247.05 16.51
RC208 2 2 857.37 835.89 1054.99 1024.77 1597.36 1838.54 9.76
AVG 7.17 7.11 863.3 859.92 1024.53 1020.73 4414.1 4601.06 6.88
SUM 401.4 398 48344.91 48155.52 57373.83 57160.95 247189.37 257659.12 385.37
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Table 11: TDVRPTW - D2 - travel time - results

Inst. K Kbest tt ttbest d dbest tot totbest te

C101 10 10 633.78 633.78 828.94 828.94 9633.78 9633.78 0.18
C102 10 10 632.19 632.19 834.64 834.64 9791.8 9791.8 0.68
C103 10 10 631.76 631.76 834.56 834.56 9946.99 9946.99 2.43
C104 10 10 622.81 622.81 833.04 833.04 10581.48 10581.48 4.01
C105 10 10 633.72 633.72 830.54 830.54 9670.91 9670.91 0.32
C106 10 10 633.42 633.42 831.31 831.31 9660 9660 0.39
C107 10 10 633.78 633.78 828.94 828.94 9633.78 9633.78 0.81
C108 10 10 633.51 633.51 828.94 828.94 9633.51 9633.51 1.25
C109 10 10 633.13 633.13 831.49 831.49 9642.51 9642.51 2.09
C201 3 3 430.11 430.11 591.56 591.56 9430.11 9430.11 0.42
C202 3 3 430.11 430.11 591.56 591.56 9430.11 9430.11 2.21
C203 3 3 429.92 429.92 591.17 591.17 9466.48 9466.48 4.81
C204 3 3 428.98 428.98 590.39 590.39 9428.98 9428.98 7.3
C205 3 3 428.32 428.32 588.88 588.88 9428.32 9428.32 1.09
C206 3 3 428.13 428.13 588.49 588.49 9428.13 9428.13 1.66
C207 3 3 426.65 426.65 588.29 588.29 9511.73 9511.73 2.12
C208 3 3 424.29 424.29 590.89 590.89 9740.86 9740.86 2.17
R101 17.9 17 1259.41 1294.48 1629.37 1689.74 2860.81 3219.92 1.96
R102 16 16 1084.01 1083.91 1417.41 1417.26 2634.94 2922.55 4.24
R103 12 12 922.5 916.77 1243.43 1232.85 2175.25 2398.17 6.04
R104 8.9 8 667.28 746.51 957.34 1055.18 1740.02 1952.38 6.76
R105 13 13 1033.82 1028.52 1358.46 1349.65 2100.88 2346.33 2.15
R106 11 11 930.59 926.55 1241.18 1228.78 1895.55 2095.7 4.4
R107 9 9 792.1 784.04 1096.68 1083.39 1732.87 1918.6 5.27
R108 8 8 643.15 634.45 921.82 908.85 1559.84 1741.29 4.57
R109 10.6 10 861.86 863.45 1183.48 1202.81 1805.09 1966.84 3.61
R110 9 9 753.71 744.57 1094.54 1090.41 1702.98 1899.43 4.84
R111 9 9 738.68 732.42 1057.25 1056.95 1916.54 1923.51 7.1
R112 8 8 677.27 662.34 970.57 947.94 1719.46 1724.76 2.71
R201 4 4 961.08 958.04 1229.15 1224.88 3083.09 3446.26 4.06
R202 3 3 879.57 876.57 1148.4 1145.33 2392.31 2691.41 11.74
R203 2 2 857.36 834.33 1146.83 1120.91 1722.42 1977.29 6.38
R204 2 2 581.36 575.9 833.86 818.34 1709.53 1921.08 18.06
R205 3 3 779.84 770.16 1024.92 1022.41 2176.7 2453.68 10.1
R206 2 2 777.95 769.22 1054.67 1037.03 1651.29 1867.24 10.22
R207 2 2 658.24 648.91 886.75 871.72 1656.96 1845.9 16.9
R208 2 2 512.07 501.46 752.23 744.88 1706.38 1960.71 17.88
R209 2.12 2 771.77 773.46 1073.24 1085.22 1651.92 1825.7 6.39
R210 2 2 838.15 823.48 1139.61 1130.64 1628.97 1835.9 9.24
R211 2 2 617.64 612.19 869.03 862.39 1546.89 1779.34 16.86

RC101 14 14 1246.95 1205.85 1656.85 1598.4 2287.91 2576.99 2.2
RC102 11.12 11 1058.67 1064.37 1438.26 1445.06 1965.68 2209.89 4.06
RC103 9.25 9 915.11 917.56 1271.76 1264.01 1777.62 1971.82 2.97
RC104 9 9 778.5 765.59 1112.87 1091.98 1746.19 2012.84 4.64
RC105 12.5 12 1146.63 1139.73 1565.32 1540.41 2160.79 2388.87 3.69
RC106 10.88 10 967.08 1059.03 1349.65 1495.89 1891.44 2170.64 3.65
RC107 10 10 861.69 854.77 1225.16 1225.21 1808.63 2081.7 5.93
RC108 9 9 820.11 798.22 1160.76 1158.62 1698.82 1917.09 1.68
RC201 4 4 1049.03 1045.72 1374.79 1379.74 2865.15 3281.07 3.84
RC202 3 3 959.29 945.7 1299.07 1287.24 2256.15 2570.13 11.94
RC203 3 3 780.96 777.68 1050.41 1050.19 2285.23 2643.85 16.9
RC204 2 2 648.98 640.02 947.87 928.32 1660.76 1908.18 17.85
RC205 3 3 1135.31 1087.71 1518.6 1456.59 2285.92 2608.91 9.16
RC206 3 3 866.7 854.44 1157.18 1140.52 2019.36 2282.95 11.68
RC207 3 3 767.54 757.05 1067.73 1036.6 1963.11 2205.76 14.81
RC208 2 2 694.2 676.33 981.74 954.75 1518.31 1741.39 15.8
AVG 6.81 6.73 757.34 754.75 1030.57 1028.3 4303.95 4470.46 6.18
SUM 381.27 377 42410.77 42266.11 57711.87 57584.72 241021.24 250345.55 346.22
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Table 12: TDVRPTW - D3 - travel time - results

Inst. K Kbest tt ttbest d dbest tot totbest te

C101 10 10 592.39 592.39 828.94 828.94 9592.39 9592.39 0.19
C102 10 10 589.11 589.11 836.52 836.52 9906.75 9906.75 0.73
C103 10 10 588.58 588.58 842.28 842.28 10225.37 10225.37 2.67
C104 10 10 577.42 577.42 841.93 841.93 10706.4 10706.4 4.28
C105 10 10 591.85 591.85 830.54 830.54 9629.04 9629.04 0.33
C106 10 10 591.25 591.25 831.31 831.31 9617.83 9617.83 0.42
C107 10 10 592.39 592.39 828.94 828.94 9592.39 9592.39 0.87
C108 10 10 592.03 592.03 828.94 828.94 9592.03 9592.03 1.36
C109 10 10 590.76 590.76 831.93 831.93 9601 9601 2.25
C201 3 3 394.6 394.6 591.56 591.56 9394.6 9394.6 0.44
C202 3 3 394.6 394.6 591.56 591.56 9394.6 9394.6 2.31
C203 3 3 394.45 394.45 591.17 591.17 9437.01 9437.01 5.33
C204 3 3 393.58 393.58 590.39 590.39 9393.58 9393.58 8.93
C205 3 3 392.92 392.92 588.49 588.49 9392.92 9392.92 1.13
C206 3 3 392.92 392.92 588.49 588.49 9392.92 9392.92 1.77
C207 3 3 390.78 390.78 592.54 592.54 9575.63 9575.63 2.16
C208 3 3 388.47 388.47 590.89 590.89 9708.95 9708.95 2.25
R101 17 17 1158.76 1154.17 1610.18 1602.86 2715.29 3016.15 1.8
R102 16 16 1004.44 1004.31 1409.89 1410.03 2645.78 2940.76 4.04
R103 12 12 826.88 824.36 1207.8 1207.07 2134.95 2372.77 7.01
R104 8 8 638.49 622.95 1012.66 1001.37 1565.8 1743.84 2.57
R105 13 13 954.8 950.13 1355.42 1355.22 2067.74 2306.34 2.27
R106 10.4 10 863.54 866.1 1259.2 1263.83 1829.79 1973.46 4.99
R107 9 9 693.49 693.4 1057.37 1055.62 1690.78 1874.27 8.52
R108 8 8 560.69 558.26 914.26 909.83 1554.62 1727.06 7.27
R109 10 10 767.89 736.97 1166.62 1133.6 1700.27 1890.09 3.84
R110 9 9 654.83 646.76 1076.05 1075.48 1657.08 1845.41 5.5
R111 8.7 8 656.94 682.06 1050.84 1072.6 1651.59 1743.84 5.23
R112 8 8 572.85 561.91 942.42 947.17 1528.85 1705.78 3.51
R201 3.33 3 1015.37 1056.01 1382.46 1431.35 2502.1 2609.25 3.94
R202 3 3 818.99 814.29 1153.65 1142.73 2380.73 2675.53 11.23
R203 2 2 767.43 757.83 1116.49 1104.79 1725.73 1938.45 8.76
R204 2 2 522.45 516.76 829.42 819.66 1696.04 1963.98 19.6
R205 3 3 724.71 712.56 1023.06 1021.77 2113.31 2440.82 9.88
R206 2 2 707.92 701.03 1048.93 1034.83 1587.51 1808.07 10.45
R207 2 2 602.63 596.78 897.2 883.62 1621.21 1852.9 15.21
R208 2 2 445.62 439.53 762.08 766.08 1708.46 1981.86 20.46
R209 2 2 681.6 675.88 1045.21 1029.97 1526.28 1736.92 6.36
R210 2 2 749.84 741.05 1109.16 1094.34 1615.63 1874.43 11.74
R211 2 2 547.86 541.33 868.77 863.2 1519.28 1764.95 17.05

RC101 13 13 1094.9 1086.35 1581.12 1566.08 2076.8 2374.21 2.01
RC102 11.12 11 967.07 967.06 1428.81 1418.9 1897.28 2141.76 3.99
RC103 9 9 807.54 793.25 1265.66 1264.86 1716.46 1967.92 3.18
RC104 9 9 692.35 685.9 1119.03 1108.66 1730.46 2006.05 6.53
RC105 11.62 11 1034.84 1009.84 1550.47 1527.18 1979.78 2152.96 3.21
RC106 10.75 10 871.9 889.54 1335.49 1361.54 1824.59 1993.52 3.74
RC107 9 9 818.13 806.09 1304.6 1282.42 1688.45 1922.94 1.41
RC108 9 9 697.33 690.48 1106.86 1091.44 1665.24 1909.24 4.05
RC201 4 4 966.31 965.41 1377.69 1381.09 2855.87 3263.86 4.5
RC202 3 3 866.67 863.97 1284.26 1282.21 2226.61 2526.21 13.02
RC203 2 2 843.14 840.18 1278.76 1279.86 1654.87 1901.73 14.79
RC204 2 2 566.92 556.01 940.58 950.05 1661.09 1894.62 16.84
RC205 3 3 994.29 983.7 1458.77 1432.81 2281.91 2618.8 10
RC206 3 3 789.87 774.78 1160.04 1158.11 2032.4 2299.95 10.68
RC207 3 3 687.78 677.59 1057.57 1043.7 1919.23 2193.15 15.38
RC208 2 2 616.33 608.96 992.21 1019.97 1519.56 1788.47 15.37
AVG 6.66 6.61 691.1 687.53 1031.56 1028.97 4243.26 4408.85 6.38
SUM 372.92 370 38701.49 38501.64 57767.48 57622.32 237622.83 246895.73 357.35
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C TD-VRPTW total time

Table 13: TD-VRPTW - A1 - total time - results

Inst. Kbest
tt totbest

tt K Kbest ∆K tot totbest ∆tot ∆ptot dbest te

C101 10 9685.24 10 10 0 9685.24 9685.24 0 0 828.94 1.27
C102 10 9683.26 10 10 0 9683.26 9683.26 0 0 835.46 11.45
C103 10 9750.96 10 10 0 9683.26 9683.26 −67.7 −0.69 835.46 21.24
C104 10 9816.21 10 10 0 9681.82 9681.82 −134.39 −1.37 832.25 24.53
C105 10 9763.24 10 10 0 9685.24 9685.24 −78 −0.8 828.94 3.62
C106 10 9685.24 10 10 0 9685.24 9685.24 0 0 828.94 4.5
C107 10 9697.6 10 10 0 9685.24 9685.24 −12.36 −0.13 828.94 5.37
C108 10 9684.38 10 10 0 9682.83 9682.83 −1.55 −0.02 833.01 8.79
C109 10 9680.74 10 10 0 9680.74 9680.74 0 0 833.03 10.79
C201 3 9502.9 3 3 0 9502.9 9502.9 0 0 591.56 2.37
C202 3 9502.9 3 3 0 9502.9 9502.9 0 0 591.56 18.71
C203 3 9539.88 3 3 0 9502.9 9502.9 −36.98 −0.39 591.56 37.59
C204 3 9500.84 3 3 0 9500.84 9500.84 0 0 590.97 53.28
C205 3 9500.34 3 3 0 9500.34 9500.34 0 0 588.88 5.63
C206 3 9499.49 3 3 0 9499.49 9499.49 0 0 588.49 8.12
C207 3 9500.54 3 3 0 9500.54 9500.54 0 0 588.32 10.1
C208 3 9499.49 3 3 0 9499.49 9499.49 0 0 588.49 9.68
R101 18 3370.77 18 18 0 3149.7 3149.7 −221.07 −6.56 1965.99 2.8
R102 16 3059.76 16 16 0 2778.7 2775.48 −284.28 −9.29 1968.55 7.98
R103 13 2568.37 13 13 0 2268.31 2263.17 −305.2 −11.88 1472.05 14.86
R104 9 1935.73 9 9 0 1838.92 1834.24 −101.49 −5.24 982.07 22.82
R105 12 2306.89 12 12 0 2248.01 2247.94 −58.95 −2.56 1445.48 5.73
R106 10 2091.51 11 11 1 2056.42 2054.67 −36.84 −1.76 1293.17 15.94
R107 9 1960.62 9 9 0 1936.23 1936.14 −24.48 −1.25 1142.94 19.11
R108 8 1798.77 9 9 1 1778.37 1777.74 −21.03 −1.17 961.22 28.87
R109 10 2008.31 10 10 0 1997.27 1994.7 −13.61 −0.68 1198.35 12.95
R110 9 1943.07 9 9 0 1925.98 1925.98 −17.09 −0.88 1125.6 18.98
R111 9 1942.09 9 9 0 1918.45 1918.45 −23.64 −1.22 1103.95 19.86
R112 9 1842.62 9 9 0 1780.84 1780.84 −61.78 −3.35 972.18 26.4
R201 3 2661.46 3 3 0 2369.57 2369.57 −291.89 −10.97 1672.83 10.46
R202 3 2723.84 3 3 0 2240.28 2240.28 −483.56 −17.75 1534.34 30.61
R203 2 1931.76 3 3 1 2033.61 2033.61 101.85 5.27 1277.69 29.75
R204 2 1897.78 2 2 0 1733 1733 −164.78 −8.68 906.21 32.86
R205 3 2404.95 3 3 0 1999.79 1999.79 −405.16 −16.85 1254.19 25.99
R206 2 1844.31 2 2 0 1805.92 1805.92 −38.39 −2.08 1019.38 29.87
R207 2 1848.31 2 2 0 1714.4 1714.4 −133.91 −7.24 906.67 45.54
R208 2 1709.08 2 2 0 1576.44 1576.44 −132.64 −7.76 754.04 51.92
R209 2 1860.48 2 2 0 1859.75 1859.75 −0.73 −0.04 1071.79 33.9
R210 2 1901.54 2 2 0 1892.22 1892.22 −9.32 −0.49 1106.87 28.11
R211 2 1710.63 2 2 0 1687.65 1687.65 −22.98 −1.34 868.96 45.34

RC101 13 2557.91 13 13 0 2507.18 2503.1 −54.81 −2.14 1699.31 3.84
RC102 11 2368.31 11 11 0 2247.59 2241.77 −126.54 −5.34 1515.58 8.51
RC103 10 2142.61 10 10 0 2050.9 2049.79 −92.82 −4.33 1290.04 17.36
RC104 9 2005.38 9 9 0 1954.46 1945.66 −59.72 −2.98 1142.58 15.11
RC105 13 2656.73 13 13 0 2471.89 2459.25 −197.48 −7.43 1649.35 7.33
RC106 11 2247.98 11 11 0 2140.84 2136.6 −111.38 −4.95 1390.54 9.23
RC107 10 2079.54 10 10 0 2032.75 2023.79 −55.75 −2.68 1262.38 17.84
RC108 9 1969.88 9 9 0 1961.17 1931.67 −38.21 −1.94 1136.05 9.35
RC201 3 2604.29 3 3 0 2467.67 2460.12 −144.17 −5.54 1731.88 10.66
RC202 3 2609.6 3 3 0 2230.9 2230.9 −378.7 −14.51 1533.56 28.72
RC203 3 2665.36 3 3 0 2055.98 2045.28 −620.08 −23.26 1288.96 30.73
RC204 2 1915.11 2 2 0 1785.22 1779.18 −135.93 −7.1 979.66 30.29
RC205 3 2669.7 3 3 0 2347.49 2347.02 −322.68 −12.09 1661.96 23.3
RC206 3 2326.66 3 3 0 2104.03 2101.32 −225.34 −9.69 1349.79 24.83
RC207 3 2235.27 3 3 0 2008.69 2006.86 −228.41 −10.22 1294.26 41.54
RC208 2 1767.6 2 2 0 1807.57 1791.47 23.87 1.35 992.34 24.61
AVG 6.77 4457.82 6.82 6.82 0.05 4355.83 4353.35 −104.47 −4.11 1109.42 19.66
SUM 379 249637.83 382 382 3 243926.43 243787.73 −5850.1 −230.02 62127.56 1100.94
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Table 14: TD-VRPTW - B1 - total time - results

Inst. Kbest
tt totbest

tt K Kbest ∆K tot totbest ∆tot ∆ptot dbest te

C101 10 9851.43 10 10 0 9773.81 9773.81 −77.62 −0.79 828.94 0.86
C102 10 10078.54 10 10 0 9757.52 9757.52 −321.02 −3.19 828.94 6.58
C103 10 10599.34 10 10 0 9697.93 9697.93 −901.41 −8.5 841.35 13.87
C104 10 11156.25 10 10 0 9689.56 9689.34 −1466.91 −13.15 842.39 14.86
C105 10 9773.81 10 10 0 9773.81 9773.81 0 0 828.94 2.5
C106 10 9850.77 10 10 0 9773.81 9773.81 −76.96 −0.78 828.94 3.75
C107 10 9761.07 10 10 0 9759.24 9759.24 −1.83 −0.02 837.2 4.35
C108 10 9924.35 10 10 0 9753.4 9753.4 −170.95 −1.72 838.19 6.08
C109 10 9752.78 10 10 0 9749.72 9749.72 −3.06 −0.03 833.89 7.57
C201 3 9500.85 3 3 0 9500.85 9500.85 0 0 591.56 1.56
C202 3 9500.85 3 3 0 9500.85 9500.85 0 0 591.56 11.94
C203 3 9494.55 3 3 0 9491.91 9491.91 −2.64 −0.03 591.64 21.07
C204 3 9530.31 3 3 0 9487.76 9487.76 −42.55 −0.45 590.48 27.94
C205 3 9497.58 3 3 0 9497.58 9497.58 0 0 589.89 3.38
C206 3 9576.6 3 3 0 9497.58 9497.58 −79.02 −0.83 589.89 5.19
C207 3 9586.44 3 3 0 9500.12 9500.12 −86.32 −0.9 592.4 6.23
C208 3 9662.3 3 3 0 9497.58 9497.58 −164.72 −1.7 589.89 6.61
R101 18 3384.72 18 18 0 3226.7 3208.51 −176.21 −5.21 1741.38 5.08
R102 17 3286.31 17 17 0 2949.32 2928.11 −358.2 −10.9 2078.82 13.8
R103 13 2720.37 13 13 0 2251.43 2247.28 −473.09 −17.39 1442.93 19.71
R104 9 1981.95 9 9 0 1849.87 1843.21 −138.74 −7 1034.09 23.31
R105 13 2534.82 13 13 0 2454.04 2449.51 −85.31 −3.37 1470.77 6.55
R106 11 2342.06 12 12 1 2151.98 2150.67 −191.39 −8.17 1357.97 16.43
R107 9 2126.05 10 10 1 1925.44 1925.01 −201.04 −9.46 1126.79 23.3
R108 9 1957.84 9 9 0 1780.43 1778.48 −179.36 −9.16 954.14 27.71
R109 11 2171.98 11 11 0 2125.34 2123.92 −48.06 −2.21 1233.35 13.61
R110 10 2071.54 10 10 0 2036.57 2032.86 −38.68 −1.87 1160.56 18.68
R111 10 2127.44 10 10 0 2003.29 1998.22 −129.22 −6.07 1136.05 19.95
R112 9 1904.18 9 9 0 1845.81 1841.95 −62.23 −3.27 986.41 26.87
R201 4 3497.61 4 4 0 2870.33 2842.7 −654.91 −18.72 1833.03 11.25
R202 3 2701.67 3 3 0 2300.31 2300.31 −401.36 −14.86 1521.85 30.58
R203 3 2791.87 3 3 0 2088.63 2088.63 −703.24 −25.19 1299.89 53.13
R204 2 1981.75 2 2 0 1762.74 1762.74 −219.01 −11.05 900.62 33.53
R205 3 2520.05 3 3 0 2075.51 2075.51 −444.54 −17.64 1273.58 30.37
R206 2 1961.17 2 2 0 1887.44 1887.44 −73.73 −3.76 1075.17 22.53
R207 2 1895.15 2 2 0 1780.68 1780.68 −114.47 −6.04 936.2 33.9
R208 2 1934.92 2 2 0 1646.9 1646.9 −288.02 −14.89 777.05 37.65
R209 3 2384.31 3 3 0 2125.48 2125.48 −258.83 −10.86 1340.23 39.8
R210 3 2709.62 3 3 0 2041.96 2041.96 −667.66 −24.64 1254.48 44.38
R211 2 1815.23 2 2 0 1763.75 1763.75 −51.48 −2.84 911.86 31.64

RC101 14 2871.37 14 14 0 2804.83 2783.97 −87.4 −3.04 1775.56 5.48
RC102 12 2586.71 12 12 0 2360.1 2352 −234.71 −9.07 1615.93 11.88
RC103 10 2251.46 10 10 0 2082.1 2077.07 −174.39 −7.75 1329.54 15.56
RC104 9 2048.48 9 9 0 1952.8 1947.74 −100.74 −4.92 1176.22 9.4
RC105 13 2704.76 13.33 13 0 2658.28 2622.14 −82.62 −3.05 1752.01 11.23
RC106 11 2344.45 11 11 0 2334.88 2320.49 −23.96 −1.02 1435.04 8.68
RC107 10 2211.86 10 10 0 2157.9 2156.57 −55.29 −2.5 1327.11 13.11
RC108 10 2147.89 10 10 0 2038.16 2030.14 −117.75 −5.48 1170.76 19.63
RC201 4 3308.19 4 4 0 2883.56 2878.47 −429.72 −12.99 2011.5 11.01
RC202 3 2626.87 3 3 0 2409.51 2394.15 −232.72 −8.86 1660.42 29.86
RC203 3 2615.14 3 3 0 2064.3 2052.92 −562.22 −21.5 1262.3 47.09
RC204 2 1892.32 2 2 0 1834.67 1825.11 −67.21 −3.55 993.09 30.62
RC205 4 3413.79 4 4 0 2906.16 2827.98 −585.81 −17.16 2000.95 21.78
RC206 3 2435.93 3 3 0 2211.64 2199.28 −236.65 −9.71 1414.68 27.29
RC207 3 2366.44 3 3 0 2158.45 2154.38 −212.06 −8.96 1328.06 42.03
RC208 2 1829.71 2 2 0 1849.01 1838.12 8.41 0.46 1019.53 26.23
AVG 7.05 4670.64 7.1 7.09 0.04 4452.74 4446.56 −224.08 −6.89 1149.21 18.91
SUM 395 261555.8 397.33 397 2 249353.33 249007.17 −12548.63 −385.76 64356.01 1058.98
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Table 15: TD-VRPTW - C1 - total time - results

Inst. Kbest
tt totbest

tt K Kbest ∆K tot totbest ∆tot ∆ptot dbest te

C101 10 9757.54 10 10 0 9757.54 9757.54 0 0 828.94 1.34
C102 10 9741.25 10 10 0 9741.25 9741.25 0 0 828.94 10.05
C103 10 9756.36 10 10 0 9681.38 9681.38 −74.98 −0.77 828.94 18.85
C104 10 9823.53 10 10 0 9682.2 9680.99 −142.54 −1.45 831.99 21.44
C105 10 9757.54 10 10 0 9757.54 9757.54 0 0 828.94 3.64
C106 10 9757.54 10 10 0 9757.54 9757.54 0 0 828.94 4.5
C107 10 9757.54 10 10 0 9753.27 9753.27 −4.27 −0.04 831.64 5.6
C108 10 9757.54 10 10 0 9752.98 9752.98 −4.56 −0.05 837.2 8.77
C109 10 9757.54 10 10 0 9740.64 9740.64 −16.9 −0.17 840 10.67
C201 3 9510.49 3 3 0 9510.49 9510.49 0 0 591.56 2.17
C202 3 9510.49 3 3 0 9510.49 9510.49 0 0 591.56 16.18
C203 3 9539.85 3 3 0 9501.54 9501.54 −38.31 −0.4 591.64 27.97
C204 3 9500.33 3 3 0 9497.69 9497.69 −2.64 −0.03 590.48 37.54
C205 3 9507.93 3 3 0 9507.93 9507.93 0 0 588.88 4.8
C206 3 9507.55 3 3 0 9507.55 9507.55 0 0 588.49 7.47
C207 3 9530.65 3 3 0 9510.1 9510.1 −20.55 −0.22 591.17 8.53
C208 3 9507.55 3 3 0 9507.55 9507.55 0 0 588.49 9.2
R101 18 3368.52 18 18 0 3273.89 3271.24 −97.28 −2.89 1964.15 3.53
R102 16 3077.68 16 16 0 2880.55 2879.22 −198.46 −6.45 2041.6 7.48
R103 13 2552.61 13 13 0 2291.96 2290.46 −262.15 −10.27 1566.13 12.72
R104 9 1884.64 9 9 0 1793.78 1786.38 −98.26 −5.21 984.96 21.13
R105 12 2374.95 12 12 0 2355.68 2350.07 −24.88 −1.05 1448.45 5.36
R106 10 2159.92 11 11 1 2069.39 2067.99 −91.93 −4.26 1344.8 14.86
R107 9 1949.83 9 9 0 1928.69 1908.63 −41.2 −2.11 1138.87 16.3
R108 8 1783.36 8.6 8 0 1766.51 1777.33 −6.03 −0.34 951.57 22.36
R109 10 2082.83 10 10 0 2077.85 2062.86 −19.97 −0.96 1220.26 10.59
R110 10 2038.77 10 10 0 1983.76 1979.01 −59.76 −2.93 1128.42 17.93
R111 9 2031.53 10 10 1 1952.36 1945.85 −85.68 −4.22 1114.7 18.82
R112 9 1847.86 9 9 0 1810.67 1808.22 −39.64 −2.15 966.33 23.8
R201 3 2742.74 3 3 0 2557.02 2555.93 −186.81 −6.81 1895.47 11.82
R202 3 2741.28 3 3 0 2325.32 2323.9 −417.38 −15.23 1682.95 25.27
R203 2 1934.89 2.2 2 0 1946.4 1918.38 −16.51 −0.85 1142.67 25.85
R204 2 1842.95 2 2 0 1715.5 1701.99 −140.96 −7.65 889.09 42
R205 3 2511.17 3 3 0 1999.81 1965.08 −546.09 −21.75 1186.37 23.6
R206 2 1860.42 2 2 0 1828.53 1813.46 −46.96 −2.52 1016.9 25.23
R207 2 1867.94 2 2 0 1728.86 1725.01 −142.93 −7.65 916.82 43.68
R208 2 1819.3 2 2 0 1583.58 1579.47 −239.83 −13.18 760.95 49.65
R209 2 1888.44 2 2 0 1906.36 1898.44 10 0.53 1096.18 22.1
R210 2 1963.58 2 2 0 1889.74 1882.36 −81.22 −4.14 1089.74 27.74
R211 2 1743.96 2 2 0 1701.14 1693.92 −50.04 −2.87 876.43 38.39

RC101 13 2732.94 13 13 0 2697.97 2685.78 −47.16 −1.73 1766.39 3.85
RC102 11 2429.2 11 11 0 2304.87 2281 −148.2 −6.1 1558.08 8.23
RC103 10 2167.45 10 10 0 2053.28 2046.26 −121.19 −5.59 1314.39 15.82
RC104 9 2028.15 9 9 0 1959.01 1950.88 −77.27 −3.81 1175.26 15.92
RC105 13 2729.54 13 13 0 2625.7 2606.43 −123.11 −4.51 1748.68 7.49
RC106 11 2288.51 11 11 0 2271.41 2264.22 −24.29 −1.06 1368.12 7.4
RC107 10 2175.7 10 10 0 2133.6 2121.74 −53.96 −2.48 1279.71 15.75
RC108 9 1992.13 9.38 9 0 1994.95 1992.13 0 0 1171.43 13.85
RC201 3 2655.77 3 3 0 2612.44 2609.51 −46.26 −1.74 1938.18 10.08
RC202 3 2649.95 3 3 0 2514.03 2511.48 −138.47 −5.23 1857.4 24.7
RC203 3 2673.93 3 3 0 2036.33 2006.26 −667.67 −24.97 1267.89 40.15
RC204 2 1910.14 2 2 0 1772.97 1762.08 −148.06 −7.75 938.11 41.79
RC205 3 2684.88 3 3 0 2486.95 2467.92 −216.96 −8.08 1774.1 23.91
RC206 3 2455.62 3 3 0 2234.35 2219.97 −235.65 −9.6 1526.41 23.78
RC207 3 2312.41 3 3 0 2111.8 2103.38 −209.03 −9.04 1402.99 36.28
RC208 2 1791.27 2 2 0 1810.53 1786.25 −5.02 −0.28 966.49 28.45
AVG 6.79 4495.14 6.84 6.82 0.04 4404.74 4397.8 −97.34 −3.93 1137.24 18.33
SUM 380 251727.98 383.18 382 2 246665.22 246276.96 −5451.02 −220.06 63685.24 1026.38
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Table 16: TD-VRPTW - D1 - total time - results

Inst. Kbest
tt totbest

tt K Kbest ∆K tot totbest ∆tot ∆ptot dbest te

C101 10 9699.3 10 10 0 9699.3 9699.3 0 0 828.94 1.19
C102 10 9699.3 10 10 0 9699.3 9699.3 0 0 828.94 9.3
C103 10 9833.85 10 10 0 9699.3 9699.3 −134.55 −1.37 828.94 17.82
C104 10 10306.29 10 10 0 9698.81 9698.81 −607.48 −5.89 829.7 20.99
C105 10 9699.3 10 10 0 9699.3 9699.3 0 0 828.94 2.77
C106 10 9699.3 10 10 0 9699.3 9699.3 0 0 828.94 3.55
C107 10 9699.3 10 10 0 9699.3 9699.3 0 0 828.94 4.34
C108 10 9699.26 10 10 0 9699.26 9699.26 0 0 828.94 6.65
C109 10 9699.26 10 10 0 9699.26 9699.26 0 0 828.94 8.07
C201 3 9493.26 3 3 0 9493.26 9493.26 0 0 591.56 2.08
C202 3 9493.26 3 3 0 9493.26 9493.26 0 0 591.56 15.64
C203 3 9517.43 3 3 0 9493.26 9493.26 −24.17 −0.25 591.56 27.89
C204 3 9492.66 3 3 0 9492.66 9492.66 0 0 590.6 42.71
C205 3 9490.71 3 3 0 9490.71 9490.71 0 0 588.88 4.17
C206 3 9490.47 3 3 0 9490.47 9490.47 0 0 588.49 6.74
C207 3 9561.6 3 3 0 9489.3 9489.3 −72.3 −0.76 588.32 8.04
C208 3 9791.65 3 3 0 9490.47 9490.47 −301.18 −3.08 588.49 8.38
R101 18 3361 18 18 0 3106.12 3100.14 −260.86 −7.76 1876.39 3.35
R102 17 3212.07 17 17 0 2812.13 2810.04 −402.03 −12.52 1836.87 8.29
R103 13 2533.94 13.17 13 0 2294.66 2276.83 −257.11 −10.15 1412.18 12.53
R104 9 1990.36 9 9 0 1865.01 1845.91 −144.45 −7.26 987.7 16.48
R105 14 2558.14 14 14 0 2424.38 2410.9 −147.24 −5.76 1455.97 4.15
R106 12 2325.18 12 12 0 2154.97 2146.48 −178.7 −7.69 1304.55 11.58
R107 10 2093.62 10 10 0 1961.36 1955.87 −137.75 −6.58 1102.55 20.93
R108 9 1911.16 9 9 0 1792.6 1788.5 −122.66 −6.42 933.61 22.71
R109 11 2137.08 11 11 0 2067.59 2065.36 −71.72 −3.36 1182.64 9.94
R110 10 2093.96 10 10 0 1961.24 1954.55 −139.41 −6.66 1121.16 18.13
R111 10 2055.36 10 10 0 1952.83 1949.01 −106.35 −5.17 1099.44 20.34
R112 9 1917.39 9 9 0 1819.95 1815.47 −101.92 −5.32 972.09 24.51
R201 4 3466.07 4 4 0 2687.21 2670.15 −795.92 −22.96 1803.53 7.35
R202 3 2728.41 3 3 0 2227.22 2223.07 −505.34 −18.52 1389.58 25.88
R203 3 2757.15 3 3 0 2057.74 2029.73 −727.42 −26.38 1174.78 36.55
R204 2 1968.43 2 2 0 1751.8 1743.77 −224.66 −11.41 869.95 37.44
R205 3 2490.53 3 3 0 2040.79 2030.18 −460.35 −18.48 1180.51 26.62
R206 2 1926.94 2 2 0 1930.91 1923.93 −3.01 −0.16 1093.76 28.87
R207 2 1914.52 2 2 0 1780.3 1778.07 −136.45 −7.13 906.57 38.78
R208 2 1979.63 2 2 0 1651.01 1637.86 −341.77 −17.26 745.55 48.15
R209 3 2358.02 3 3 0 2029.34 2006.58 −351.44 −14.9 1127.39 30.1
R210 3 2666.74 3 3 0 2019.61 2002.03 −664.71 −24.93 1128.28 38.08
R211 2 1779.11 2 2 0 1757.72 1752.92 −26.19 −1.47 885.47 39.55

RC101 14 2737.03 14.5 14 0 2665.52 2633.41 −103.62 −3.79 1734.27 3.76
RC102 12 2476.83 12.9 12 0 2399.31 2379.08 −97.75 −3.95 1581.5 7.77
RC103 10 2166.46 10 10 0 2107.32 2085.1 −81.36 −3.76 1288.12 9.22
RC104 9 2040.63 9 9 0 1967.69 1947.94 −92.69 −4.54 1142.12 10.74
RC105 13 2738.01 13.7 13 0 2536.19 2463.86 −274.15 −10.01 1645.92 7.96
RC106 11 2292.68 11.3 11 0 2250.46 2233.61 −59.07 −2.58 1450.35 5.65
RC107 10 2113.84 10 10 0 2098.71 2080.53 −33.31 −1.58 1280.76 11.13
RC108 10 2121.37 10 10 0 1978.62 1966.19 −155.18 −7.32 1135.65 19.2
RC201 4 3302.59 4 4 0 2758.94 2717.25 −585.34 −17.72 1885.38 8.2
RC202 3 2640.01 3 3 0 2311.78 2284.33 −355.68 −13.47 1488.67 22.01
RC203 3 2687.65 3 3 0 2081.38 2063.44 −624.21 −23.23 1241.74 40.63
RC204 2 1896.86 2 2 0 1821.59 1798.04 −98.82 −5.21 947.07 40.37
RC205 4 3424.69 4 4 0 2632.29 2605.13 −819.56 −23.93 1796.18 14.35
RC206 3 2343.87 3 3 0 2145.2 2134.69 −209.18 −8.92 1306.29 21.13
RC207 3 2247.05 3 3 0 2090.78 2079.81 −167.24 −7.44 1227.88 36.89
RC208 2 1838.54 2 2 0 1853.32 1821.34 −17.2 −0.94 1008.09 29.54
AVG 7.11 4601.06 7.15 7.11 0 4412 4400.67 −200.38 −7.11 1105.91 18.02
SUM 398 257659.12 400.57 398 0 247072.11 246437.62 −11221.5 −397.99 61931.19 1009.19
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D TD-EVRPTW-FR travel time

Table 17: TD-EVRPTW - A1 - travel time - results

Inst. K Kbest tt ttbest d dbest totbest recbest m te

C101 12 12 913.93 913.54 1071.43 1070.4 12430.67 1070.4 8 1.714
C102 11 11 917.14 908.25 1078.32 1067.76 12098.87 1067.76 9 3.005
C103 10.67 10 893.04 913.82 1049.79 1069.67 11906.21 1069.67 11 4.215
C104 10 10 826.89 814.03 1000.96 985.36 11113.01 985.36 9 5.442
C105 11 11 944.8 938.06 1084.57 1083.57 12134.54 1083.57 11 2.057
C106 11 11 916.08 915.2 1080.53 1080.98 11939.52 1080.98 11 2.388
C107 11 11 904.1 898.71 1071.15 1053.75 12100.76 1053.75 10 2.724
C108 10.89 10 879.1 1011.91 1048.11 1144.77 11810.69 1144.77 13 3.434
C109 10 10 884.55 851.71 1043.23 1000.97 11452.94 1000.97 9 2.063
C201 4 4 528.14 528.14 636.54 636.54 10442.03 636.54 3 2.231
C202 4 4 530.07 528.14 639.3 636.54 10440.15 636.54 3 6.667
C203 4 4 528.3 528.3 641.81 641.81 10509.96 641.81 4 8.464
C204 4 4 533.11 518.4 654.71 630.52 9984.38 630.52 3 12.512
C205 4 4 527.15 527.15 632.27 632.27 10117.82 632.27 3 3.414
C206 4 4 527.15 527.15 632.27 632.27 10117.82 632.27 3 4.694
C207 4 4 521.96 521.96 635.56 635.56 10202.88 635.56 3 6.351
C208 4 4 527.15 527.15 632.27 632.27 10117.82 632.27 3 5.036
R101 16.33 16 1369.22 1390.45 1628.31 1661.32 3310.77 1661.32 28 4.124
R102 15 15 1202.06 1200.77 1467.8 1469.68 3007.74 1469.68 22 9.059
R103 13 13 1043.2 1021.12 1272.68 1250.76 2661.69 1250.76 18 5.826
R104 10.67 10 874.08 885.2 1064.78 1064.07 2215.71 1064.07 14 10.794
R105 13.67 13 1138.77 1174.74 1386.99 1425.44 2712.84 1425.44 21 6.089
R106 12 12 1076.71 1055.32 1308.15 1285.97 2451.95 1285.97 17 3.262
R107 11 11 925.94 919.27 1131.95 1128.67 2282.32 1128.67 14 10.295
R108 10 10 835.58 834.73 1020.02 1023.31 2126.95 1023.31 13 12.553
R109 11.5 11 998.94 1023.06 1211.72 1232.69 2422.76 1232.69 18 6.283
R110 10.5 10 872.96 878.47 1076.15 1069.72 2173.05 1069.72 11 7.689
R111 11 11 888.85 877.26 1099.74 1083.78 2287.08 1083.78 14 5.364
R112 10 10 831.52 829.35 1016.45 1015.27 2144.78 1015.27 13 7.325
R201 3 3 1061.21 1055.41 1251.69 1243.81 2859.09 1243.81 8 13.14
R202 3 3 887.58 885.25 1062.62 1061.84 2883.18 1061.84 3 14.533
R203 3 3 758.7 756.94 910.68 904.55 2932.15 904.55 4 17.999
R204 2 2 635.52 629.88 800.11 790.06 1987.95 790.06 3 22.985
R205 3 3 784.94 782.38 1021.01 1017.32 2619.52 1017.32 4 12.579
R206 2 2 825.62 822.79 1014.36 1017.64 1958.73 1017.64 8 18.511
R207 2 2 668.17 667.84 849.14 848.45 1892.36 848.45 2 21.931
R208 2 2 589.81 587.14 767.16 771.11 1797.39 771.11 4 23.568
R209 2 2 749.57 743.6 933.34 926.39 1984.28 926.39 7 23.122
R210 2 2 716.13 707.99 892.96 878.97 1936.04 878.97 4 22.933
R211 2 2 656.34 652.68 837.12 837.93 1795.24 837.93 3 23.956

RC101 14.25 14 1389.32 1384.15 1698.19 1679.67 3000.41 1679.67 19 4.498
RC102 13 13 1315.75 1303.27 1586.54 1560.88 2764.73 1560.88 21 5.651
RC103 12 12 1122.23 1109.67 1341.89 1321.27 2615.43 1321.27 16 8.793
RC104 10.5 10 981.37 986.11 1207.34 1201.13 2223.74 1201.13 13 8.879
RC105 13 13 1174.42 1148.08 1461.3 1444.46 2732.96 1444.46 17 5.27
RC106 12 12 1122.22 1106.02 1393.47 1374.37 2532.54 1374.37 17 5.455
RC107 11 11 994.42 988.08 1250.6 1247.51 2335.3 1247.51 15 10.435
RC108 10.67 10 959.02 982.66 1210.33 1206.33 2235.41 1206.33 14 9.328
RC201 3 3 1347.16 1337.45 1631.51 1622.08 2856.02 1622.08 9 11.464
RC202 3 3 1115.36 1113.25 1358.62 1355.38 2796.71 1355.38 4 21.529
RC203 3 3 874.15 865.35 1073.93 1068.34 2716.07 1068.34 5 23.54
RC204 3 3 710.61 698.72 918.2 899.94 2581.47 899.94 6 23.681
RC205 3 3 981.52 966.77 1252.39 1237.22 2627.25 1237.22 7 14.088
RC206 3 3 919.11 912.38 1183.17 1192.96 2514.99 1192.96 4 14.675
RC207 3 3 752.58 739.6 995.37 969.24 2451.64 969.24 5 14.469
RC208 3 3 644.22 625.44 871.02 844.8 2243.62 844.8 4 18.737
AVG 7.51 7.41 876.74 875.36 1073.06 1069.1 5082 1069.1 9.73 10.37
SUM 420.65 415 49097.54 49020.26 60091.62 59869.34 284591.93 59869.34 545 580.82
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Table 18: TD-EVRPTW - A2 - travel time - results

Inst. K Kbest tt ttbest d dbest totbest recbest m te

C101 12 12 835.29 835.08 1071.95 1072 12435.54 1072 8 1.631
C102 11 11 832.7 825.61 1076.29 1061.67 12186.51 1061.67 8 2.865
C103 10.11 10 835.7 818.12 1072.06 1055.29 11546.63 1055.29 9 2.812
C104 10 10 739.93 730.73 1002.51 986.35 11012.95 986.35 9 5.424
C105 11 11 842.58 838.49 1100.05 1103.87 11860.13 1103.87 10 1.93
C106 11 11 829.12 823.41 1112.81 1115.23 11717.28 1115.23 12 2.796
C107 10.89 10 819.89 883.45 1085.65 1119.17 11666.47 1119.17 10 3.025
C108 10.44 10 822.78 839.49 1098.51 1089.27 11742.11 1089.27 12 2.381
C109 10 10 798.23 770.42 1071.38 1053.72 11053.65 1053.72 8 2.092
C201 4 4 459.04 459.04 636.54 636.54 10410.21 636.54 3 2.415
C202 4 4 459.6 459.6 646.84 646.84 10482.22 646.84 5 7.438
C203 4 4 456.77 456.77 643.13 643.13 10470.97 643.13 4 8.95
C204 4 4 449.03 445.41 641.78 631.84 9944.96 631.84 3 12.466
C205 4 4 457.67 457.67 629.95 629.95 10114.71 629.95 3 3.885
C206 4 4 452.66 452.66 644.47 644.47 10257.51 644.47 4 5.671
C207 4 4 446.99 446.99 633.69 633.69 10224.16 633.69 3 6.253
C208 4 4 452.66 452.66 644.47 644.47 10224.51 644.47 4 6.23
R101 15.5 15 1206.71 1270.99 1656.3 1763.32 3133.29 1763.32 34 5.601
R102 14 14 1008.54 1006.44 1415.55 1415.32 2766.04 1415.32 21 9.302
R103 11 11 881.67 881.6 1241.69 1241.3 2360.67 1241.3 22 8.044
R104 10 10 727.31 726.09 1040.4 1033.64 2078.18 1033.64 12 12.68
R105 13 13 961.76 937.91 1374.85 1346.92 2636.09 1346.92 18 7.446
R106 12 12 867.89 866.6 1250.86 1248.54 2334.82 1248.54 17 11.57
R107 10 10 784.6 783.14 1116.81 1114.64 2127.36 1114.64 13 6.021
R108 10 10 698.77 698.12 1015.65 1011.19 2011.64 1011.19 14 14.837
R109 11 11 832.12 825.92 1187.39 1182.76 2267.88 1182.76 15 9.051
R110 10 10 726.73 718.61 1047.04 1028.2 2077.53 1028.2 11 9.941
R111 10 10 746.82 743.6 1060.08 1057.2 2121.16 1057.2 16 6.436
R112 10 10 678.73 678.53 995.2 999.14 1987.15 999.14 11 13.599
R201 3 3 922.52 914.92 1268.87 1277.08 2833.49 1277.08 9 15.92
R202 3 3 794.98 793.98 1067.45 1064.47 2898.67 1064.47 5 18.751
R203 2 2 774.44 768.07 1073.94 1070.87 1985.83 1070.87 6 19.478
R204 2 2 545.41 544.01 813.53 816.33 1930.42 816.33 3 29.343
R205 2 2 742.33 736.51 1070.72 1074.28 1929.13 1074.28 7 13.743
R206 2 2 683.91 679.01 1021.11 1008.1 1876.26 1008.1 8 21.729
R207 2 2 552.71 545.67 864.55 856.83 1782.23 856.83 3 18.657
R208 2 2 473.04 468.97 765.42 762.59 1725.71 762.59 3 30.401
R209 2 2 637.39 632.67 947.38 943.18 1932.05 943.18 8 24.245
R210 2 2 604.14 604.14 918.36 918.36 1894.45 918.36 5 19.873
R211 2 2 509.36 509.36 809.96 809.96 1746.81 809.96 5 23.137

RC101 13 13 1151.25 1139.14 1674.16 1643.9 2701.69 1643.9 22 4.245
RC102 12.5 12 1071.55 1059.87 1558.17 1536.49 2512.38 1536.49 23 7.355
RC103 11 11 952.09 944.22 1364.39 1365.18 2282.06 1365.18 16 7.216
RC104 10 10 821.84 812.91 1213.77 1189.68 2075.72 1189.68 14 9.392
RC105 12 12 952.31 940.72 1410.71 1397.93 2399.94 1397.93 13 6.656
RC106 11.75 11 928.87 1011.01 1393.42 1434.91 2409.87 1434.91 19 5.186
RC107 10.67 10 804.3 827.37 1227.35 1211.33 2171.79 1211.33 15 10.794
RC108 10 10 778.53 769.07 1164.45 1152.19 2046.74 1152.19 13 10.957
RC201 3 3 1144.39 1142.81 1585.69 1586.49 2811.08 1586.49 11 14.955
RC202 3 3 942.87 940.36 1340.12 1342.16 2743.17 1342.16 8 22.004
RC203 3 3 752.98 747.04 1089.95 1086.71 2654.33 1086.71 4 22.898
RC204 2 2 727.6 697.6 1045.92 1009.65 1908.42 1009.65 8 20.981
RC205 3 3 775.42 754.24 1208.71 1161.77 2640.85 1161.77 6 13.086
RC206 3 3 720.73 720.73 1143.48 1143.48 2478.29 1143.48 6 12.953
RC207 2.33 2 710.1 751 1051.87 1077.58 1895.09 1077.58 7 15.407
RC208 2 2 671.68 641.47 984.75 952.85 1819.89 952.85 8 24.497
AVG 7.16 7.09 754.63 754.11 1076.64 1073.29 4916.76 1073.29 10.25 11.37
SUM 401.19 397 42259.03 42230.02 60292.1 60104.02 275338.69 60104.02 574 636.65
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Table 19: TD-EVRPTW - A3 - travel time - results

Inst. K Kbest tt ttbest d dbest totbest recbest m te

C101 11 11 834.78 826.35 1131.84 1115.27 12274.95 1115.27 11 1.604
C102 11 11 780.78 770.7 1089.81 1112.6 11901.26 1112.6 9 2.669
C103 10 10 785.33 754.68 1071.78 1040.76 11509.75 1040.76 9 2.914
C104 10 10 680.86 675.98 998.47 1006.81 10993.97 1006.81 9 4.435
C105 11 11 785.13 777.17 1107.52 1098.28 11794.34 1098.28 11 2.119
C106 11 11 764.33 760.44 1129.43 1126.01 11641.19 1126.01 12 2.637
C107 10.89 10 763.9 831.79 1109.39 1123.25 11613.13 1123.25 10 2.884
C108 10.11 10 777.97 767.8 1123.14 1098.83 11563.25 1098.83 11 1.819
C109 10 10 726.01 702.14 1059.95 1023.55 11073.05 1023.55 8 2.203
C201 4 4 419.53 419.53 636.54 636.54 10391.79 636.54 3 2.394
C202 4 4 418.35 418.35 646.84 646.84 10449.98 646.84 5 7.853
C203 4 4 417.7 415.95 648.79 643.13 10439.14 643.13 4 9.217
C204 4 4 411.87 408.26 680.36 674.16 11102.78 674.16 6 12.42
C205 4 4 417.25 417.25 636.96 636.96 9937.53 636.96 3 3.792
C206 4 4 412.16 412.16 646.51 646.51 10234.08 646.51 4 5.79
C207 4 4 407.56 407.56 635.73 635.73 10200.4 635.73 3 6.595
C208 4 4 410.42 410.42 641.36 641.36 10227.85 641.36 3 6.148
R101 14.5 14 1048.94 1064.36 1606.19 1653.79 2896.19 1653.79 27 5.292
R102 13 13 899.91 896.2 1430.99 1409.49 2651.08 1409.49 21 9.591
R103 11 11 765.19 755.67 1230.61 1221.41 2253.83 1221.41 21 8.322
R104 10 10 652.66 648.28 1088.42 1084.1 1986.02 1084.1 13 15.763
R105 12 12 861.63 850.18 1392.92 1359.75 2469.54 1359.75 24 5.731
R106 11 11 796.68 788.53 1280.81 1280.28 2260.17 1280.28 22 10.42
R107 10 10 684.64 670.41 1135.65 1098.2 2041.37 1098.2 15 7.967
R108 9 9 649.96 633.54 1036.15 1010.72 1914.66 1010.72 15 8.119
R109 10 10 768.63 767.1 1197.37 1199.58 2145.91 1199.58 17 6.737
R110 10 10 635.89 628.55 1065.26 1048.79 1974.18 1048.79 14 12.563
R111 10 10 665.73 656.3 1093.89 1081.47 2047.52 1081.47 15 4.801
R112 9 9 625.35 608.45 998.69 975.92 1900.61 975.92 13 6.473
R201 3 3 839.29 839.29 1266.9 1266.9 2833.49 1266.9 6 13.98
R202 3 3 725.34 722.32 1076.61 1063.54 2897.27 1063.54 3 18.91
R203 2 2 699.13 694.32 1087.92 1074.04 1982.78 1074.04 7 29.388
R204 2 2 485.85 485.27 832.27 828.99 1927.44 828.99 3 22.208
R205 2 2 648.64 643.23 1085.78 1087.4 1896.07 1087.4 9 19.458
R206 2 2 585.5 579.96 1020.55 1014.29 1881.38 1014.29 10 23.029
R207 2 2 463.11 459.09 898.98 891.4 1788.97 891.4 3 25.56
R208 2 2 405.66 400.74 800.81 779.5 1675.93 779.5 3 23.362
R209 2 2 536.09 519.98 946.59 937.48 1786.79 937.48 8 21.702
R210 2 2 519.05 519.05 897.91 897.91 1931.5 897.91 9 29.07
R211 2 2 434.23 434.23 820.04 820.04 1721.4 820.04 3 18.44

RC101 12.67 12 961.82 1013.21 1622.46 1646.19 2536.06 1646.19 24 5.611
RC102 11.33 11 963.81 1002.1 1537.35 1561.9 2434.2 1561.9 26 6.063
RC103 11 11 802.57 786.75 1354.56 1336.61 2212.34 1336.61 16 10.158
RC104 10 10 700.5 699.41 1219.88 1239.82 1939.18 1239.82 14 11.354
RC105 12 12 812.52 800.29 1408.32 1400.27 2305.36 1400.27 15 5.128
RC106 11 11 796.62 784.91 1384.04 1352.84 2161.35 1352.84 17 5.832
RC107 10 10 708.9 704.14 1224.25 1213.28 2002.7 1213.28 14 8.517
RC108 10 10 660.69 654.62 1162.76 1150.93 1947.21 1150.93 14 11.961
RC201 3 3 1015.14 1005.05 1572.59 1564.4 2773.65 1564.4 11 15.027
RC202 3 3 838.44 830.79 1332.86 1332.56 2723.77 1332.56 6 18.74
RC203 3 3 674.27 670.35 1080.95 1076.96 2683.11 1076.96 5 22.598
RC204 2 2 617.44 588.99 1003.65 961.31 1875.95 961.31 9 27.83
RC205 3 3 647.99 646.87 1233.58 1236.48 2556.67 1236.48 7 13.747
RC206 3 3 628.81 621.64 1215.24 1166.96 2409.02 1166.96 6 11.449
RC207 2 2 656.45 646.81 1093.36 1075.7 1859.37 1075.7 8 24.099
RC208 2 2 550.91 545.23 947.73 935.26 1800.55 935.26 8 24.204
AVG 6.96 6.91 672.28 668.62 1083.56 1075.77 4864.88 1075.77 10.75 11.55
SUM 389.5 387 37647.91 37442.74 60679.31 60243.05 272433.03 60243.05 602 646.7
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Table 20: TD-EVRPTW - B1 - travel time - results

Inst. K Kbest tt ttbest d dbest totbest recbest m te

C101 12 12 798.16 798.16 1066.49 1066.49 13470.4 1066.49 8 1.799
C102 11 11 813.5 799.33 1089.6 1073.5 12823.46 1073.5 8 2.131
C103 10 10 769.24 756.08 1038.84 1027.11 11614.34 1027.11 8 3.041
C104 10 10 661.44 661.04 908.08 905.03 11262.88 905.03 6 5.244
C105 11 11 801.39 799.67 1075.04 1075.71 12568.28 1075.71 8 1.639
C106 11 11 808.23 807.45 1067.8 1072.13 12521.3 1072.13 8 2.305
C107 10.57 10 824.03 855.89 1081.57 1114.85 11746.35 1114.85 10 2.144
C108 10.71 10 795.04 851.66 1060.09 1137.4 11774.77 1137.4 10 2.906
C109 10 10 781.56 772.61 1031.41 1013.82 11832.45 1013.82 10 2.05
C201 4 4 526.44 526.44 636.5 636.5 10332.05 636.5 4 2.303
C202 4 4 523.14 523.14 634.47 634.47 10508.22 634.47 4 6.242
C203 4 4 521.86 521.4 637.76 634.63 10622.97 634.63 3 8.451
C204 4 4 521.22 520.91 632.37 631.92 10687.38 631.92 4 12.534
C205 4 4 520.13 520.13 630.12 630.12 10353.09 630.12 4 3.797
C206 4 4 520.13 520.13 630.12 630.12 10353.09 630.12 4 4.913
C207 4 4 520.13 520.13 630.12 630.12 10353.09 630.12 4 6.071
C208 4 4 520.13 520.13 630.12 630.12 10353.09 630.12 4 5.177
R101 18 18 1308.8 1291.46 1663.03 1643.12 3663.38 1643.12 22 3.684
R102 16 16 1138.4 1138.04 1459.76 1458.61 3294.45 1458.61 22 8.451
R103 12.67 12 996.2 1014.02 1268.6 1286.4 2613.13 1286.4 20 8.42
R104 10.67 10 850.42 869.23 1072.02 1087.6 2154.32 1087.6 13 10.304
R105 14 14 1111.72 1101.73 1395.42 1384.32 2882.75 1384.32 22 6.348
R106 13 13 1025.16 1019.15 1293.93 1279.26 2755.43 1279.26 19 8.582
R107 11 11 903.14 901.83 1145.18 1127.23 2347.37 1127.23 15 7.069
R108 10 10 825.55 811.14 1043.22 1023.18 2144.56 1023.18 14 8.587
R109 12 12 969.49 965.56 1225.71 1221.7 2565.72 1221.7 19 6.462
R110 11 11 870.17 868.61 1097.94 1091.52 2316.53 1091.52 15 13.446
R111 11 11 879.88 876.67 1113.9 1111.36 2370.25 1111.36 13 9.205
R112 11 11 819.53 818.14 1035.28 1034.79 2331.61 1034.79 14 14.106
R201 3 3 958.28 957.19 1212.12 1202.68 2785.6 1202.68 8 11.395
R202 3 3 802.76 802.76 1028.41 1028.41 2850.3 1028.41 4 17.912
R203 2 2 773.47 764.59 982.05 974.4 1981.83 974.4 6 25.417
R204 2 2 610.4 604.27 774.09 775.46 1987.04 775.46 2 22.518
R205 3 3 797.26 793.48 1012.72 1008.89 2753.16 1008.89 5 10.246
R206 2 2 815.92 815.74 1020.04 1018.32 1986.28 1018.32 7 15.456
R207 2 2 690.58 682.97 869.2 859.6 1975.27 859.6 2 19.864
R208 2 2 592.92 591.34 754.08 757.61 1975.04 757.61 4 22.271
R209 2 2 759.9 751.15 951.1 948.48 1973.2 948.48 6 13.68
R210 2 2 752.47 748.99 952.42 941.97 1952.38 941.97 5 17.516
R211 2 2 695.09 674.85 872.21 834.45 1949.29 834.45 3 21.798

RC101 15 15 1359.13 1353.78 1711.41 1705.17 3227.53 1705.17 24 5.423
RC102 13.25 13 1229.32 1242.18 1553.9 1567.38 2868.41 1567.38 21 6.846
RC103 12 12 1070.07 1054.98 1377.82 1365.45 2577.95 1365.45 18 8.521
RC104 10.25 10 921.33 898.82 1197.09 1166.61 2286.44 1166.61 13 6.415
RC105 13 13 1178.43 1157.94 1480.06 1463.58 2871.61 1463.58 16 4.585
RC106 13 13 1110.69 1103.03 1402 1393.84 2805.91 1393.84 16 6.525
RC107 11 11 1005.88 980.66 1273.86 1252.93 2470.9 1252.93 15 6.417
RC108 11 11 927.43 918.15 1177.98 1166.44 2410.25 1166.44 13 8.237
RC201 3 3 1337.85 1331.52 1635 1638.05 2769.82 1638.05 9 8.576
RC202 3 3 1136.5 1134.17 1397.1 1395.15 2769.17 1395.15 8 18.976
RC203 3 3 853.39 852.25 1091.52 1081.47 2757.67 1081.47 6 20.967
RC204 3 3 719.33 708.44 904 908.13 2781.04 908.13 6 23.327
RC205 3 3 1053.85 1031.26 1283.24 1235.94 2640.07 1235.94 6 13.203
RC206 3 3 980.82 967.29 1197.06 1189.23 2647.02 1189.23 6 13.878
RC207 3 3 829.85 826.44 1041.91 1032.89 2669.25 1032.89 5 16.686
RC208 3 3 737.22 707.52 900.95 874.15 2386.87 874.15 5 21.299
AVG 7.61 7.55 850.44 846.53 1077.64 1072.85 5209.39 1072.85 9.89 10.1
SUM 426.12 423 47624.37 47405.64 60347.83 60079.81 291726.01 60079.81 554 565.37
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Table 21: TD-EVRPTW - B2 - travel time - results

Inst. K Kbest tt ttbest d dbest totbest recbest m te

C101 12 12 677.25 674.89 1095.65 1076.06 13514.39 1076.06 8 3.139
C102 11 11 663.76 650.36 1085.26 1059.12 12645.83 1059.12 9 5.624
C103 10 10 660.2 640.32 1070.94 1042.34 11818.24 1042.34 9 5.182
C104 10 10 545.28 542.88 898.13 893.36 11624.8 893.36 8 8.74
C105 11 11 664.92 659.1 1078.64 1071.66 12405.05 1071.66 8 3.387
C106 10.9 10 682.45 768.02 1095.97 1203.22 11744.79 1203.22 11 4.89
C107 10.6 10 682.63 708.31 1097.96 1119.7 11734.95 1119.7 11 4.569
C108 10.3 10 674.85 678.7 1089.44 1092.14 11958.95 1092.14 12 3.839
C109 10 10 655.33 633.45 1049.63 1016.93 11423.17 1016.93 8 3.505
C201 4 4 458.82 458.82 641.93 641.93 10304.51 641.93 5 5.074
C202 4 4 463.26 452.29 665.99 636.75 10488.13 636.75 4 14.155
C203 4 4 449.08 449.08 639.15 639.15 10701.98 639.15 3 16.059
C204 4 4 446.95 443.15 662.26 652.83 11291.37 652.83 5 25.969
C205 4 4 447.25 447.25 634.87 634.87 10302.32 634.87 5 7.737
C206 4 4 447 447 638.15 638.15 10304.08 638.15 5 10.298
C207 4 4 447.57 447.57 636.57 636.57 10322.73 636.57 4 11.952
C208 4 4 450.05 446.97 647.88 640.62 10309.7 640.62 5 12.447
R101 17 17 1148.09 1125.09 1702.42 1670.69 3489.48 1670.69 27 5.584
R102 14.75 14 975.48 1039.26 1469.47 1536.28 2884.1 1536.28 26 7.357
R103 12.25 12 825.9 820.38 1258.74 1244.3 2523.48 1244.3 18 7.993
R104 10 10 734.25 712.15 1110.65 1069.29 2145.57 1069.29 12 6.597
R105 13.25 13 961.7 934.99 1432.53 1388.86 2704.14 1388.86 25 4.516
R106 12 12 881.44 863.71 1331.97 1308.28 2527.21 1308.28 22 5.981
R107 10 10 747.99 721.48 1141.9 1104.99 2146.18 1104.99 15 5.268
R108 10 10 682.8 658.19 1060.33 1027.21 2151.83 1027.21 14 6.618
R109 11 11 822.89 809.99 1251.91 1236.22 2390.58 1236.22 23 5.424
R110 10 10 761.43 758.11 1145.52 1153.78 2188.42 1153.78 18 5.028
R111 11 11 763.94 754.85 1161.72 1147.98 2370.49 1147.98 17 5.625
R112 10 10 720.77 688.57 1099.11 1057.37 2165.92 1057.37 17 5.17
R201 3 3 807.14 805.89 1233.2 1234.73 2780.36 1234.73 7 11.067
R202 2 2 785.51 766.45 1180.77 1148.59 1954.33 1148.59 5 5.2
R203 2 2 641.95 636.26 986.72 995.43 1974.86 995.43 5 9.878
R204 2 2 509.98 499.3 796.18 794.82 1981.91 794.82 4 11.516
R205 2 2 728.86 713.79 1092.77 1073.2 1961.69 1073.2 6 5.24
R206 2 2 677.32 666.6 1036.37 1024.02 1988.71 1024.02 6 8.575
R207 2 2 564.42 558 875.51 858.27 1981.25 858.27 3 10.593
R208 2 2 483.05 481.16 765.07 766.47 1980.49 766.47 4 11.726
R209 2 2 621.6 617.23 943.98 934.67 1963.2 934.67 5 8.43
R210 2 2 617.64 591.63 936.27 883.87 1889.16 883.87 4 8.947
R211 2 2 567.77 561.54 888.09 869.33 1913.8 869.33 4 9.913

RC101 14 14 1091.89 1079.72 1637.09 1622.86 3074.96 1622.86 24 11.71
RC102 12.25 12 1015.68 1018.38 1530.84 1537.61 2641.69 1537.61 21 17.418
RC103 11 11 908.33 852.45 1416.14 1340.24 2412.5 1340.24 15 12.793
RC104 10 10 762.12 732.97 1192.15 1165.36 2173.53 1165.36 13 18.372
RC105 12.25 12 969.09 973.24 1470.38 1470.79 2690.14 1470.79 16 9.707
RC106 12 12 926.48 915.41 1395.1 1376.76 2565.25 1376.76 16 8.356
RC107 11 11 814.79 799.56 1259.79 1243.41 2342.07 1243.41 13 19.347
RC108 10 10 777.49 762.89 1176.45 1159.16 2239.43 1159.16 13 14.892
RC201 3 3 1076.39 1069.34 1599.39 1565.94 2710.43 1565.94 8 26.446
RC202 3 3 929.89 926.99 1370.82 1356.57 2776.66 1356.57 6 39.953
RC203 3 3 722.25 714.2 1104.64 1088 2642.94 1088 6 45.771
RC204 3 3 599.41 596.86 910.78 908.97 2669.39 908.97 6 51.846
RC205 3 3 820.03 815.94 1256.45 1273.81 2692.63 1273.81 6 30.521
RC206 3 3 822.61 807.84 1222.87 1192.89 2635.43 1192.89 5 22.67
RC207 2.75 2 703.59 762.74 1065.93 1117.15 1890.08 1117.15 7 35.753
RC208 2 2 670.91 664.49 995.5 980.75 1861.75 980.75 7 46.697
AVG 7.27 7.2 717.13 711.17 1093.46 1082.58 5088.77 1082.58 10.52 13.05
SUM 407.3 403 40159.52 39825.8 61233.94 60624.32 284971.03 60624.32 589 731.06
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Table 22: TD-EVRPTW - B3 - travel time - results

Inst. K Kbest tt ttbest d dbest totbest recbest m te

C101 12 12 589.01 589.01 1104.31 1104.31 13301.72 1104.31 10 2.82
C102 10.5 10 622.55 647.39 1149.91 1169.41 11867.75 1169.41 12 3.075
C103 10 10 616.61 582.82 1164.55 1101.48 11746.23 1101.48 11 2.577
C104 10 10 475.39 470.06 918.69 906.27 11450.97 906.27 7 4.551
C105 11 11 582.6 574.86 1103.74 1081.74 12294.24 1081.74 10 2.527
C106 11 11 603.56 586.4 1114.13 1097.83 12450.4 1097.83 10 3.282
C107 10.67 10 599.79 637.54 1093.82 1128.96 11625.68 1128.96 11 2.745
C108 10.67 10 571.93 587.97 1088.42 1123.05 11723.91 1123.05 11 3.077
C109 10 10 603.31 580.53 1122.09 1088.64 11498.1 1088.64 10 2.013
C201 4 4 413.74 413.63 650.84 648.54 10635.55 648.54 6 4.577
C202 4 4 405.75 405.75 644.68 644.68 11133.69 644.68 5 12.441
C203 4 4 405.19 405.19 649.09 649.09 11205.82 649.09 4 14.901
C204 4 4 402.63 394.24 681.66 656.79 11141.28 656.79 4 19.204
C205 4 4 402.65 402.65 648.29 648.29 10763.89 648.29 5 8.613
C206 4 4 406.58 406.58 648.57 648.57 10294.18 648.57 6 11.529
C207 4 4 406.85 406.85 640.04 640.04 10297.26 640.04 4 12.759
C208 4 4 403.28 403.28 654.53 654.53 10866.14 654.53 5 11.804
R101 16.5 16 1029.46 1036.23 1723.68 1714.98 3298.06 1714.98 32 10.857
R102 14 14 871.43 867.28 1483.45 1473.35 2891.86 1473.35 27 25.016
R103 12 12 702.47 700.01 1238.41 1236.7 2515.61 1236.7 19 26.025
R104 10 10 620.15 620.15 1092 1092 2142.86 1092 16 20.03
R105 13 13 820.72 820.72 1380.05 1380.05 2732.08 1380.05 23 8.339
R106 12 12 737.26 737.26 1275.35 1275.35 2447.63 1275.35 19 7.933
R107 10 10 696.56 696.56 1243.03 1243.03 2137.41 1243.03 20 8.352
R108 9 9 599.05 599.05 1065.34 1065.34 1943.03 1065.34 15 11.341
R109 11 11 763.97 763.97 1307.98 1307.98 2365.95 1307.98 24 7.172
R110 10 10 704.22 704.22 1227.86 1227.86 2189.51 1227.86 21 5.813
R111 10 10 688.26 688.26 1183.62 1183.62 2210.53 1183.62 22 8.488
R112 10 10 597.5 597.5 1039.78 1039.78 2141.61 1039.78 16 7.489
R201 3 3 703.51 703.51 1239.15 1239.15 2726.15 1239.15 7 19.414
R202 2 2 654.9 654.9 1149.06 1149.06 1956.05 1149.06 5 19.961
R203 2 2 547.48 547.48 981.29 981.29 1990.93 981.29 5 28.564
R204 2 2 430.55 430.55 821.31 821.31 1983.09 821.31 4 30.558
R205 2 2 614.73 614.73 1088.94 1088.94 1935.52 1088.94 5 14.986
R206 2 2 550.53 550.53 1012.72 1012.72 1969.09 1012.72 5 33.19
R207 2 2 498.15 480.53 905.22 898.57 1981.53 898.57 4 16.793
R208 2 2 427.46 415.75 790.76 763.93 1973.29 763.93 3 19.071
R209 2 2 553.83 551.16 997.71 1004.17 1941.49 1004.17 4 7.312
R210 2 2 555.01 533.11 994.06 976.62 1930.34 976.62 4 7.859
R211 2 2 481.58 475.19 883.69 871.28 1926.33 871.28 5 10.235

RC101 13.67 13 986.07 1035.74 1671.72 1743.05 2803.3 1743.05 23 11.308
RC102 12 12 890.57 866.64 1565.09 1526.12 2566.72 1526.12 20 15.059
RC103 10.33 10 780.26 793.93 1390.82 1409.84 2223.26 1409.84 20 13.775
RC104 10 10 636.24 628.34 1165.29 1150.95 2187.78 1150.95 14 23.42
RC105 12 12 856.58 847.61 1471.66 1442.1 2607.63 1442.1 19 11.206
RC106 12 12 793.54 793.54 1387.67 1387.67 2559.6 1387.67 15 9.498
RC107 11 11 750.22 750.22 1311.19 1311.19 2401.92 1311.19 17 12.12
RC108 10 10 707.06 707.06 1264.35 1264.35 2273.13 1264.35 18 9.183
RC201 3 3 935.03 935.03 1580.1 1580.1 2724.91 1580.1 11 22.51
RC202 3 3 815.17 815.17 1413.12 1413.12 2700.08 1413.12 6 30.179
RC203 3 3 625.87 625.87 1101.06 1101.06 2754.96 1101.06 5 33.235
RC204 2 2 655.38 655.38 1093.28 1093.28 1895.57 1093.28 7 28.053
RC205 3 3 724.31 724.31 1259.26 1259.26 2631.18 1259.26 6 23.304
RC206 3 3 704.63 704.63 1266.05 1266.05 2606.54 1266.05 8 17.901
RC207 2 2 710.25 663.53 1219.94 1151.83 1890.42 1151.83 6 9.841
RC208 2 2 604.12 585.11 1040.31 1000.78 1855.49 1000.78 8 10.504
AVG 7.15 7.09 634.56 632.42 1114.33 1109.64 5076.95 1109.64 11.41 13.54
SUM 400.34 397 35535.5 35415.51 62402.73 62140.05 284309.25 62140.05 639 758.39
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Table 23: TD-EVRPTW - C1 - travel time - results

Inst. K Kbest tt ttbest d dbest totbest recbest m te

C101 12 12 850.75 850.75 1053.83 1053.83 12879.87 1053.83 8 2.281
C102 11 11 853.75 848.6 1065.53 1056.88 12374.46 1056.88 8 4.001
C103 10 10 835.81 816.27 1018.16 994.25 11695.39 994.25 9 2.647
C104 10 10 740.6 734.41 913.24 901.06 11167.9 901.06 6 5.243
C105 11 11 872 871.09 1074.65 1073.63 12227.48 1073.63 9 2.998
C106 11 11 854.55 854.55 1058.43 1058.43 12021.07 1058.43 9 3.828
C107 11 11 830.68 830.68 1028.64 1028.64 12106.63 1028.64 8 3.882
C108 10.67 10 843.21 882.36 1040.89 1084.89 11800.07 1084.89 12 4.717
C109 10 10 820.43 811.8 1014.49 1000.08 11537.16 1000.08 9 3.58
C201 4 4 497.6 497.6 635.92 635.92 10088.67 635.92 4 5.365
C202 4 4 496.93 496.93 635.24 635.24 10299.64 635.24 4 15.186
C203 4 4 494.41 494.41 636.42 636.42 10372.23 636.42 4 15.608
C204 4 4 491.61 491.5 631.18 628.91 10318.82 628.91 3 17.766
C205 4 4 490.89 490.89 629.95 629.95 10167.76 629.95 3 8.447
C206 4 4 490.89 490.89 629.95 629.95 10163.37 629.95 3 10.522
C207 4 4 490.89 490.89 629.95 629.95 10163.37 629.95 3 12.854
C208 4 4 490.89 490.89 629.95 629.95 10163.37 629.95 3 9.029
R101 18 18 1330.06 1330.06 1631.15 1631.15 3776.95 1631.15 25 6.773
R102 15 15 1174.88 1174.88 1474.34 1474.34 3075.76 1474.34 23 13.469
R103 12 12 990.2 990.2 1246.54 1246.54 2589.87 1246.54 18 15.52
R104 10 10 893.07 893.07 1106.93 1106.93 2220.38 1106.93 16 12.812
R105 14 14 1122.33 1122.33 1364.31 1364.31 2978.81 1364.31 22 9.133
R106 12 12 1058.13 1058.13 1308.54 1308.54 2529.49 1308.54 20 6.929
R107 11 11 948.11 948.11 1163.02 1163.02 2378.11 1163.02 14 8.31
R108 10 10 822.33 822.33 1022.65 1022.65 2192.41 1022.65 14 15.423
R109 12 12 991.33 991.33 1217.96 1217.96 2587.61 1217.96 18 8.198
R110 11 11 879.32 879.32 1094.08 1094.08 2362.05 1094.08 13 13.238
R111 11 11 888.2 888.2 1104.4 1104.4 2303.37 1104.4 15 13.243
R112 10 10 835.3 835.3 1041.05 1041.05 2168.12 1041.05 14 12.975
R201 3 3 1046.65 1046.65 1230.48 1230.48 2912.47 1230.48 8 18.543
R202 3 3 861.29 861.29 1032.94 1032.94 2865.48 1032.94 4 23.418
R203 3 3 750.47 750.47 916.03 916.03 2883.51 916.03 4 27.024
R204 2 2 630.4 630.4 779.21 779.21 1991.06 779.21 2 25.455
R205 3 3 816.11 816.11 994.52 994.52 2717.91 994.52 4 14.202
R206 2 2 840.21 835.78 1023.19 1010.33 1991.44 1010.33 6 16.36
R207 2 2 710.83 702.3 873.61 871.23 1930.31 871.23 3 14.524
R208 2 2 607.35 605.01 765.25 757.19 1877.63 757.19 3 18.399
R209 2 2 807.5 801.42 973.87 965.45 1991.69 965.45 7 7.307
R210 2 2 804.46 802.31 973.03 978.53 1987.9 978.53 8 8.032
R211 2 2 695.67 689.48 860.39 854.43 1802.94 854.43 3 8.526

RC101 15 15 1453.92 1419.91 1769.71 1731.37 3266.47 1731.37 21 9.078
RC102 13.5 13 1232.41 1243.81 1518.19 1526.12 2813.43 1526.12 17 14.813
RC103 12 12 1088.82 1084.23 1353.43 1350.01 2587.3 1350.01 14 13.765
RC104 10 10 961.99 940.78 1196.06 1172.08 2245.34 1172.08 14 12.107
RC105 13 13 1175.83 1173.9 1447.02 1444.42 2912.31 1444.42 16 11.512
RC106 12 12 1138.87 1132.57 1402.42 1400.31 2586.01 1400.31 15 10.987
RC107 11 11 1001.16 1001.16 1235.33 1235.33 2409.84 1235.33 15 12.489
RC108 11 11 994.95 994.95 1237.76 1237.76 2356.54 1237.76 13 9.408
RC201 4 4 1202.58 1202.58 1452.65 1452.65 3615.47 1452.65 4 11.768
RC202 3 3 1162.56 1162.56 1419.47 1419.47 2827.37 1419.47 8 29.139
RC203 3 3 893.44 893.44 1088.55 1088.55 2756.96 1088.55 6 31.288
RC204 3 3 698.59 698.59 900.77 900.77 2570.87 900.77 6 32.047
RC205 3 3 1083.75 1083.75 1306.6 1306.6 2778.63 1306.6 7 19.358
RC206 3 3 976.03 976.03 1173.48 1173.48 2638.63 1173.48 6 17.975
RC207 3 3 813.77 813.77 990.07 990.07 2516.07 990.07 6 21.461
RC208 3 3 719.52 680.22 885.08 838.41 2236.7 838.41 5 21.349
AVG 7.56 7.54 866.93 864.66 1069.65 1066.8 5156.79 1066.8 9.68 12.93
SUM 423.17 422 48548.28 48421.24 59900.5 59740.69 288780.47 59740.69 542 724.31

265



Table 24: TD-EVRPTW - C2 - travel time - results

Inst. K Kbest tt ttbest d dbest totbest recbest m te

C101 12 12 746.88 746.88 1054.63 1054.63 12838.46 1054.63 8 1.01
C102 11 11 746.71 745.41 1063.01 1064.87 12231.48 1064.87 8 1.633
C103 10 10 744.67 736.76 1039.74 1009.15 11487.17 1009.15 8 1.23
C104 10 10 671.61 665.15 943.32 942.54 11367.25 942.54 8 2.319
C105 11 11 758.36 755.98 1082.89 1071.07 12274.16 1071.07 9 1.259
C106 11 11 744.86 744.86 1060.1 1060.1 12040.27 1060.1 9 1.763
C107 11 11 734.63 734.63 1080.57 1080.57 11690.2 1080.57 9 1.68
C108 10 10 790.63 780.13 1090.99 1075.35 11667.68 1075.35 9 0.908
C109 10 10 739.17 729.91 1037.7 1028.01 11486.7 1028.01 10 0.927
C201 4 4 412.15 412.15 635.92 635.92 10022.69 635.92 4 4.28
C202 4 4 411.5 411.5 635.24 635.24 10238.89 635.24 4 12.776
C203 4 4 408.41 408.41 636.46 636.46 9983.98 636.46 3 13.478
C204 4 4 403.34 402.9 632.61 632.61 10021.21 632.61 3 17.081
C205 4 4 403.35 403.35 635.72 635.72 10073.46 635.72 3 7.572
C206 4 4 403 403 635.04 635.04 10041.16 635.04 3 9.646
C207 4 4 403 403 635.04 635.04 10041.16 635.04 3 11.804
C208 4 4 403 403 635.04 635.04 10041.16 635.04 3 9.911
R101 17 17 1143.32 1143.32 1596.38 1596.38 3602.5 1596.38 27 6.995
R102 14 14 975.02 975.02 1410.75 1410.75 2913.66 1410.75 23 14.117
R103 12 12 797.52 797.52 1212.31 1212.31 2444.49 1212.31 19 16.144
R104 10 10 697.09 697.09 1033.91 1033.91 2050.23 1033.91 14 17.924
R105 13 13 960.62 960.62 1364.95 1364.95 2716.77 1364.95 24 10.1
R106 12 12 905.69 905.69 1319.11 1319.11 2463.68 1319.11 20 16.221
R107 10 10 799.69 799.69 1140.23 1140.23 2163.96 1140.23 17 12.837
R108 10 10 671.39 671.39 1021.42 1021.42 2043.57 1021.42 14 18.533
R109 11 11 895.38 895.38 1263.71 1263.71 2409.85 1263.71 20 7.292
R110 10 10 727.5 727.5 1063.88 1063.88 2111.35 1063.88 15 14.9
R111 10 10 756.94 756.94 1093.63 1093.63 2180.15 1093.63 17 15.968
R112 10 10 689.7 689.7 1025.33 1025.33 2108.1 1025.33 18 20.857
R201 3 3 909.47 909.47 1229.17 1229.17 2891.5 1229.17 6 18.225
R202 3 3 754.64 754.64 1036.47 1036.47 2856.27 1036.47 5 22.483
R203 2 2 712.84 712.84 1008.95 1008.95 1986.94 1008.95 6 31.247
R204 2 2 564.81 564.81 820.06 820.06 1928.53 820.06 4 44.639
R205 2 2 817.47 817.47 1163.95 1163.95 1995.84 1163.95 9 13.235
R206 2 2 716.2 716.2 999.15 999.15 1972.1 999.15 5 33.965
R207 2 2 604.06 596.19 870.54 868.6 1959.65 868.6 5 15.814
R208 2 2 507.69 498.5 764.85 750.02 1774.54 750.02 4 10.224
R209 2 2 685.71 673.38 959.64 939.04 1956.49 939.04 5 6.848
R210 2 2 671.1 669.33 933.86 928.34 1929.11 928.34 5 7.523
R211 2 2 591.07 577.31 845.29 827.37 1784.8 827.37 4 8.227

RC101 14 14 1148.16 1147.71 1623.45 1621.05 3055.51 1621.05 20 12.528
RC102 12 12 1035.54 1032.73 1487.79 1481.34 2617.95 1481.34 17 14.454
RC103 11 11 915.87 915.87 1313.61 1313.61 2425.85 1313.61 13 12.598
RC104 10 10 779.52 779.52 1151.96 1151.96 2109.28 1151.96 12 13.843
RC105 12 12 1006.29 1006.29 1427.48 1427.48 2647.49 1427.48 17 9.846
RC106 12 12 955.85 955.85 1379.67 1379.67 2549.28 1379.67 15 10.585
RC107 11 11 838.32 838.32 1243.34 1243.34 2263.55 1243.34 13 14.272
RC108 10 10 806.31 806.31 1165.66 1165.66 2132.91 1165.66 13 12.726
RC201 3 3 1207.96 1207.96 1614.73 1614.73 2867.02 1614.73 12 16.126
RC202 3 3 973.41 973.41 1340.36 1340.36 2806.29 1340.36 6 29.655
RC203 3 3 745.5 745.5 1054.62 1054.62 2695.87 1054.62 5 36.723
RC204 2 2 738 738 1060.06 1060.06 1902.29 1060.06 8 35.053
RC205 3 3 843.63 843.63 1175.53 1175.53 2627.93 1175.53 9 23.077
RC206 3 3 840.83 831.75 1178.52 1162.1 2647.11 1162.1 6 17.307
RC207 3 3 688.45 683.35 1005.14 998.81 2459.1 998.81 5 22.57
RC208 2 2 702.12 676.65 990.82 949.9 1857.56 949.9 6 16.122
AVG 7.23 7.23 744.75 742.5 1070.08 1066.51 4990.29 1066.51 10.12 13.95
SUM 405 405 41705.95 41579.87 59924.3 59724.31 279456.15 59724.31 567 781.08

266



Table 25: TD-EVRPTW - C3 - travel time - results

Inst. K Kbest tt ttbest d dbest totbest recbest m te

C101 11 11 707.56 705.28 1091.35 1091.35 12443.03 1091.35 11 1.987
C102 11 11 675.71 674.36 1069.21 1063.25 12251.36 1063.25 8 4.026
C103 10 10 692.3 668.12 1056.12 1002.79 11547.78 1002.79 8 3.341
C104 10 10 599.05 578.95 940.44 891.05 11109.03 891.05 7 8.197
C105 11 11 675.76 675.76 1082.16 1082.16 12252.13 1082.16 10 3.104
C106 11 11 674.69 674.1 1078.86 1081.16 12004.8 1081.16 10 4.627
C107 10.5 10 694.11 722.73 1083.15 1090.44 11733.97 1090.44 10 2.624
C108 10 10 719.06 707.58 1087.38 1077.88 11675.66 1077.88 10 1.895
C109 10 10 662.63 638.9 1016.21 980.19 11362.09 980.19 9 3.882
C201 4 4 363.51 363.51 635.92 635.92 9990.98 635.92 4 3.754
C202 4 4 362.87 362.87 635.24 635.24 10208.93 635.24 4 10.609
C203 4 4 358.87 358.87 642.69 642.69 9895.91 642.69 3 12.143
C204 4 4 350.31 349.4 634.71 632.61 9978.01 632.61 3 15.753
C205 4 4 352.7 352.7 635.72 635.72 10051.67 635.72 3 5.433
C206 4 4 352.42 352.42 635.04 635.04 9997.13 635.04 3 7.302
C207 4 4 352.42 352.42 635.04 635.04 9997.13 635.04 3 9.128
C208 4 4 352.42 352.42 635.04 635.04 9997.13 635.04 3 8.225
R101 16.5 16 1049.08 1056.81 1609.96 1617.51 3411.33 1617.51 26 7.081
R102 13.5 13 888.34 909.36 1442.88 1467.93 2747.26 1467.93 26 11.195
R103 11 11 710.7 701.96 1194.67 1173.84 2362.92 1173.84 17 14.122
R104 9.5 9 638.68 669.83 1057.65 1088.47 2021.76 1088.47 15 11.906
R105 13 13 862.28 861.07 1363.36 1363.55 2736.59 1363.55 21 11.514
R106 11.5 11 779.25 789.01 1263.97 1284.63 2290.8 1284.63 19 12.672
R107 10 10 675.63 669.74 1099.96 1098.78 2082.62 1098.78 13 16.509
R108 9 9 585.41 584.85 982.82 974.47 1901.03 974.47 13 20.322
R109 11 11 740.67 739.46 1185.58 1192.02 2330.9 1192.02 17 15.952
R110 10 10 653.43 652.95 1078.51 1088.84 2050.41 1088.84 16 17.702
R111 10 10 663.88 662.07 1086.28 1075.8 2130 1075.8 17 13.221
R112 10 10 588.33 586.27 1031.97 1043.87 1949.77 1043.87 20 26.257
R201 3 3 838.45 836.97 1231.26 1226.75 2891.5 1226.75 6 18.652
R202 3 3 691.07 685.41 1057.02 1035.94 2856.27 1035.94 5 29.368
R203 2 2 634.8 632.22 1006.35 999.61 1985.39 999.61 6 42.337
R204 2 2 496.19 495.34 813.93 822.02 1929.12 822.02 4 33.212
R205 2 2 703.11 696.77 1080.49 1070.04 1979.96 1070.04 6 13.644
R206 2 2 645.4 644.77 1007.68 996.08 1973.53 996.08 5 24.771
R207 2 2 537.18 534.03 878.83 872.97 1901.63 872.97 3 28.446
R208 2 2 440.06 440.06 756.68 756.68 1720.03 756.68 5 35.56
R209 2 2 621.01 621.01 971.28 971.28 1884.11 971.28 8 35.91
R210 2 2 610.92 604.96 956.82 944.07 1921.17 944.07 6 6.664
R211 2 2 515.02 508.55 844.93 821.1 1748.22 821.1 4 6.839

RC101 13.33 13 1022.37 1026.96 1614.5 1613.63 2858.64 1613.63 23 8.852
RC102 11.67 11 932.33 988.18 1505.66 1563.11 2492.91 1563.11 19 11.259
RC103 10.33 10 812.39 819.97 1318.85 1316.18 2211.93 1316.18 14 11.885
RC104 10 10 667.77 663.48 1144.14 1140.35 1969.77 1140.35 13 16.539
RC105 12 12 896.46 895.41 1412.69 1406.93 2603.24 1406.93 17 11.075
RC106 11.33 11 852.05 856.43 1363.36 1362.88 2391.01 1362.88 17 10.197
RC107 10 10 743.5 742.08 1218.92 1226.45 2171.93 1226.45 18 11.506
RC108 10 10 706.69 698.78 1185.78 1188.71 2022.38 1188.71 15 20.392
RC201 3 3 1121.03 1118.93 1645.91 1642.73 2867.38 1642.73 12 15.669
RC202 3 3 877.34 875.07 1349.35 1343.47 2780.53 1343.47 6 28.418
RC203 3 3 681.76 678.96 1062.41 1056.02 2695.87 1056.02 6 28.945
RC204 2 2 641.42 610.89 1034.96 989.84 1892.92 989.84 6 41.154
RC205 3 3 775.93 760.26 1214.71 1168.8 2651.69 1168.8 6 24.176
RC206 3 3 762.67 757.95 1176.75 1158.13 2647.76 1158.13 6 16.572
RC207 2 2 714.08 699.62 1134.94 1135.2 1853.02 1135.2 6 21.058
RC208 2 2 581.82 577.43 950.62 937.4 1769.29 937.4 7 31.555
AVG 7.06 6.98 666.16 665.08 1070.19 1065.78 4913.99 1065.78 10.32 15.52
SUM 395.16 391 37304.89 37244.26 59930.71 59683.65 275183.33 59683.65 578 869.14

267



Table 26: TD-EVRPTW - D1 - travel time - results

Inst. K Kbest tt ttbest d dbest totbest recbest m te

C101 12 12 887.06 887.06 1061.15 1061.15 13321.75 1061.15 8 2.393
C102 11 11 880.83 874.29 1062.75 1050.07 12549.25 1050.07 8 4.572
C103 10.29 10 855.26 843.58 1040.38 1026.07 11812.49 1026.07 9 4.528
C104 10 10 792.55 778.46 977.01 961.99 11798.24 961.99 8 7.762
C105 11 11 901.11 901.11 1063.64 1063.64 12136.64 1063.64 9 2.593
C106 11 11 887.56 886.8 1064.6 1065.62 12343.42 1065.62 8 3.949
C107 10.71 10 893.05 920.68 1075.35 1110.65 11650.98 1110.65 10 3.516
C108 10.57 10 874.25 906.3 1055.41 1098.51 11753.54 1098.51 12 3.521
C109 10 10 834.65 824.99 1010.24 1001.85 11795.67 1001.85 10 4.576
C201 4 4 566.63 566.63 633.98 633.98 10209.7 633.98 4 3.568
C202 4 4 565.33 565.33 636.06 636.06 10520.35 636.06 4 11.608
C203 4 4 570.33 570.09 636.6 636.06 10472.49 636.06 4 16.56
C204 4 4 576.89 567.04 655.25 630.55 10335.15 630.55 4 22.07
C205 4 4 569.09 569.09 637.84 637.84 10223.96 637.84 3 5.514
C206 4 4 569.27 569.27 631.83 631.83 10382.02 631.83 5 8.467
C207 4 4 569.27 569.27 631.83 631.83 10382.02 631.83 5 10.643
C208 4 4 567.56 567.56 635.68 635.68 10550.11 635.68 5 9.354
R101 17 17 1431.82 1430.77 1678.07 1684.01 3497.7 1684.01 26 6.672
R102 16 16 1245.56 1239.69 1465.12 1452.96 3210.75 1452.96 21 12.512
R103 13 13 1070.89 1047.02 1278.09 1251.28 2771.49 1251.28 16 13.106
R104 11 11 890.73 885.36 1067.63 1059.74 2328.4 1059.74 13 18.556
R105 14 14 1148.56 1148.56 1363.37 1363.37 2814.09 1363.37 19 10.319
R106 13 13 1067.25 1062.57 1278.18 1269.63 2705.23 1269.63 18 17.275
R107 11 11 928.38 919.8 1134.08 1126.47 2392.74 1126.47 15 17.234
R108 11 11 864.31 863.9 1057.42 1063.71 2380.5 1063.71 14 25.622
R109 12 12 984.45 976.62 1204.28 1197.93 2594.96 1197.93 15 14.38
R110 11 11 890.53 882.43 1087.54 1082.68 2329.01 1082.68 13 21.59
R111 11 11 884.57 875.85 1088.74 1080.01 2356.98 1080.01 13 15.214
R112 11 11 822.3 818.54 1038.88 1035.95 2381.28 1035.95 13 18.62
R201 3 3 1032.75 1032.71 1240.05 1240.09 2778.25 1240.09 7 21.62
R202 3 3 856.56 856.56 1048.23 1048.23 2885.63 1048.23 3 28.993
R203 3 3 722.91 722.15 899.66 900.87 2873.25 900.87 3 27.649
R204 2 2 619.86 609.35 783.24 775.64 1959.66 775.64 4 33.917
R205 3 3 826.83 819.19 1001.84 992.9 2632.44 992.9 4 15.394
R206 2 2 850.82 838.04 1035.09 1022.7 1984.29 1022.7 7 19.774
R207 2 2 693.77 692.7 854.99 850.53 1965.12 850.53 2 28.595
R208 2 2 591.05 591.05 744.35 744.35 1973.28 744.35 3 30.662
R209 2 2 762.99 762.99 944.56 944.56 1970.21 944.56 6 25.298
R210 2 2 749.75 721.76 926.04 881.53 1882.66 881.53 5 6.214
R211 2 2 683.03 667.08 845.69 839.4 1964.18 839.4 3 7.011

RC101 15 15 1415.78 1403.24 1690.84 1682.23 3178.8 1682.23 21 7.063
RC102 13 13 1322.93 1318.7 1590.69 1569.88 2810.52 1569.88 19 7.873
RC103 12 12 1126.69 1124.85 1367.66 1378.09 2704.54 1378.09 16 10.365
RC104 10.67 10 967.52 959.1 1173.74 1162.17 2248.21 1162.17 14 12.895
RC105 13 13 1211.13 1197.62 1453.66 1438.05 2793.92 1438.05 15 10.29
RC106 12 12 1166.09 1163.33 1408.18 1400.96 2568.6 1400.96 14 7.23
RC107 11 11 1012.28 1007.24 1235.41 1224.35 2479.87 1224.35 14 12.377
RC108 10.67 10 965.61 973.17 1185.89 1190.81 2281.54 1190.81 12 12.347
RC201 4 4 1194.71 1191.44 1429.51 1423.15 3553.56 1423.15 6 12.28
RC202 3 3 1154.41 1150.28 1386.23 1383.84 2733.52 1383.84 5 31.245
RC203 3 3 876.61 874.07 1060.41 1066.32 2764.25 1066.32 5 37.829
RC204 3 3 731.76 724.84 899.63 888.14 2682.33 888.14 5 31.952
RC205 3 3 1077.37 1062.59 1266.61 1242.02 2589.94 1242.02 7 21.526
RC206 3 3 1021.63 1005.1 1221.58 1196.74 2496.37 1196.74 4 20.637
RC207 3 3 833.73 826.94 1006.15 995.82 2474.76 995.82 4 22.402
RC208 3 3 697.16 692.33 855.04 853.81 2433.82 853.81 6 28.083
AVG 7.64 7.59 888.5 884.06 1067.96 1062.83 5208.29 1062.83 9.39 15.14
SUM 427.91 425 49755.77 49507.08 59805.97 59518.3 291664.43 59518.3 526 847.82

268



Table 27: TD-EVRPTW - D2 - travel time - results

Inst. K Kbest tt ttbest d dbest totbest recbest m te

C101 12 12 804.61 804.61 1059.78 1059.78 13292.38 1059.78 9 2.706
C102 11 11 789.77 785.22 1070.34 1050.03 12475.67 1050.03 9 4.795
C103 10 10 775.01 767.15 1058 1043.38 11748.77 1043.38 9 3.814
C104 10 10 696.54 690.8 952.32 940.25 11786.45 940.25 9 7.57
C105 11 11 800.5 800.5 1078.47 1078.47 12269.68 1078.47 10 3.6
C106 11 11 796.09 794.26 1058.18 1062.77 12263.69 1062.77 10 4.204
C107 10.5 10 797.9 807.72 1087.2 1118.59 11668.61 1118.59 11 2.811
C108 10.75 10 768.17 791.61 1042.11 1083.92 11669.68 1083.92 11 4.449
C109 10 10 747.71 738.34 1016.8 999.2 11683.26 999.2 10 3.94
C201 4 4 509.33 509.33 633.98 633.98 10152.4 633.98 4 3.506
C202 4 4 505.84 505.84 637.37 637.37 10492.04 637.37 4 9.592
C203 4 4 517.43 512.6 647.58 634.61 10344.94 634.61 4 12.75
C204 4 4 514.46 514.46 669.36 669.36 11779.13 669.36 4 13.632
C205 4 4 510.44 510.44 633.98 633.98 10165.73 633.98 5 6.98
C206 4 4 507.94 507.94 634.15 634.15 10323.71 634.15 6 7.893
C207 4 4 509.85 509.85 632.84 632.84 10322.6 632.84 5 9.182
C208 4 4 507.94 507.94 634.15 634.15 10323.71 634.15 6 8.825
R101 17 17 1238.18 1219.49 1636.25 1615.6 3396.65 1615.6 23 8.344
R102 15 15 1056.03 1049.54 1408.99 1410.33 3045.82 1410.33 20 7.572
R103 12 12 896.2 888.65 1208.76 1205.57 2486.62 1205.57 17 9.425
R104 10 10 785.79 777.47 1096.41 1088 2154.04 1088 15 12.446
R105 13 13 1011.37 1002.7 1381.4 1374.92 2623.53 1374.92 21 5.949
R106 12 12 906.94 901.71 1259.74 1253.12 2527.75 1253.12 20 12.339
R107 10 10 802.16 799.38 1137.51 1135.64 2162.99 1135.64 15 5.643
R108 10 10 735.74 735.74 1036.35 1036.35 2126.67 1036.35 14 19.24
R109 11 11 825.42 825.42 1176.29 1176.29 2347.67 1176.29 17 7.874
R110 11 11 736.95 736.95 1083.07 1083.07 2356.72 1083.07 16 17.431
R111 10 10 770.19 770.19 1089.87 1089.87 2165.2 1089.87 16 5.173
R112 10 10 679.63 679.63 991.55 991.55 2179.97 991.55 12 12.799
R201 3 3 878.93 878.93 1211.63 1211.63 2735.79 1211.63 6 17.059
R202 3 3 747.46 747.46 1047.21 1047.21 2846.29 1047.21 3 26.361
R203 2 2 753.35 753.35 1056.1 1056.1 1990.59 1056.1 7 35.47
R204 2 2 538.68 538.68 806.75 806.75 1985.4 806.75 3 23.814
R205 2 2 769.45 769.45 1075.63 1075.63 1925.24 1075.63 7 9.977
R206 2 2 725.9 725.9 1023.35 1023.35 1945.02 1023.35 6 23.748
R207 2 2 599.42 599.42 860.6 860.6 1891.08 860.6 3 24.096
R208 2 2 507.77 507.77 760.12 760.12 1956.59 760.12 3 25.188
R209 2 2 643.37 643.37 915.04 915.04 1947.14 915.04 7 25.692
R210 2 2 646.88 646.88 945.41 945.41 1961.25 945.41 6 22.992
R211 2 2 567.82 567.82 837.15 837.15 1864.63 837.15 2 16.31

RC101 14 14 1177.8 1171.84 1598.62 1585.35 2786.13 1585.35 19 8.874
RC102 12.5 12 1107.34 1146.43 1537.81 1615.91 2671.32 1615.91 19 11.509
RC103 11 11 979.55 978.43 1378.54 1383.18 2450.04 1383.18 16 8.13
RC104 10 10 816.68 815.98 1146.5 1140.02 2238.11 1140.02 14 12.554
RC105 12 12 1051.23 1047.65 1447.05 1449.62 2606.84 1449.62 16 7.462
RC106 12 12 970.18 965.36 1357.88 1346.69 2525.36 1346.69 16 12.656
RC107 11 11 860.71 859.56 1219.75 1233.64 2428.87 1233.64 15 17.105
RC108 10 10 836.28 820.36 1183.45 1172.86 2211.67 1172.86 14 10.978
RC201 3 3 1180.43 1159.88 1610.27 1585.36 2677.63 1585.36 9 13.222
RC202 3 3 968.48 966.52 1357.27 1356.2 2728.85 1356.2 5 21.134
RC203 3 3 752.22 748.35 1062.55 1045.02 2600.5 1045.02 5 25.534
RC204 3 3 652.03 652.03 923.32 923.32 2720.36 923.32 5 31.27
RC205 3 3 878.65 878.65 1199.59 1199.59 2573.95 1199.59 8 24.221
RC206 3 3 880.75 880.75 1233.09 1233.09 2472.11 1233.09 5 20.463
RC207 3 3 678.09 678.09 990.99 990.99 2460.75 990.99 5 26.39
RC208 2 2 674.46 674.46 969.87 969.87 1854.11 969.87 6 25.681
AVG 7.3 7.27 774.07 772.66 1068.01 1067.44 5096.28 1067.44 10.04 13.61
SUM 408.75 407 43348.04 43268.85 59808.34 59776.84 285391.7 59776.84 562 762.37
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Table 28: TD-EVRPTW - D3 - travel time - results

Inst. K Kbest tt ttbest d dbest totbest recbest m te

C101 12 12 750.92 750.92 1059.78 1059.78 13255.52 1059.78 9 1.526
C102 11 11 727.39 720.58 1068.31 1071.75 12810.3 1071.75 8 2.89
C103 10 10 712.68 703.72 1062.5 1049.78 11664.44 1049.78 8 2.751
C104 10 10 639.29 623.07 950.96 912.82 11672.81 912.82 7 5.05
C105 11 11 739.75 739.72 1079.76 1078.47 12222.6 1078.47 10 1.909
C106 10.88 10 741.61 770.94 1087.82 1180.32 11755.3 1180.32 10 2.312
C107 10.38 10 735.01 738.02 1099.4 1118.52 11613.37 1118.52 10 1.756
C108 10.12 10 728.9 716.81 1091.19 1085.91 11947.44 1085.91 12 1.56
C109 10 10 691.31 681.87 1043.41 1014.67 11590.43 1014.67 9 2.673
C201 4 4 482.12 482.12 633.98 633.98 10125.2 633.98 4 2.264
C202 4 4 477.05 477.05 637.37 637.37 10469.98 637.37 4 7.331
C203 4 4 487.59 483.89 655.49 642.12 11206.59 642.12 4 9.946
C204 4 4 477.14 477.14 678.73 678.73 11832.49 678.73 5 12.084
C205 4 4 481.53 481.53 633.98 633.98 10136.81 633.98 5 4.172
C206 4 4 478.27 478.27 634.15 634.15 10294.03 634.15 6 5.484
C207 4 4 481.09 481.09 632.84 632.84 10293.84 632.84 5 6.908
C208 4 4 478.22 478.22 638.01 638.01 10463.78 638.01 6 6.277
R101 16 16 1144.76 1143.47 1621.49 1611.89 3126.59 1611.89 26 7.572
R102 14.5 14 969.79 972.78 1414.94 1419.47 2859.98 1419.47 22 6.454
R103 11 11 820.13 818.23 1232.27 1230.21 2343.59 1230.21 19 4.198
R104 10 10 685.26 679.82 1085.02 1072.76 2156.33 1072.76 13 14.516
R105 12.5 12 912.97 922.37 1354.32 1360.82 2494.57 1360.82 24 6.637
R106 11 11 836.05 827.69 1265.29 1257.12 2337.2 1257.12 18 7.202
R107 10 10 716.65 715.48 1130.32 1143.07 2167.6 1143.07 17 9.385
R108 9.5 9 654.93 669.24 1035.17 1042.51 1958.66 1042.51 16 12.89
R109 10.5 10 750.61 768.22 1182.21 1198.58 2190.05 1198.58 19 7.416
R110 10 10 659.37 657.83 1084.4 1081.06 2145.54 1081.06 17 12.213
R111 10 10 644.79 642.51 1045.3 1033.07 2109.55 1033.07 14 13.388
R112 10 10 592.49 590.26 1025.73 1031.17 2171.81 1031.17 16 10.712
R201 3 3 804.94 801.38 1211.87 1206.15 2741.93 1206.15 7 12.511
R202 3 3 676.28 675.84 1051.37 1050.68 2774.97 1050.68 3 17.316
R203 2 2 666.85 665.12 1033.74 1029.64 1982.97 1029.64 7 25.703
R204 2 2 466.79 464.3 778.51 786.59 1989.56 786.59 3 30.138
R205 2 2 689.59 689.57 1052.07 1051.75 1844.86 1051.75 8 10.827
R206 2 2 631.03 626.01 997.67 991.37 1945.43 991.37 7 18.63
R207 2 2 536.65 535.61 885.72 887.33 1977.71 887.33 3 21.699
R208 2 2 452.66 438.3 763.79 775.03 1990.85 775.03 4 26.29
R209 2 2 572.42 572.42 945.96 945.96 1907.22 945.96 7 22.089
R210 2 2 551.25 551.25 884.04 884.04 1863.56 884.04 5 17.125
R211 2 2 500.89 500.89 859 859 1898.68 859 3 23.407

RC101 13.67 13 1105.01 1146.49 1646.95 1711.1 2695.34 1711.1 24 4.714
RC102 12 12 991.57 983.29 1522.42 1508.36 2545.92 1508.36 19 7.608
RC103 11 11 842.44 840.31 1325.91 1299.95 2359.44 1299.95 16 9.925
RC104 10 10 736.15 728.24 1137.88 1121.88 2172.07 1121.88 13 10.45
RC105 12 12 925.91 923.3 1403.63 1386.86 2522.36 1386.86 16 4.774
RC106 11 11 875.56 873.57 1361.91 1345.48 2361.17 1345.48 16 6.667
RC107 10 10 771.09 756.58 1204.37 1177.67 2203.95 1177.67 13 7.657
RC108 10 10 720.61 709.94 1153.51 1156.67 2269.77 1156.67 13 9.933
RC201 3 3 1106.94 1086.53 1648.83 1618.94 2699.36 1618.94 8 9.385
RC202 3 3 879.35 871.79 1344.01 1327.3 2624.11 1327.3 6 20.581
RC203 3 3 686.9 682.97 1074.8 1059.19 2645.72 1059.19 4 19.763
RC204 2 2 658.62 640.94 1046.98 1025.69 1904.64 1025.69 8 28.281
RC205 3 3 787.57 782.77 1177.01 1160.6 2533.72 1160.6 7 16.42
RC206 3 3 785.32 779.69 1197.58 1177.54 2435.78 1177.54 6 13.683
RC207 2 2 690.61 686.34 1096.46 1082.73 1835.69 1082.73 8 18.378
RC208 2 2 571.27 563.51 925.33 901.88 1795.08 901.88 6 20.42
AVG 7.09 7.02 703.25 701.25 1069.56 1066.33 5034.61 1066.33 10.41 11.14
SUM 397.05 393 39381.94 39269.81 59895.46 59714.31 281938.26 59714.31 583 623.85
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E TD-EVRPTW-FR total time

Table 29: TD-EVRPTW-FR - A1 - total time - results

Inst. K Kbest tot totbest d dbest ttbest recbest m te

C101 12 12 11930.7 11930.7 1186.57 1186.57 1010.25 1186.57 10 4.593
C102 11 11 11718.59 11718.59 1129.32 1129.32 963.7 1129.32 10 9.037
C103 10 10 11330.53 11330.53 1128.28 1128.28 956.57 1128.28 10 25.619
C104 10 10 10883.74 10883.74 1013.98 1013.98 853.98 1013.98 8 20.364
C105 11 11 11477.08 11477.08 1155.38 1155.38 989.63 1155.38 9 7.202
C106 11 11 11414.47 11414.47 1170.23 1170.23 981.11 1170.23 10 9.318
C107 11 11 11206.17 11206.17 1141.66 1141.66 961.76 1141.66 9 10.427
C108 10 10 11403.65 11403.65 1124.37 1124.37 962.9 1124.37 10 5.36
C109 10 10 11086.9 11086.9 1076.05 1076.05 916.62 1076.05 9 2.765
C201 4 4 10038.62 10038.62 642.33 642.33 533.27 642.33 3 6.532
C202 4 4 10022.75 10022.75 662.08 662.08 547.53 662.08 4 23.636
C203 4 4 10018.65 10016.48 660.7 659.67 547.53 659.67 4 37.355
C204 4 4 9970.21 9969.38 638.93 638.66 527.85 638.66 3 38.187
C205 4 4 9981.08 9981.08 640.27 640.27 534.43 640.27 3 11.444
C206 4 4 9960.86 9960.86 644.77 644.77 539.79 644.77 3 14.592
C207 4 4 9978.83 9960.86 650.4 644.77 539.79 644.77 3 19.13
C208 4 4 9960.86 9960.86 644.77 644.77 539.79 644.77 3 16.758
R101 16 16 3217.25 3217.25 1804.78 1804.78 1498.14 1804.78 31 13.615
R102 16 16 2967.44 2967.44 1669.55 1669.55 1381.05 1669.55 28 18.756
R103 12 12 2514 2514 1365.47 1365.47 1126.12 1365.47 23 20.98
R104 11 11 2162.74 2162.74 1120.25 1120.25 926.22 1120.25 13 19.776
R105 13 13 2661.99 2661.99 1494.3 1494.3 1230.59 1494.3 27 9.761
R106 12 12 2440.44 2440.44 1318.5 1318.5 1091.01 1318.5 19 10.265
R107 11 11 2263.4 2263.4 1217.24 1217.24 987.82 1217.24 13 17.284
R108 10 10 2083.58 2083.58 1043.83 1043.83 868.53 1043.83 15 20.768
R109 12 12 2353.66 2353.66 1276.56 1276.56 1033.92 1276.56 17 20.579
R110 11 11 2135.72 2135.72 1123.56 1123.56 910.03 1123.56 15 20.85
R111 11 11 2194.26 2194.26 1147.64 1147.64 928.39 1147.64 19 18.655
R112 10 10 2076.02 2076.02 1045.14 1045.14 855.22 1045.14 13 21.14
R201 3 3 2807.51 2795.97 1602.37 1750.4 1416.75 1750.4 11 23.018
R202 3 3 2412.62 2233.42 1462.36 1346.02 1124.34 1346.02 7 27.218
R203 3 3 2068.03 2050.86 1139.85 1133.92 933.4 1133.92 7 54.065
R204 2 2 1834.67 1832.78 941.36 938.21 757.87 938.21 3 43.134
R205 3 3 2182.05 2064.77 1262.53 1149.28 951.66 1149.28 9 25.622
R206 2 2 1966.85 1947.14 1033.39 1018.2 827.75 1018.2 8 26.762
R207 2 2 1759.68 1752.58 909.8 898.83 705.94 898.83 2 37.234
R208 2 2 1650.88 1644.49 771.59 760.32 597.27 760.32 2 46.524
R209 2 2 1886.79 1877.83 959.32 949.99 777.88 949.99 8 31.874
R210 2 2 1877.55 1874.67 956.95 962.8 769.12 962.8 7 35.058
R211 2 2 1715 1709.62 853.78 850.21 672.37 850.21 4 31

RC101 14 14 2939.69 2939.69 1791.53 1791.53 1479.28 1791.53 22 8.306
RC102 13 13 2683.62 2683.62 1688.53 1688.53 1371.16 1688.53 22 18.866
RC103 12 12 2580.57 2580.57 1532.43 1532.43 1251.95 1532.43 20 14.047
RC104 10 10 2191.56 2191.56 1261.33 1261.33 1008.9 1261.33 14 19.145
RC105 13 13 2573.19 2573.19 1563.64 1563.64 1248.61 1563.64 17 13.828
RC106 12 12 2418.28 2418.28 1438.67 1438.67 1158.81 1438.67 14 14.851
RC107 11 11 2239.78 2239.78 1284.34 1284.34 1027.92 1284.34 13 18.888
RC108 10 10 2164.18 2164.18 1239.72 1239.72 975.04 1239.72 14 21.304
RC201 3 3 2790.05 2789.66 1875.89 1914.92 1563.09 1914.92 12 21.722
RC202 3 3 2689.29 2689.18 1884.51 1890.6 1524.83 1890.6 8 42.575
RC203 3 3 2234.96 2208.95 1371.11 1348.94 1101.37 1348.94 10 55.81
RC204 3 3 2013.93 1973.29 1096.43 1040.54 849.08 1040.54 7 69.484
RC205 3 3 2515.01 2509.24 1567.12 1560.6 1280.46 1560.6 7 38.101
RC206 3 3 2424.24 2412.95 1570.32 1531.73 1254.9 1531.73 9 32.592
RC207 3 3 2113.18 2092.67 1256.74 1242.41 991.3 1242.41 10 42.764
RC208 3 3 1935.49 1929.59 1045.56 1051.48 821.06 1051.48 9 51.388
AVG 7.46 7.46 4859.34 4850.25 1183.89 1179.81 967.6 1179.81 11.07 23.93
SUM 418 418 272122.84 271613.75 66298.08 66069.57 54185.65 66069.57 620 1339.93

271



Table 30: TD-EVRPTW-FR - B1 - total time - results

Inst. K Kbest tot totbest d dbest ttbest recbest m te

C101 12 12 12000.92 11812.1 1282.87 1239.6 979.66 1239.6 10 5.02
C102 11 11 11631.35 11617.76 1222.4 1261.58 1007.78 1261.58 11 10.397
C103 10 10 11057.56 11053.37 1064.42 1060.17 819.64 1060.17 7 11.338
C104 10 10 10611.25 10611.25 995.13 995.13 765.56 995.13 7 15.33
C105 11 11 11473.53 11473.53 1210.37 1210.37 959.34 1210.37 9 7.711
C106 11 11 11435.42 11435.42 1199.35 1199.35 941.61 1199.35 10 11.601
C107 11 11 11188.5 11188.5 1120.63 1120.63 895.46 1120.63 7 10.028
C108 10 10 11485.22 11485.22 1126.12 1126.12 876.04 1126.12 10 6.435
C109 10 10 10985.5 10985.5 1059.86 1059.86 833.3 1059.86 9 9.214
C201 4 4 10068.2 10068.2 642.33 642.33 538.74 642.33 3 6.861
C202 4 4 10060.58 10060.58 662.08 662.08 561.25 662.08 4 23.608
C203 4 4 10032.67 10032.67 648.11 648.11 546.3 648.11 3 37.773
C204 4 4 9988.99 9988.99 641.17 641.17 538.56 641.17 3 38.901
C205 4 4 10008.68 10008.68 640.69 640.69 537.82 640.69 3 11.88
C206 4 4 9994.56 9994.56 639.76 639.76 530.84 639.76 3 15.048
C207 4 4 9999.94 9999.94 648.19 648.19 547.79 648.19 3 18.536
C208 4 4 9987.81 9987.81 647.95 647.95 541.24 647.95 3 17.928
R101 17 17 3391.71 3391.71 1889.17 1889.17 1537.6 1889.17 32 9.271
R102 15 15 2919.91 2919.91 1623.1 1623.1 1317.7 1623.1 29 20.989
R103 13 13 2497.19 2497.19 1364.47 1364.47 1108.3 1364.47 18 28.423
R104 10 10 2115.73 2115.73 1086.94 1086.94 877.3 1086.94 14 27.643
R105 14 14 2894.48 2894.48 1574.98 1574.98 1265.14 1574.98 28 10.577
R106 13 13 2515.68 2515.68 1411.96 1411.96 1152.98 1411.96 19 16.009
R107 11 11 2199.71 2199.71 1176.84 1176.84 949.51 1176.84 13 16.439
R108 10 10 2072.07 2072.07 1037.97 1037.97 830.45 1037.97 13 23.765
R109 12 12 2395.99 2395.99 1316.34 1316.34 1062.92 1316.34 22 20.695
R110 11 11 2231.03 2231.03 1171.81 1171.81 951.7 1171.81 18 24.346
R111 11 11 2278.4 2278.4 1192.79 1192.79 968.93 1192.79 18 15.103
R112 10 10 2122.09 2122.09 1082 1082 869.28 1082 15 17.972
R201 3 3 2736.82 2736.82 1686.12 1755.25 1442.55 1755.25 9 26.632
R202 3 3 2082.46 2078.11 1221.53 1228.08 972.6 1228.08 5 37.862
R203 2 2 1922.87 1921.33 1018.93 1018.47 814.64 1018.47 5 50.34
R204 2 2 1781.28 1780.8 888.46 892.56 728.5 892.56 3 56.885
R205 3 3 2220.7 2114.51 1316.86 1241.31 972.48 1241.31 7 22.404
R206 2 2 1960.02 1956.93 1045.37 1043.11 838.51 1043.11 8 25.289
R207 2 2 1775.34 1773.66 882.14 881.85 734.01 881.85 2 46.226
R208 2 2 1674 1669.51 760.97 755.65 623.19 755.65 4 53.336
R209 2 2 1895.32 1894.4 962.87 967.21 782.23 967.21 8 35.552
R210 2 2 1895.59 1881.82 963.43 942.41 770.88 942.41 5 41.042
R211 2 2 1760.13 1760.13 843.36 843.07 706.36 843.07 4 41.835

RC101 15 15 3073.38 3073.38 1915.55 1915.55 1558.02 1915.55 27 11.83
RC102 14 14 2728.99 2728.99 1676.8 1676.8 1358.18 1676.8 21 18.036
RC103 12 12 2500.32 2500.32 1490.13 1490.13 1205.79 1490.13 18 12.852
RC104 10 10 2188.18 2188.18 1222.95 1222.95 971.51 1222.95 14 12.778
RC105 13 13 2702.57 2702.57 1591.14 1591.14 1299.8 1591.14 20 14.142
RC106 12 12 2539.39 2539.39 1460.61 1460.61 1191.64 1460.61 16 11.326
RC107 11 11 2310.44 2310.44 1313.88 1313.88 1056.04 1313.88 15 16.195
RC108 11 11 2227.88 2227.88 1239.75 1239.75 1004.93 1239.75 15 21.074
RC201 3 3 2719.68 2706.29 1802.04 1789.54 1472.47 1789.54 13 17.271
RC202 3 3 2493.24 2481.52 1658.1 1638.11 1333.46 1638.11 7 37.798
RC203 3 3 2197.75 2183.5 1345.61 1330.23 1066.59 1330.23 5 55.795
RC204 3 3 1994.28 1973.27 1071.41 1051.19 857.25 1051.19 6 67.972
RC205 3 3 2490.31 2439.3 1575.42 1545.58 1251.19 1545.58 8 28.199
RC206 3 3 2418.7 2386.36 1533.11 1514.74 1228.25 1514.74 11 29.485
RC207 3 3 2126 2109.82 1264.36 1249.5 996.1 1249.5 7 42.188
RC208 3 3 1929.31 1915.43 1011.33 992.11 794.96 992.11 6 48.108
AVG 7.54 7.54 4856.96 4847.73 1181.11 1177.9 952.59 1177.9 10.95 24.49
SUM 422 422 271989.62 271472.73 66142.03 65962.24 53344.87 65962.24 613 1371.29
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Table 31: TD-EVRPTW-FR - C1 - total time - results

Inst. K Kbest tot totbest d dbest ttbest recbest m te

C101 12 12 11935.22 11890.4 1262.03 1255.28 1016.06 1255.28 10 4.927
C102 11 11 11643.46 11585.67 1175.99 1137.17 915.47 1137.17 10 8.82
C103 10 10 11112.28 11109.7 1066.95 1066.8 862.62 1066.8 8 11.97
C104 10 10 10746.21 10686.23 993.83 957.85 779.33 957.85 6 13.902
C105 11 11 11518.5 11518.5 1208.21 1208.21 995.88 1208.21 9 6.246
C106 11 11 11414.52 11414.52 1205.37 1205.37 971.18 1205.37 9 8.796
C107 11 11 11182.6 11182.6 1111.88 1111.88 893.45 1111.88 8 10.079
C108 10 10 11346.18 11346.18 1097.44 1097.44 908.91 1097.44 9 10.973
C109 10 10 10956.79 10956.79 1064.5 1064.5 872.77 1064.5 9 9.365
C201 4 4 10030.12 10030.12 642.33 642.33 500.66 642.33 3 6.899
C202 4 4 10014 10014 662.08 662.08 514.66 662.08 4 23.956
C203 4 4 9990.46 9990.46 648.11 648.11 504.08 648.11 3 38.36
C204 4 4 9951.6 9951.6 648.34 648.34 502.47 648.34 3 38.796
C205 4 4 9965.61 9965.61 640.69 640.69 494.74 640.69 3 11.982
C206 4 4 9944.61 9944.61 645.2 645.2 499.33 645.2 3 15.185
C207 4 4 9953.35 9953.35 648.19 648.19 501.2 648.19 3 18.277
C208 4 4 9944.61 9944.61 645.2 645.2 499.33 645.2 3 17.479
R101 17 17 3536.49 3536.49 1858.72 1858.72 1512.66 1858.72 32 12.05
R102 15 15 2957.79 2957.79 1649.02 1649.02 1312.91 1649.02 26 18.305
R103 13 13 2483.25 2483.25 1415.09 1415.09 1109.86 1415.09 22 25.955
R104 10 10 2092.32 2092.32 1068.51 1068.51 859.74 1068.51 13 23.307
R105 13 13 2756.94 2756.94 1493.57 1493.57 1203.49 1493.57 30 9.16
R106 13 13 2541.33 2541.33 1415.31 1415.31 1135.91 1415.31 19 16.83
R107 11 11 2250.5 2250.5 1195.54 1195.54 973.63 1195.54 14 14.595
R108 10 10 2054.72 2054.72 1035.02 1035.02 825.44 1035.02 14 23.391
R109 12 12 2420.4 2420.4 1302.01 1302.01 1040.53 1302.01 23 20.479
R110 11 11 2191.62 2191.62 1178.86 1178.86 931.95 1178.86 15 22.933
R111 11 11 2238.69 2238.69 1170.16 1170.16 929.65 1170.16 18 16.864
R112 10 10 2108.37 2108.37 1060.45 1060.45 844.95 1060.45 17 23.932
R201 3 3 2849.53 2826.55 1854.83 1791.53 1449.71 1791.53 13 22.93
R202 3 3 2739.8 2739.8 1634.36 1858.08 1478.11 1858.08 6 27.018
R203 2.5 2 2030.94 1983.56 1119.3 1058.64 867.9 1058.64 7 37.648
R204 2 2 1837.91 1833.52 942.41 938.71 772.85 938.71 3 34.873
R205 3 3 2524.48 2423.78 1659.38 1559.94 1203.56 1559.94 10 17.358
R206 2 2 1978.71 1966.59 1045.14 1031.27 848 1031.27 7 15.699
R207 2 2 1792.32 1788.6 913.55 905.19 745.19 905.19 4 27.86
R208 2 2 1667.45 1666.72 769.46 770.58 615.65 770.58 2 34.115
R209 2 2 1929.52 1916.91 983.86 970.83 799.67 970.83 6 26.785
R210 2 2 1923.94 1912.11 983.37 973.73 795 973.73 6 25.755
R211 2 2 1758.82 1747.61 881.56 867.67 697.64 867.67 3 22.73

RC101 15 15 3091.84 3091.84 1933.29 1933.29 1541.14 1933.29 27 11.14
RC102 14 14 2733.08 2733.08 1739.14 1739.14 1378.55 1739.14 20 20.053
RC103 12 12 2427.88 2427.88 1451.35 1451.35 1157.81 1451.35 14 17.27
RC104 10 10 2183.07 2183.07 1218.19 1218.19 983.78 1218.19 13 18.514
RC105 13 13 2669.88 2669.88 1607.97 1607.97 1290.22 1607.97 19 15.684
RC106 12 12 2515.73 2515.73 1455.87 1455.87 1167.17 1455.87 16 12.84
RC107 11 11 2287.53 2287.53 1278.86 1278.86 1025.41 1278.86 14 18.158
RC108 11 11 2211.47 2211.47 1234.58 1234.58 985.03 1234.58 13 18.897
RC201 3.6 3 3259.92 2861.18 2301.8 1958.42 1606.53 1958.42 14 14.816
RC202 3 3 2704.89 2704.75 1889.67 1894.3 1535.85 1894.3 6 30.276
RC203 3 3 2339.7 2298.29 1482.68 1443.06 1157.72 1443.06 10 42.44
RC204 3 3 2020.93 1993.41 1123.3 1083.96 864.78 1083.96 6 51.19
RC205 3 3 2575.39 2572.47 1655.52 1607.22 1289.84 1607.22 8 27.257
RC206 3 3 2542.88 2539.9 1678.26 1684.07 1339.07 1684.07 8 24.057
RC207 3 3 2149.6 2137.25 1324.68 1308.96 1020.12 1308.96 9 32.996
RC208 3 3 1985.13 1969.27 1116.28 1098.31 837.66 1098.31 9 38.823
AVG 7.54 7.52 4893.12 4877.14 1222.99 1211.62 970.84 1211.62 11.05 20.91
SUM 422.1 421 274014.88 273120.12 68487.26 67850.62 54366.82 67850.62 619 1171
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Table 32: TD-EVRPTW-FR - D1 - total time - results

Inst. K Kbest tot totbest d dbest ttbest recbest m te

C101 12 12 11770.61 11770.61 1212.56 1212.56 1025.18 1212.56 9 4.608
C102 11 11 11685.47 11685.47 1174.16 1174.16 985.08 1174.16 10 10.739
C103 10 10 11648.38 11648.38 1195.28 1195.28 983.46 1195.28 13 7.376
C104 10 10 10883.42 10883.42 1031.98 1031.98 854.96 1031.98 8 13.093
C105 11 11 11487.24 11487.24 1193.43 1193.43 999.39 1193.43 10 7.235
C106 11 11 11371.11 11371.11 1217.16 1217.16 1028.05 1217.16 9 10.039
C107 10 10 11628.11 11628.11 1160.6 1160.6 951.12 1160.6 10 3.854
C108 10 10 11392.08 11392.08 1123.98 1123.98 931.21 1123.98 11 6.252
C109 10 10 11036.9 11036.9 1093.21 1093.21 912.85 1093.21 7 8.705
C201 4 4 10084.8 10084.8 642.33 642.33 579.46 642.33 3 6.727
C202 4 4 10071.25 10071.25 661.68 661.68 596.02 661.68 4 24.115
C203 4 4 10069.17 10069.17 659.91 659.91 594.54 659.91 4 37.607
C204 4 4 10015.82 10015.82 638.71 638.71 576.09 638.71 3 38.101
C205 4 4 10027.16 10027.16 640.03 640.03 581.05 640.03 3 10.547
C206 4 4 10006.55 10006.55 644.77 644.77 585.48 644.77 3 14.372
C207 4 4 10016.41 10016.41 647.76 647.76 588.47 647.76 3 17.714
C208 4 4 10006.55 10006.55 644.77 644.77 585.48 644.77 3 16.185
R101 17 17 3271.71 3271.71 1783.78 1783.78 1530.73 1783.78 26 12.744
R102 16 16 2950.9 2950.9 1666.99 1666.99 1439.23 1666.99 26 17.229
R103 13 13 2529.08 2529.08 1373.53 1373.53 1163.6 1373.53 20 24.573
R104 11 11 2145.49 2145.49 1116.62 1116.62 944.62 1116.62 10 25.642
R105 14 14 2688.91 2688.91 1510.41 1510.41 1284.35 1510.41 24 15.639
R106 13 13 2465.6 2465.6 1353.58 1353.58 1153.64 1353.58 18 16.968
R107 11 11 2263.82 2263.82 1220.29 1220.29 1003.96 1220.29 14 16.604
R108 10 10 2109.74 2109.74 1058.74 1058.74 870.06 1058.74 14 21.151
R109 12 12 2358.56 2358.56 1256.18 1256.18 1068.53 1256.18 17 17.33
R110 11 11 2180.08 2180.08 1144.56 1144.56 963.11 1144.56 14 24.21
R111 11 11 2205.25 2205.25 1147.82 1147.82 963.27 1147.82 14 16.49
R112 10 10 2140.12 2140.12 1093.55 1093.55 906.9 1093.55 15 10.839
R201 3 3 2700.7 2683.92 1697.9 1672.97 1392.97 1672.97 14 15.363
R202 3 3 2133.39 2120.24 1236.04 1217.55 1023.11 1217.55 6 23.869
R203 3 3 2100.63 2019.02 1165.57 1091.98 909.46 1091.98 5 42.016
R204 2 2 1770.33 1747.9 870.1 837.59 696.79 837.59 3 22.457
R205 3 3 2152.12 2004.93 1192.27 1084.54 902.84 1084.54 8 19.31
R206 2 2 1968.05 1965.74 1024.7 1017.72 845.34 1017.72 6 11.986
R207 2 2 1780.9 1769.34 886.03 872.73 728.17 872.73 3 19.506
R208 2 2 1694.56 1681.59 766.17 752.72 634.11 752.72 3 24.203
R209 2 2 1882.04 1873.28 943.51 940.35 777.52 940.35 8 16.114
R210 2 2 1865.23 1854.5 935.61 927.65 760.6 927.65 6 17.9
R211 2 2 1759.81 1751.63 850.25 842.2 713.16 842.2 2 17.025

RC101 14 14 2988.48 2988.48 1822.11 1822.11 1528.7 1822.11 24 6.455
RC102 14 14 2720.11 2720.11 1632.91 1632.91 1397.85 1632.91 20 15.751
RC103 12 12 2492.2 2492.2 1443.18 1443.18 1219.68 1443.18 17 16.016
RC104 11 11 2253.58 2253.58 1251.51 1251.51 1056.35 1251.51 13 21.953
RC105 13 13 2636.45 2636.45 1550.96 1550.96 1306.09 1550.96 17 10.581
RC106 12 12 2512.74 2512.74 1419.97 1419.97 1188.67 1419.97 16 10.29
RC107 11 11 2284.43 2284.43 1261.33 1261.33 1057.43 1261.33 15 16.187
RC108 10 10 2206.27 2206.27 1202.44 1202.44 993.26 1202.44 11 14.144
RC201 4 4 2859.67 2755.22 1915.02 1852.24 1546.18 1852.24 11 15.16
RC202 3 3 2465.82 2457.33 1612.78 1599.52 1352.01 1599.52 8 25.298
RC203 3 3 2213.24 2196.7 1301.31 1283.97 1080.37 1283.97 6 35.033
RC204 3 3 2027.85 2008.51 1062.39 1040.25 884.3 1040.25 7 43.463
RC205 3 3 2483.94 2409 1523.05 1450.95 1250.81 1450.95 8 20.171
RC206 3 3 2337.15 2297.61 1412.31 1378.94 1187.03 1378.94 8 18.55
RC207 3 3 2115.5 2055.22 1187.88 1140 961.97 1140 7 27.428
RC208 3 3 1965.59 1950.83 990.64 969.09 845.85 969.09 6 32.374
AVG 7.57 7.57 4872.88 4860.84 1169.04 1158.32 980.19 1158.32 10.41 18.13
SUM 424 424 272881.07 272207.06 65466.31 64865.74 54890.51 64865.74 583 1015.29
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F TD-EVRPTWDCS-FR recharging cost

Table 33: TD-EVRPTWDCS-FR - A1 - recharging cost - results

Inst. K Kbest rec recbest d dbest ttbest totbest m te

C101 11 11 1124.27 1124.27 1106.05 1106.05 969.96 12523.23 12 2.162
C102 10 10 1045.54 1043 1021.79 1012.9 901.8 11757.76 9 2.221
C103 10 10 988.3 977.75 962.81 944.7 833.35 11339.45 8 3.903
C104 10 10 895.14 893.37 875.73 874.01 766.19 10857.91 7 4.155
C105 10 10 1082.15 1077.88 1046.06 1043.55 926.13 11397.36 9 1.678
C106 10 10 1069 1067.55 1038.63 1036.46 908.35 11170.56 10 1.938
C107 10 10 1055.67 1048.94 1028.48 1020.77 906.69 11122.6 9 2.145
C108 10 10 1035.07 1029.99 1006.54 999.7 861.66 11216.14 9 2.529
C109 10 10 941.65 939.71 921.36 919.05 806.77 11112.01 8 2.863
C201 4 4 633.98 633.98 633.98 633.98 528.82 10177.11 4 5.91
C202 4 4 633.84 633.3 633.84 633.3 530.69 10401.19 4 14.268
C203 3 3 942.98 901.23 880.98 841.8 706.74 10074.27 7 6.021
C204 3 3 737.04 719.21 705.67 688.8 575.73 10102.37 5 7.407
C205 4 4 629.95 629.95 629.95 629.95 527.77 10176.14 3 6.55
C206 4 4 629.95 629.95 629.95 629.95 527.77 10176.14 3 7.434
C207 4 4 629.95 629.95 629.95 629.95 527.77 10176.14 3 8.904
C208 4 4 629.95 629.95 629.95 629.95 527.77 10176.14 3 6.943
R101 15.2 15 1658.09 1650.49 1610.79 1601.69 1354.46 3162.08 27 4.763
R102 14 14 1473.36 1462.21 1431.78 1414.03 1186.65 2890.8 24 7.033
R103 10.8 10 1274.54 1369.75 1217.64 1281.44 1056.32 2200.45 21 8.885
R104 9 9 1083.37 1053.86 1032.01 1006 843.74 1973.43 13 9.905
R105 11.1 11 1452.55 1418.54 1368.55 1347.69 1126.44 2374.04 20 5.048
R106 10.7 10 1324.11 1402.86 1258.46 1308.02 1089.6 2225.36 19 6.484
R107 9.3 9 1162.97 1148.31 1096.33 1069.98 896.2 1999.7 13 7.415
R108 9 9 1011.44 991.13 973.13 958 805.07 1958.58 14 9.333
R109 10 10 1202.75 1178.26 1152.84 1131.97 945.27 2179.79 15 6.727
R110 9 9 1117.84 1077.38 1058.14 1020.25 855.74 1982.66 13 7.44
R111 9 9 1128.94 1095.91 1068.03 1041.2 867.8 2007.13 15 6.037
R112 9 9 993.93 979.31 956.76 939.52 793.07 1990.15 12 7.57
R201 3 3 1248.61 1240.69 1248.61 1240.69 1073.95 2862.33 7 58.435
R202 3 3 1039.46 1035.33 1039.46 1035.33 899.42 2913.81 4 46.488
R203 2 2 1100.66 1070.79 1077.63 1062.65 889.44 1995.69 9 20.404
R204 2 2 787.07 778.55 787.07 778.55 645.81 1953.12 2 13.703
R205 2 2 1126.57 1104.02 1091.1 1079.32 893.54 1979.43 7 11.58
R206 2 2 1000.49 989.31 1000.49 989.31 817.43 1976.06 6 14.385
R207 2 2 848.84 830.37 848.84 830.37 686.74 1978.42 2 11.658
R208 2 2 745.53 735.6 745.53 735.6 608.96 1881.47 3 12.376
R209 2 2 935.77 919.18 935.05 919.18 763.41 1966.5 5 13.01
R210 2 2 915.78 883.37 915.78 883.37 735.43 1932.38 6 13.68
R211 2 2 824.2 809.32 824.2 809.32 646.12 1789.62 3 13.391

RC101 13 13 1669.58 1653.77 1617.57 1613.18 1344.86 2797.06 19 4.977
RC102 11.9 11 1536.77 1624.37 1485.28 1542.65 1291.87 2477.42 17 6.575
RC103 10.7 10 1378.35 1443.83 1336.25 1379.8 1171.02 2291.49 15 6.85
RC104 9 9 1252.08 1184.43 1183.74 1132.24 941.96 2039.57 12 4
RC105 11.1 11 1491.93 1469.97 1432.51 1415.95 1185.74 2460.96 17 4.585
RC106 10.9 10 1399.94 1475.25 1355.77 1391.91 1148.26 2281.97 17 4.996
RC107 10 10 1211.95 1200.27 1176.61 1163.97 963.22 2252.26 15 7.536
RC108 9 9 1167.96 1120.51 1107.78 1067.45 885.35 1999.99 12 3.649
RC201 3 3 1633.74 1618.91 1631.45 1614.32 1353.28 2849.26 9 64.195
RC202 3 3 1348.11 1345.66 1348.11 1345.66 1125.26 2806.15 4 50.018
RC203 3 3 1059.67 1051.08 1058.93 1051.08 869.45 2706.3 5 40.676
RC204 2 2 1087.16 1064.54 1030.64 1020.53 836.22 1917.55 8 17.534
RC205 3 3 1262.98 1250.86 1262.98 1250.86 1009.68 2663.03 8 36.83
RC206 3 3 1159.37 1151.86 1159.37 1151.86 940.14 2632.59 5 29.765
RC207 3 3 983.86 975.11 983.86 975.11 770.08 2507.74 5 24.342
RC208 2 2 990.13 972.68 955.05 942.35 768.65 1883.11 8 18.302
AVG 6.76 6.68 1085.62 1079.24 1057.96 1050.31 882.49 4869.57 9.8 12.99
SUM 378.7 374 60794.88 60437.62 59245.84 58817.27 49419.61 272695.97 549 727.61
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Table 34: TD-EVRPTWDCS-FR - B1 - recharging cost - results

Inst. K Kbest rec recbest d dbest ttbest totbest m te

C101 11 11 1127.69 1127.69 1106.05 1106.05 872.47 12458.48 12 2.083
C102 10 10 1046.64 1046.46 1020.43 1025.5 784.91 11655.44 10 1.836
C103 10 10 970.35 969.86 954.1 954.68 722.68 11455.03 8 3.424
C104 10 10 880.77 873.97 871.44 866.32 642.22 11349.77 7 3.509
C105 10 10 1073.87 1071.85 1041.99 1039.33 804.1 11365.56 9 1.642
C106 10 10 1069.18 1069.18 1038.44 1038.44 825.01 11259.45 11 1.791
C107 10 10 1049.38 1045.54 1020.56 1013.22 801.71 10962.26 9 1.979
C108 10 10 1035.52 1033.88 1007.75 1003.07 805.47 11146.07 9 2.576
C109 10 10 945.48 944.93 926.02 921.22 703.19 10919.93 8 2.632
C201 4 4 633.98 633.98 633.98 633.98 526.63 10209.16 4 5.378
C202 4 4 633.98 633.98 633.98 633.98 526.63 10209.16 4 14.971
C203 3 3 950.78 915.58 891.87 862.15 718.9 10103.95 8 6.338
C204 3 3 723.89 723.89 696.27 696.27 569.1 10106.23 6 7.3
C205 4 4 629.95 629.95 629.95 629.95 520.34 10192.82 3 6.21
C206 4 4 629.95 629.95 629.95 629.95 520.34 10192.82 3 7.132
C207 4 4 629.95 629.95 629.95 629.95 520.34 10192.82 3 8.374
C208 4 4 629.95 629.95 629.95 629.95 520.34 10192.82 3 6.78
R101 17 17 1649.23 1649.23 1627.77 1627.77 1324.07 3460.51 25 4.621
R102 15 15 1481.2 1481.2 1452.89 1452.89 1182.12 3012.36 23 8.938
R103 12 12 1214.48 1214.48 1184.28 1184.28 957.12 2513.06 15 9.352
R104 9 9 1087.46 1087.46 1024.39 1024.39 828.36 1991.98 14 12.219
R105 13 13 1368.25 1368.25 1340.21 1340.21 1102.1 2688.19 19 5.202
R106 11 11 1393.65 1393.65 1325.97 1325.97 1085.3 2337.9 20 7.714
R107 9 9 1145.96 1145.96 1075.62 1075.62 872.22 1968.76 15 5.959
R108 9 9 1038.96 1038.96 999.32 999.32 814.38 1962.03 12 10.507
R109 10 10 1234.9 1234.9 1172 1172 947.72 2173.81 15 7.2
R110 10 10 1101.19 1101.19 1067.02 1067.02 866.14 2140.24 15 7.635
R111 10 10 1106.97 1106.97 1068.27 1068.27 866.9 2156.88 14 9.219
R112 9 9 1019.49 1019.49 972.07 972.07 784.7 1952.5 12 10.93
R201 3 3 1211.26 1201.97 1211.26 1201.97 960.36 2785.6 7 51.582
R202 3 3 1023.37 1019.94 1023.37 1019.94 810.36 2840.43 4 34.839
R203 2 2 974.4 970.53 974.4 970.53 764.69 1981.39 5 13.535
R204 2 2 768.16 757.97 768.16 757.97 610.34 1919.27 2 11.843
R205 2 2 1139.96 1110.78 1097.91 1077.22 864.96 1959.34 6 10.207
R206 2 2 1011.81 1001.67 1008.34 1001.67 821.18 1972.11 4 12.809
R207 2 2 864.38 855.67 864.38 855.67 706.54 1917.33 2 12.641
R208 2 2 747.32 735.08 747.32 735.08 605.56 1865.52 2 12.306
R209 2 2 947.54 920.36 944.76 917.55 754.68 1916.13 6 11.023
R210 2 2 913.71 894.82 913.71 894.82 730.51 1938.56 6 12.682
R211 2 2 844.18 827.63 842.77 820.56 683.8 1852.09 6 13.535

RC101 14 14 1695.47 1687.7 1667.29 1664.76 1360.28 2998.99 20 4.264
RC102 12.8 12 1552.62 1597.3 1524.15 1548.49 1254.32 2586.41 18 6.326
RC103 11 11 1355.79 1331.45 1321.16 1296.94 1024.6 2359.39 16 6.634
RC104 9 9 1201.81 1183.06 1152.92 1142.07 909.7 2026.12 11 4.46
RC105 12 12 1504.42 1487.14 1463.88 1453.23 1191.51 2642.13 18 4.215
RC106 11.6 11 1452.1 1514.89 1414.81 1458.08 1170.97 2470.71 19 4.169
RC107 10 10 1237.12 1218.93 1188.47 1179.85 953.82 2218.91 13 6.19
RC108 10 10 1159.49 1152.69 1132.13 1123.19 910.25 2224.59 13 6.392
RC201 3 3 1661.82 1618.18 1651.96 1603.15 1319.57 2757.9 12 55.427
RC202 3 3 1381.14 1363.76 1381.14 1363.76 1131.87 2719.4 5 46.346
RC203 3 3 1047.89 1042.54 1047.89 1042.54 864.29 2710.01 5 39.598
RC204 2 2 1133.34 1091.48 1057.73 1035.36 840.77 1908.45 9 29.129
RC205 3 3 1273.77 1258.07 1273.77 1258.07 1063.48 2662.03 9 36.886
RC206 3 3 1206.53 1192.99 1206.53 1192.99 1021.32 2534.38 5 28.427
RC207 3 3 1004.78 996.12 1004.78 996.12 856.96 2535.6 5 25.539
RC208 2 2 1014.94 990.83 973.91 963.77 777.81 1893.53 8 12.17
AVG 6.99 6.96 1086.29 1079.93 1063.06 1057.13 856.79 4902.26 9.86 12.44
SUM 391.4 390 60832.17 60475.88 59531.39 59199.17 47980.01 274526.31 552 696.62
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Table 35: TD-EVRPTWDCS-FR - C1 - recharging cost - results

Inst. K Kbest rec recbest d dbest ttbest totbest m te

C101 11 11 1124.27 1124.27 1106.05 1106.05 896.21 12534.79 12 2
C102 10 10 1046.73 1046.73 1017.89 1017.89 833.31 11686 9 1.988
C103 10 10 969.19 965.78 951.06 949.37 778.87 11611.94 8 3.681
C104 10 10 876.31 876.31 866.07 866.07 703.9 11345.2 7 3.358
C105 10 10 1078.06 1075.87 1041.23 1038.01 863.24 11438.66 9 1.707
C106 10 10 1069.18 1069.18 1038.44 1038.44 854.99 11317.97 11 1.852
C107 10 10 1052.7 1052.7 1021.57 1021.57 841.32 11023.25 10 2.067
C108 10 10 1030.91 1028.68 1000.84 995.15 809.75 11355.61 10 2.638
C109 10 10 942.24 940.54 922.65 922.08 743.2 10919.45 7 2.879
C201 4 4 633.98 633.98 633.98 633.98 499.87 10191.74 4 5.962
C202 4 4 633.98 633.98 633.98 633.98 499.87 10191.74 4 14.366
C203 3 3 933.8 910.42 878.33 856.29 698.83 10049.87 7 6.172
C204 3 3 743.39 719.21 711.9 688.8 560.88 10098.82 5 7.624
C205 4 4 629.95 629.95 629.95 629.95 490.89 10167.76 3 6.559
C206 4 4 629.95 629.95 629.95 629.95 490.89 10163.37 3 7.191
C207 4 4 629.95 629.95 629.95 629.95 490.89 10163.37 3 8.52
C208 4 4 629.95 629.95 629.95 629.95 490.89 10163.37 3 6.95
R101 16 16 1651.45 1651.45 1613.11 1613.11 1329.16 3388.28 24 4.575
R102 14 14 1483.24 1483.24 1444.47 1444.47 1192.34 2988.83 23 7.297
R103 11 11 1232.16 1232.16 1197.55 1197.55 963.5 2369.3 18 9.741
R104 9 9 1026.25 1026.25 986.93 986.93 795.86 1976.9 12 10.596
R105 12 12 1393.93 1393.93 1332.92 1332.92 1110.67 2590.81 21 5.891
R106 11 11 1311.05 1311.05 1257.52 1257.52 1027.45 2344.84 19 8
R107 9 9 1178.06 1178.06 1091.64 1091.64 896.1 2013.86 18 10.104
R108 9 9 1000.95 1000.95 971.77 971.77 800.68 1988.01 14 10.934
R109 10 10 1272.94 1272.94 1219.47 1219.47 997.18 2250.46 21 5.032
R110 9 9 1143.79 1143.79 1085.01 1085.01 884.59 2032.19 14 8.287
R111 10 10 1064.81 1064.81 1030.01 1030.01 847.87 2148.75 14 8.505
R112 9 9 1001.83 1001.83 961.3 961.3 794 2006.37 11 9.445
R201 3 3 1241.69 1241.69 1241.69 1241.69 1054.23 2874.05 7 38.926
R202 3 3 1035.85 1035.85 1035.85 1035.85 872.5 2916.07 4 28.266
R203 2 2 1030.25 1030.25 1030.25 1030.25 857.86 1994.67 6 13.211
R204 2 2 778.04 778.04 778.04 778.04 641.64 1981.98 2 11.656
R205 3 3 991.8 991.8 988.13 988.13 830.86 2759.52 7 15.194
R206 2 2 1017.94 1017.94 1017.94 1017.94 846.34 1993.22 5 15.862
R207 2 2 846.18 846.18 846.18 846.18 699.92 1928.73 2 11.498
R208 2 2 736.62 736.62 736.62 736.62 595.29 1885.72 3 12.607
R209 2 2 970.13 970.13 966.31 966.31 808.88 1995.32 6 11.451
R210 2 2 890.79 890.79 890.79 890.79 754.51 1981.57 5 12.677
R211 2 2 837.54 821.53 837.54 821.53 686.26 1895.12 4 11.938

RC101 13 13 1714.97 1714.97 1627.73 1627.73 1370.45 2929.82 19 4.128
RC102 12 12 1498.21 1498.21 1449.05 1449.05 1195.77 2662.84 16 7.215
RC103 10 10 1384.69 1384.69 1318.6 1318.6 1070.2 2268.38 16 8.303
RC104 9 9 1345.33 1345.33 1279.52 1279.52 1040.4 2132.36 13 5.322
RC105 12 12 1454.96 1454.96 1436.84 1436.84 1192.13 2728.04 20 5.184
RC106 11 11 1455.6 1455.6 1401.82 1401.82 1168.06 2516.76 18 4.93
RC107 10 10 1240.62 1240.62 1197.7 1197.7 989.11 2255.95 14 7.141
RC108 10 10 1152.96 1152.96 1127.06 1127.06 920.54 2165.43 12 7.155
RC201 3 3 1736.4 1736.4 1719.78 1719.78 1455.63 2874.08 14 47.031
RC202 3 3 1371.03 1371.03 1371.03 1371.03 1149.31 2788.79 5 34.731
RC203 3 3 1050.99 1050.99 1050.99 1050.99 864.21 2691.26 5 34.753
RC204 2 2 1096.97 1096.97 1041.68 1041.68 850.9 1915.41 8 24.906
RC205 3 3 1304.2 1304.2 1304.2 1304.2 1087.24 2778.63 6 29.33
RC206 3 3 1173.32 1173.32 1173.32 1173.32 989.94 2661.2 3 26.433
RC207 3 3 1010.22 1010.22 1010.22 1010.22 837.5 2587.91 4 23.855
RC208 2 2 1090.06 1090.06 1027.41 1027.41 844.51 1904.33 9 2.308
AVG 6.86 6.86 1087.01 1085.7 1061.46 1060.17 872.52 4939.08 9.95 11.43
SUM 384 384 60872.36 60799.26 59441.78 59369.46 48861.39 276588.67 557 639.93
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Table 36: TD-EVRPTWDCS-FR - D1 - recharging cost - results

Inst. K Kbest rec recbest d dbest ttbest totbest m te

C101 11 11 1127.69 1127.69 1106.05 1106.05 941.24 12445.81 12 2.308
C102 10 10 1045.58 1045.58 1023.38 1023.38 859.15 11642.15 9 2.383
C103 10 10 996.31 987.82 969.47 963.09 796.23 11441.02 9 4.369
C104 10 10 896.62 893.84 878.23 874.47 735.76 10871.88 7 4.365
C105 10 10 1077.23 1071.85 1045.85 1039.33 880 11362.68 9 1.934
C106 10 10 1068.1 1067.55 1037.12 1036.46 876.18 11111.53 10 2.073
C107 10 10 1060.02 1053.25 1031.52 1024.76 863.86 11046.46 9 2.255
C108 10 10 1037.44 1031.96 1008.97 1001.94 847.05 11206.54 9 3.097
C109 10 10 945.92 945.92 922.12 922.12 779.62 10882.3 8 3.475
C201 4 4 633.98 633.98 633.98 633.98 566.63 10209.7 4 6.052
C202 4 4 633.98 633.98 633.98 633.98 566.63 10209.7 4 16.646
C203 3 3 918.77 907.85 855.86 850.01 730.47 10088.51 8 5.13
C204 3 3 769.8 754.2 738.87 728.32 612.42 10120.58 5 7.719
C205 4 4 629.95 629.95 629.95 629.95 570.15 10218.52 3 6.039
C206 4 4 629.95 629.95 629.95 629.95 570.15 10218.52 3 7.018
C207 4 4 629.95 629.95 629.95 629.95 570.15 10218.52 3 8.578
C208 4 4 629.95 629.95 629.95 629.95 570.15 10218.52 3 6.877
R101 16 16 1629.68 1629.68 1597.63 1597.63 1363.94 3255.52 23 6.185
R102 15 15 1453.31 1453.31 1421.04 1421.04 1216.77 2955.74 22 10.337
R103 12 12 1210.48 1210.48 1174.49 1174.49 993.22 2501.27 14 10.634
R104 9 9 1109.12 1109.12 1049.41 1049.41 868.13 1990.06 14 13.361
R105 12 12 1414.96 1414.96 1336.93 1336.93 1119.33 2457.84 20 7.787
R106 11 11 1290.81 1290.81 1227.36 1227.36 1034.09 2260.44 16 10.612
R107 10 10 1086.95 1086.95 1053.42 1053.42 878.06 2155.87 14 9.947
R108 9 9 1016.39 1016.39 973.9 973.9 818.79 1940.67 13 10.957
R109 10 10 1210.95 1210.95 1161.69 1161.69 969 2172.51 18 6.3
R110 9 9 1113.5 1113.5 1052.01 1052.01 872.49 1963.21 14 7.522
R111 9 9 1167.69 1167.69 1086.23 1086.23 896.19 2016.7 18 5.695
R112 9 9 1058.85 1058.85 1006.79 1006.79 834.22 1965.92 14 6.428
R201 3 3 1245.86 1233.47 1244.27 1233.47 1034.98 2777.28 6 80.04
R202 3 3 1039.33 1033.67 1039.33 1033.67 865.41 2871.62 4 46.44
R203 2 2 1060.71 1043.63 1046.65 1036.45 855.99 1981.18 6 13.188
R204 2 2 779.65 764.16 779.65 764.16 625 1941.62 2 5.591
R205 2 2 1118.02 1084.15 1078.45 1063.97 879.95 1964.89 7 8.149
R206 2 2 1032 1004.19 1027.34 1001.13 827.75 1977.28 8 6.797
R207 2 2 859.14 842.92 859.14 842.92 702.75 1951.72 4 5.434
R208 2 2 752.12 747.7 752.12 747.7 618.6 1933.68 3 6.147
R209 2 2 938.72 927.62 937.24 927.62 760.13 1928.86 6 5.962
R210 2 2 916.82 902.2 916.82 902.2 738.7 1937.04 4 5.091
R211 2 2 838.96 825.08 838.96 825.08 689.79 1840.12 3 6.13

RC101 14 14 1703.64 1703.64 1668.39 1668.39 1403.92 2949.5 21 4.134
RC102 12 12 1583.06 1583.06 1525.87 1525.87 1278.92 2596.93 18 6.707
RC103 11 11 1377.18 1377.18 1336.18 1336.18 1111.63 2450.43 16 10.514
RC104 10 10 1140.44 1140.44 1124.86 1124.86 936.51 2214.16 14 8.881
RC105 12 12 1431.01 1431.01 1378.06 1378.06 1154.59 2501.98 14 7.785
RC106 11 11 1385.92 1385.92 1332.27 1332.27 1118.05 2379.36 15 7.881
RC107 10 10 1236.49 1236.49 1203.02 1203.02 994.73 2255.74 14 6.054
RC108 9 9 1171.04 1171.04 1106.47 1106.47 909.11 2022.78 11 5.948
RC201 3 3 1714.12 1648.28 1681.55 1637.37 1382.38 2751.09 11 53.846
RC202 3 3 1383.83 1377.15 1383.83 1377.15 1156.27 2752.48 4 55.253
RC203 3 3 1071.96 1044.48 1071.96 1044.48 882.39 2667.18 5 44.068
RC204 2.67 2 973.57 1112.33 950.28 1042.47 864.65 1907.76 10 25.724
RC205 3 3 1331.05 1278.57 1326.98 1278.57 1095.98 2589.94 7 41.704
RC206 3 3 1216.65 1189.38 1216.65 1189.38 1000.65 2525.58 3 33.634
RC207 3 3 1018.23 1002.61 1018.23 1002.61 842.34 2465.18 5 22.23
RC208 2 2 1003.01 979.53 957.56 941.1 767.22 1853.57 7 7.168
AVG 6.92 6.91 1086.01 1080.5 1059.79 1054.74 887.47 4877.46 9.7 12.97
SUM 387.67 387 60816.46 60507.86 59348.23 59065.21 49698.46 273137.64 543 726.58
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2. Tišljarić, L., Carić, T., Erdelić, T., Erdelić, M., “Traffic state estimation using speed pro-

files and convolutional neural networks”, in 2020 43rd International Convention on Infor-

mation, Communication and Electronic Technology (MIPRO), 2020, pp. 2147-2152
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