
Real-time visualization of city public transport
provider data and prediction of future trends

Jurić, Kristijan

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Transport and Traffic Sciences / Sveučilište u Zagrebu, Fakultet
prometnih znanosti

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:119:643618

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-21

Repository / Repozitorij:

Faculty of Transport and Traffic Sciences -
Institutional Repository

https://urn.nsk.hr/urn:nbn:hr:119:643618
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fpz.unizg.hr
https://repozitorij.fpz.unizg.hr
https://zir.nsk.hr/islandora/object/fpz:3394
https://repozitorij.unizg.hr/islandora/object/fpz:3394
https://dabar.srce.hr/islandora/object/fpz:3394

UNIVERSITY OF ZAGREB

FACULTY OF TRANSPORT AND TRAFFIC SCIENCES

Kristijan Juric

REAL-TIME VISUALIZATION OF CITY

PUBLIC TRANSPORT PROVIDER DATA

AND PREDICTION OF FUTURE TRENDS

Zagreb, 2024.

Sveučilište u Zagrebu

Fakultet prometnih znanosti

REAL-TIME VISUALIZATION OF CITY PUBLIC

TRANSPORT PROVIDER DATA AND PREDICTION

OF FUTURE TRENDS

VIZUALIZACIJA PODATAKA PRUŽATELJA JAVNOG

GRADSKOG PRIJEVOZA U STVARNOM VREMENU I

PREDVIÐANJE BUDUĆIH TRENDOVA

Mentor: dr. sc. Tomislav Erdelić Student: Kristijan Juric

JMBAG: 0128056654

Zagreb, September 2024.

Real-time visualization of city public transport provider data and prediction of future
trends

Abstract:

In the highly changing area of Intelligent Transport Systems (ITS), real-time information is

very important in making the public transportation system be more effective and reliable. This

work discusses a real-time visualization application for Zagreb public transport system using

General Transit Feed Specification (GTFS) data provided by Zagrebački Električni Tramvaj

(ZET), the city’s public transportation authority. The application is created to handle and show

static GTFS data as well as live GTFS data allowing users to follow present locations of vehicles

on stop arrival and schedules in real-time. There is also an inclusion of predictive modelling

techniques to forecast future trends in public transport. The results highlight the possible inte-

gration of ITS with predictive analytics to enhance public transport systems and user experience

in fast-expanding urban areas and to also contribute to more efficient urban mobility solutions.

Keywords: GTFS, real-time data, public transport, predictive modeling, ZET, urban planning,

ITS

Vizualizacija podataka pružatelja javnog gradskog prijevoza u stvarnom vremenu
i predvid̄anje budućih trendova

Sažetak:

U brzo mjenjajućem području inteligentnih transportnih sustava, informacije u stvarnom

vremenu su izuzetno važne za poboljšanje same učinkovitosti i pouzdanosti javnog prijevoza. U

ovom radu se raspravlja o aplikaciji za vizualizaciju javnog prijevoza grada Zagreba u stvarnom

vremenu koristeći General Transit Feed Specification (GTFS) podatke koje osigurava ZET

(Zagrebački Električni Tramvaj), gradska uprava za javni prijevoz. Aplikacija je stvorena za

rukovanje i prikaz statičkih GTFS podataka kao i stvarno-vremenskih GTFS podataka koji

korisnicima omogućuju praćenje trenutnih lokacija vozila pri dolasku na stanicu i rasporeda

u stvarnom vremenu. Tu se takod̄er uključuju i tehnike prediktivnog modeliranja za pred-

vid̄anje budućih trendova u javnom prijevozu. Rezultati naglašavaju moguću integraciju ITS-a

sa prediktivnom analitikom kako bi se poboljšao javni prijevoz i korisničko iskustvo u brzo

širećim urbanim područjima i isto kako bi se pridonjelo učinkovitijima rješenjima za urbanu

mobilnost.

Ključne riječi: GTFS, informacije u stvarnom vremenu, javni prijevoz, prediktivno modeli-

ranje, ZET, urbano planiranje, ITS

CONTENTS

1. Introduction 1
1.1. Background and Motivation . 1

1.2. Thesis Objectives . 2

1.3. Thesis Structure . 2

2. Transit Feed Standards 4
2.1. General Transit Feed Specification . 4

2.1.1. Definition and History . 4

2.1.2. GTFS Components . 5

2.2. GTFS Data Sources for Zagreb . 8

2.2.1. Public Transport and GTFS in Zagreb 8

2.2.2. ZET GTFS Data Collection . 10

2.3. SIRI, NeTEx and other transit standards in public transportation 14

2.3.1. SIRI (Service Interface for Real-time Information) 14

2.3.2. NeTEx (Network Timetable Exchange) 15

2.3.3. Additional Standards and Regional Usage 15

3. Application Design and Implementation 17
3.1. Application Architecture . 17

3.1.1. Used Technologies . 17

3.1.2. Overall System Structure . 19

3.2. Front-End Integration with Back-End . 21

3.2.1. Front-End Implementation . 21

3.2.2. Back-End Implementation . 23

3.2.3. Fron-Back Integration . 24

3.3. Database Implementation . 27

3.3.1. Overview of Databases . 27

3.3.2. GTFS Database Structure . 29

3.3.3. GTFS Database Data Handling . 32

iii

4. Trend Prediction Modeling 38
4.1. Overview of Predictive Modeling . 38

4.1.1. Machine learning for predictive modelling 38

4.1.2. Implemented Machine learning model 42

4.2. Data Preparation and Training . 44

4.2.1. Data Preprocessing . 44

4.2.2. Training for the Chosen Model . 46

4.2.3. Evaluation Metrics . 48

5. Results and Analysis 50
5.1. Real-time Data Visualization . 50

5.1.1. User Interaction with the Application 50

5.1.2. Application Troubleshooting . 54

5.2. Predictive Model Performance . 54

5.2.1. Data Records per Stop . 54

5.2.2. Prediction Error Metrics . 58

5.2.3. Prophet Arrival Prediction Graphs for Specified Routes 60

6. Conclusion 63

Bibliography 65

List of Figures 68

List of Tables 70

iv

1. Introduction

1.1. Background and Motivation

Today in densely populated cities like Zagreb, Croatia, public transport systems are the

main aspect of its urban mobility. With the overall increase of transportation infrastructure, the

demands grow as the city grows. There is a need for efficient, reliable and real-time data-driven

solutions for managing public transportation and its operations. In this regard, it can be said

that the General Transit Feed Specification (GTFS) data has become extremely important to

provide a standard on how public transport schedules, routes and of course real-time locations

of vehicles are managed and obtained.

The purpose of this thesis comes from the need to further develop the public transportation

services in the city of Zagreb which can be obtained by integrating GTFS data which is provided

by Zagrebački Električni Tramvaj (ZET) into an informational framework. Focus is put on

developing a real-time visualization application which will be used for tracking public transport

vehicles when on station arrival, analyzing historical data and predicting future trends using

machine learning. By using technologies like Python for data handling and processing, MySQL

for data storage and Dash framework for user interface development, the goal is to provide a not

only useful but also comprehensive tool that could help the commuter find his public transport

vehicle or anticipate a delay in a specific timeframe. Additionally, this tool can help city urban

and transport planners make better decisions in planning and optimizing the current state of the

public transport system.

Real-time data processing together with predictive modelling with standard and new ma-

chine learning techniques represents a big improvement in regards to advancing Intelligent

Transportation Systems (ITS). Anticipating and mitigating potential transportation issues by

using tools which predict future trends like potential delays can play a significant role in con-

tributing to more efficient, sustainable and reliable urban transport. This work tends to connect

data availability and overall informational insights in the domain of urban mobility.

1

1.2. Thesis Objectives

The goal of the master thesis called "Real-time visualization of city public transport provider

data and prediction of future trends" is to design and develop a real-time visualization applica-

tion integrating ZET’s GTFS public transport data, where a connection between the static GTFS

data and live updates is created. The application should monitor vehicles’ current positions

when on station arrival while providing access to a database of historical data for trend predic-

tion or deeper analysis. Trend prediction is one of the aspects that could advance the service in

providing better information and improving passenger satisfaction.

The specific objectives are like in the following:

– To analyze and create an overview of the GTFS data: this involves creating an

overview of the history, implementation and challenges of the GTFS data.

– To design a real-time data visualization application: the application design should

utilize GTFS data to deliver real-time updates regarding vehicle locations at station ar-

rival, delays, and route visualization with additional functions for data evaluation and

debugging.

– To develop a relational database for GTFS data storage: this database should store

both real-time updates with static data referencing. With that, historical data should

always be accessible for detailed analysis and trend prediction, which is essential for the

application’s functionality.

– To implement predictive models: this thesis will explore various machine learning

models which are popular for capturing non-linear relationships between data and time-

series data like Prophet etc.

– To evaluate the effectiveness of prediction models: testing will be conducted where

based on the current stored frame of data an evaluation and comparison using a specific

prediction model will be performed.

1.3. Thesis Structure

Following the introduction, Chapter 2 provides an overview of the literature in regards to

GTFS which focuses on its data format, its key components and its application in public trans-

portation systems. Particular focus is being forwarded towards on how ZET provided this data

in Zagreb. Chapter 3 describes the overall architecture of the application and how it was de-

veloped. Proceeding, Chapter 4 describes the predictive models used which are applied to the

historical transport data provided from the internal data frame. Moreover, this is then used

to forecast future trends with an evaluation of different machine learning models. Chapter 5

2

presents and discusses the implementation outcomes, including real-time visualization, trend

analysis and a comparison of results from chosen predictive models. Chapter 6 summarizes the

key findings and suggests areas for future work on this topic.

3

2. Transit Feed Standards

In big cities, most people use private vehicles as the main means of transportation, which is

not sustainable. In this case, public transportation plays an important role in providing mobility

to citizens, especially those with disabilities and no means to private transport. In Zagreb,

public transport varies from buses, trams, and cable cars, and it is managed predominantly by

the city’s public transportation company ZET. Over the years, the transit system has significantly

improved the operational efficiency and passenger experience since it is directed mostly towards

integrating technological advancements in public transportation.

Among these advancements are transit feed standards like GTFS, which provides static and

real-time data for public transit systems, and European standards such as SIRI and NeTEx,

which facilitate real-time information exchange and static data management for multimodal

transport systems. This chapter explores the key transit feed standards, including GTFS, SIRI,

and NeTEx, and their applications in public transportation systems, focusing on specifically

integrating GTFS into Zagreb’s public transportation system.

2.1. General Transit Feed Specification

2.1.1. Definition and History

GTFS is a data format standard that public transportation agencies use to publish their transit

data. While operating, buses, trams, trains, and ferries provide this type of data to the transport

agencies and agencies further to the public. Developed by Google, GTFS facilitates the presen-

tation and collection of public transport data in applications like Google Maps and any other

app that can utilize this type of data. Transit operators share their schedules, stations, details,

departure and arrival times and also fare information trough GTFS standard data. With this, pas-

sengers can plan their journeys on public transportation and can access provided information

regarding where and when services are available. GTFS data also encompasses travel informa-

tion which includes terminals, stations, routes, schedules, etc. and is accessible to all users who

rely on mobile apps or web services for trip planning and monitoring [1].

The origin and development of GTFS started in Portland USA in the summer of 2005

where Bibiana McHugh when traveling abroad was frustrated because she couldn’t access a

4

geographic mapping website like MapQuest. Because of this she could not plan her trip as eas-

ily as she could if she was in a car. After returning to USA, she started contacting companies

like MapQuest, Yahoo, and Google making proposals that inclusion of transit data should be

available in their mapping services. After sending proposals with TriMetMAX as her partner,

Google was the only company that responded positively. Chris Harrelson, a software engineer

in Google integrated TriMetMAX’s transit data into Google Maps where the first instance of the

Google transit trip planner spurred. TriMetMAX has prepared its data in a format compatible

to Google Maps but also they took a proactive approach to managing its transit data, pushing

Google to refine the implementation of transit data within Google Maps. With data refinement

came the GTFS specification [2].

On December 7, 2005 the Google Transit Trip Planner was introduced which was primar-

ily utilized by TriMetMAX. Making these services available and accessible on Google Maps

triggered a response where cities like Eugene, Honolulu, Pittsburgh, Seattle and Tampa started

adopting the specification. This expansion demonstrated the growing demand for real-time

availability of transit information where till today Google Maps collaborates with more than

100 transit operators in the U.S and over 400 worldwide [2].

In the next section 2.1.2 the components that make the GTFS will be described. Each of the

key data files will be examined and explained to understand how they connect to each other and

contribute to making a comprehensive transit data set.

2.1.2. GTFS Components

GTFS data is split into two main components which serve different purposes but are inter-

connected with relationships from the systematic perspective which makes them complemen-

tary to each other.

Real-Time Data

One of the most essential components of GTFS is the real-time data since it provides a

continuous flow of information about the status of transit services. Updates on vehicle positions,

delays, service disruptions, arrival and departure times are parsed to the applications of transit

users who are then informed about the current transit situation and availability [3].

When passengers have access to reliable and timely information they are more likely to

choose public transportation over private vehicles in this regard. This reduces traffic congestion

and lowers carbon emissions since there are fewer cars on the road. In this case, it will facilitate

real-time data processing, making public transit a more attractive option for city commuters [1].

The primary entities in GTFS real-time data include trip updates, vehicle positions, service

alerts and trip modifications which inform the commuter about the transit’s overall status and

5

will be described in the following:

– Trip Updates: are changes in the scheduled transit timetable. They do provide an

arrival and departure time in addition to other information but in some cases can be

also inaccurate or not provided. They are crucial for handling situations that require

dynamicity in transit operations like delays, added trips, cancellations and such. Trip

updates make sure that the passenger or potential commuter is informed on time of any

changes or the nature of a specific trip [4].

– Vehicle Positions: provide real-time data in the shape of latitude and longitude of the

current location of the vehicle, which helps in tracking its position on the transit net-

work. This data can also include additional information such as the vehicle’s speed and

odometer readings [4].

– Service Alerts: provide information about disruptions that are affecting the transit net-

work in that moment in time. These disruptions can be for example line suspensions,

station closures or even network-wide issues which can be a response from a problem in

the transit network. These alerts usually consist of some textual description in which the

disruption is described and additionally could contain a URL for additional information

[4].

– Trip Modifications: inform about changes of active or planned routes. This can create

situations like providing new route shapes or even indicating temporary stops along a

detour. Also in some regards trip modifications can occur when modified schedules and

detours are applied because of upcoming expected or unforeseen circumstance like road

construction or public events [4].

Static Data

GTFS static data are categorized as a group of text files with information which explain

the operations of a transit system. Compared to real-time data which is updated in specific

short time windows, static data provides the schedule information and details about the long-

term operations of a transit system. There is usually a larger number of GTFS static files but

a few of them are extremely important like the"agency.txt", "stops.txt", "routes.txt", "trips.txt",

"stop_times.txt" and "calendar.txt". All the files above have multiple fields within themselves,

which have separate meanings in this context [2]. In the following, all of the most important

data files are described:

– "agency.txt": this file contains information relevant to the transit agency, including the

agency’s name, website, and contact information. It can also contain multiple agen-

cies, in which case the agency data insertion is mandatory, specifying the data source.

6

The file contains the following data rows: "agency_id", "agency_name", "agency_url",

"agency_timezone", "agency_lang", "agency_phone", and "agency_fare_url" [4, 2].

– "stops.txt": this file describes all the stops in the transit system for the update cycle. It

shows where passengers can board and alight from transit vehicles. For example, fields

like "stop_id" and "stop_name" identify each specific stop and provide additional infor-

mation to aid commuters in trip planning. Fields like "stop_lat" and "stop_long" provide

the stop location in the form of geographic coordinates. The file contains the following

data rows: "stop_id", "stop_code", "stop_name", "stop_desc", "stop_lat", "stop_long",

"stop_url", "location_type", "stop_timezone", and "wheelchair_boarding" [4, 2].

– "routes.txt": this file represents all the routes currently used by the transit network.

Each route has its unique identifier "route_id", along with other data rows such as

"route_short_name", "route_type", etc. For example, "route_type" represents the mode

of transport, which, in the case of public transport, can be a bus, tram, or even a ferry.

This data helps transportation planners understand which lines are available for that

timeframe within the system. The file contains the following data rows: "route_id",

"agency_id", "route_short_name", "route_long_name", "route_desc", "route_type",

"route_url", "route_color", and "route_text_color" [4, 2].

– "trips.txt": This file contains data where every individual trip is connected to its route.

Each trip has its own unique "trip_id" which could also be connected to a "service_id"

that could indicate the schedule, meaning if the trips are done over weekdays, week-

ends, etc. Also worth mentioning is "shape_id" which provides the path that the trip

follows. Trips in most cases in the dataset have correlated connections to their se-

quences of stops that could help in operational planning [2]. The "direction_id" is also

important as it indicates the direction in which the trip is being executed. Typically,

"direction_id" values are binary, where ‘0‘ represents an inbound trip (heading towards

the main destination or city centre), and ‘1‘ represents an outbound trip (heading away

from the main destination or city centre) [4]. The file contains the following data rows:

"route_id", "service_id", "trip_id", "trip_headsign", "trip_short_name", "direction_id",

"shape_id", "wheelchair_accessible", and "bikes_allowed" [2].

– "stop_times.txt": this file contains the schedule for every stop connected to its "trip_id".

This means that each specific trip has a timing for its stops in sequence. Other data

rows included are "arrival_time", "departure_time", and "stop_id", which links the trips

to their corresponding stops and times when the transit vehicle is expected to arrive

or depart. Without this file, the schedules in transit could not be created, nor could

any specific trip details be sent to the passengers through applications. The file con-

tains the following data rows: "trip_id", "arrival_time", "departure_time", "stop_id",

7

"stop_sequence", and "timepoint" [2].

– "calendar.txt": this file contains the overall calendar of the transit services. With this

calendar, a commuter can specify on which day a service is operating. To understand

the schedule, this file is important since the start and end dates of a specific service

are stated there. Key data rows in this file include "service_id" which is interconnected

with "trips.txt". There are also other fields like "monday", "tuesday", "wednesday", etc.,

whose values can be 1 or 0. This shows whether the service is running on specific days.

The file contains the following rows: "service_id", "monday", "tuesday", "wednesday",

"thursday", "friday", "saturday", "sunday", "start_date", "end_date".

– "fare_attributes.txt": this file describes the fare payment structure of a transit system,

with data rows like "fare_id" connected to the value of "price" for the cost of fare, for

example. All this data is interconnected since the price is linked to the "currency_type"

and extends to "payment_method", which describes how the fare could be paid. This

data is always linked with other static data text files, such as "agency_id", which links

the fares to the specific agency. This helps commuters plan their trip from a financial

standpoint. The file contains the following data: "fare_id", "price", "currency_type",

"payment_method", "transfers", "agency_id", "transfer_duration" [4].

From the previous static and real-time data descriptions it can be seen that every part of

the data is interconnected with each other by their corresponding id-s which makes it easy to

find the information needed when integrating in specific applications. In the next chapter 2.2

will focus on how this interconnected data is differentiated from agency to agency but mostly

focusing on ZET and how it would benefit the overall public transport in Zagreb.

2.2. GTFS Data Sources for Zagreb

2.2.1. Public Transport and GTFS in Zagreb

Zagreb’s public transportation system consists of various forms of transportation, including

trams, buses, railways, and cable cars. These different traffic systems work together to create

extensive coverage over the city and connect the outer parts of Zagreb with Zagreb’s centre.

However, in this thesis, the focus will be mostly on the tram and bus networks, which are in the

GTFS framework in regard to data availability.

One of the most fundamental aspects of Zagreb city’s urban planning is its public trans-

portation system which was outlined in the General Urban Plan (GUP). What GUP aims to

organize and plan better is the point on how the city is using the city’s space and in which way

to expand the tram network and develop a light rail system to enhance connectivity throughout

the city. The tram network in Zagreb operates on 148km of tracks across 15 daily and 4 night

8

lines which has 256 tram stops that are intentionally placed so that the walking distances in

areas where there are hospitals, schools and public institutions are adequately minimized. Tram

lines in Zagreb are designed in the manner of diametral or tangential routes, which for Zagreb’s

situation do help connect different parts of the city as efficiently as possible [5].

If GTFS is fully utilized in this case, this could lead to a better GUP in regards to tram

networks where urban planners could make better decision which is supported by real-time

data gathered from GTFS databases.

With the trams, in the overall public transport system there is also an inclusion of the bus

network which has 133 daily and 4 night lines, which in this regard play an important role in

connecting the city’s outline areas and the central parts of Zagreb as it can be seen from figure

2.1. There are 2103 bus stops on the transit network and from that, in Zagreb’s area, there are

1614 of them. On weekdays during peak traffic times, there are around 303 buses; on Saturdays,

185 buses; and on Sundays an public holidays, 123 buses are actively in traffic.The bus routes in

Zagreb are usually designed to be interconnected with the tram lines which minimizes the need

for transfers and also ensures that if a passenger is doing a multimodal travel it’s an easy-going

experience [5].

Figure 2.1: View of Zagreb’s transit network [6]

According to a study conducted by the Faculty of Transport and Traffic Sciences, public

transportation in Zagreb increased from 52% in 2009 to 61% in 2011 which highlights that

9

people are putting more trust into the public transportation system overall [7]. Additionally, the

bus network had some improvements over the years and between 2013 and 2017 there was a

steady increase in the number of passengers which were transported by buses. The year 2017

was highest in marking in regards to ridership since the service coverage was enhanced and it

made it more reliable [7].

This kind of improvement shows the city’s efforts to make a change and make public trans-

portation more accessible to people. With that it can be said that GTFS could also enhance the

passenger experience for bus commuters where it would make it easier for them to plan their

multi-modal journeys, ensuring more accurate transfer times and making it more reliable which

would make them choose public transport rather than private vehicles.

2.2.2. ZET GTFS Data Collection

For a collection of ZET GTFS data, the application in this thesis utilizes Python as the

primary programming language with the addition of MySQL databases for data storage and

other libraries which will be more explained in the next section 3. The real-time data feed can

be accessed from the ZET server at the URL: https://zet.hr/gtfs-rt-protobuf.

In most occasions, when interacting with the data within the protocol buffer retrieved, the

refresh rate of the data inside is perhaps 10-15 seconds. This is important since pinpointing the

exact refresh rate is beneficial to acquiring better overall data quality in the end.

Data is retrieved by using libraries like "gtfs_realtime_pb2" for handling GTFS real-time

feeds, "protobuf_to_dict" which converts protocol buffer messages to python dictionaries and

"requests" a Python library that is used to make HTTP requests to get the trip updates. The

script that is used in this case is visible on figure 2.2 which shows the aforementioned steps.

Figure 2.2: Python script for ZET GTFS real-time trip updates retrieval

Afterwards, this type of python dictionary data can be fully converted to be integrated with

data handling libraries like "pandas" for better data manipulation.

The data extracted from the ZET GTFS feed protocol buffer can be seen in the following fig-

ure 2.3(a) where it is visible ZET GTFS follows the standard specified by Google and includes

10

https://zet.hr/gtfs-rt-protobuf

most of the important data rows regarding its trip update real-time feed. Unfortunately, when

comparing the batch from ZET GTFS feed to feeds from other countries, in the ZET GTFS feed

batch there are no vehicle positions provided.

((a)) Zagreb’s ZET protocol buffer Trip Updates
feed

((b)) Portugal’s Carris Metropolitana GTFS
real-time vehicle positions feed

Figure 2.3: Difference between trip update and vehicle position feed from different countries

The unavailability of vehicle positions occurred in 2010. when two students from FER

(Faculty of Electrical Engineering and Computing) in Zagreb created an application "ZET Info"

which utilized all of the ZET GTFS data and could show where every transit vehicle was at that

moment in time. At that time City of Zagreb did not like the way the data was used then they

quickly shut it down by blocking access to the data and mentioning the reason that this could

potentially be used for terrorist purposes [8], [9].

After some years City of Zagreb did release the ZET GTFS data to the public but still the

exclusion of vehicle position updates persist. It is notable to take a look at other public transit

systems like Portugal’s Carris Metropolitana which offers vehicle positions for their buses. The

Carris Metropolitana example of the real-time feed for vehicle positions is shown in figure

2.3(b) where it is clearly visible how the trip_id and positions of the vehicle with its longitude

and latitude are categorized under the same vehicle entity with a unique id number.

Looking at the differences in transparency and availability of data, it is valid that security

concerns should be upheld, but there should also be a balance between the openness of data and

security measures. If open data policies are embraced fully, like those seen in Portugal, it could

lead to significant benefits for Zagreb’s transit users.

11

By using the following techniques shown in Algorithm 1, an approach for retrieving, pro-

cessing and merging real-time and static GTFS data from the ZET transit system is outlined.

It uses the "gtfs_realtime_pb2" to parse real-time data, which is then converted to a dictionary

format for easier handling. Once the real-time data is extracted, it is merged with the static

information (such as stops, routes and trips) from the CSV files to create a unified dataset.

Additionally, "protobuf_to_dict" is used to convert the feed from protobuf to a dictionary, and

"requests" is used to fetch the real-time data from the ZET server providing it, which in the end

creates the "zet_df" that is used for processing, storing and evaluation.

Algorithm 1 GTFS real-time data and static data retrieval and merging
Input: GTFS real-time feed URL, CSV file paths for stops, routes, trips

Initalize: GeoDataFrame with ZET GTFS transit data

1: feed← gtfs_realtime_pb2.FeedMessage() # Initialize feed message

2: response← GET request to GTFS URL # Fetch real-time data

3: feed.ParseFromString(response.content) # Parse response content into

feed

4: zet_dict← protobuf_to_dict(feed) # Convert feed to dictionary

5:

6: stops← Read CSV file stops.txt # Load static data for stops

7: routes← Read CSV file routes.txt # Load static data for routes

8: trips← Read CSV file trips.txt # Load static data for trips

9:

10: zet_df← Flatten zet_dict to DataFrame # Convert dictionary to DataFrame

11: timestamp← Extract and format timestamp from zet_dict # Process timestamp

12:

13: Select and rename columns in zet_df for clarity # Prepare DataFrame

14: Merge zet_df with stops on stop_id # Add stop data to DataFrame

15: Merge zet_df with routes on route_id # Add route data to DataFrame

16: Merge zet_df with trips using trip_id # Add trip data to DataFrame

17:

18: Convert zet_df to GeoDataFrame using stop_lat and stop_lon # Convert to

GeoDataFrame

19: get zet_df dataframe

The acquired trip updates "zet_df" pandas data frame from Zagreb’ ZET real-time feed can

be categorized like in table 2.1 where the types of information it provides are highlighted.

12

Table 2.1 ZET GTFS trip updates data rows

Data Row Description Example

id
Unique identifier that distinguishes each

vehicle in the system.
XWPGUI5OGN

trip_id
A unique identifier is assigned to each

individual journey, which is utilized to

monitor the trip from beginning to end.

0_1_12602_126_10055

route_id
Identifier that represents the specific route

being used by the vehicle.
126

tp_timestamp
The Unix time format timestamp shows

the most recent update time of the trip.
1724575783

stop_sequence
The order of stops that the vehicle follows

in its journey are arranged sequentially.
1

arrival_time
The scheduled arrival time of the vehicle

at the stop, presented in Unix time format.
1724757799

departure_time
The anticipated departure time of the ve-

hicle from the stop, expressed in Unix

time format.

1724757832

stop_id
Distinct code assigned to each stop, indi-

cating the location where the vehicle will

stop during its journey.

99_52

delay
The vehicle’s delay time in seconds

shows how behind schedule it is.

-237(early),

+237(late)

stop_name
The stop’s name is used for passengers

and systems to identify the location.
Črnomerec

stop_lat
The stop’s latitude coordinate is utilized

for mapping and navigation purposes.
45.81580

stop_lon
The stop’s longitude coordinate is utilized

for mapping and navigation purposes.
15.93413

route_long_name
A detailed descriptor of the route, often

indicating the start and end points of the

same route.

Črnom.-G.K.-

Kvraki

geometry
The location of the vehicle on stop arrival

for tracking in real-time when vehicle ar-

rives on a stop.

POINT (15.934131

45.8158)

13

2.3. SIRI, NeTEx and other transit standards in public trans-

portation

2.3.1. SIRI (Service Interface for Real-time Information)

SIRI is a European standard which is widely used and it is designed to provide real-time

public transportation information, including vehicle positions, trip updates, and service disrup-

tions. From the GTFS side, which focuses primarily on North American transit systems, SIRI

is particularly present in Europe, where it is used for real-time data for buses, trams and trains

[10] [11].

If SIRI is integrated with the existing system while providing more detailed real-time in-

formation, it could offer real-time monitoring of vehicles, service interruptions, and even seat

availability, enhancing the passenger experience by offering timely and accurate information.

With the adoption of SIRI, for example, big cities like London and Paris have optimized their

transit operations, ensuring that passengers can receive up-to-date alerts and plan their trips

effectively [11].

Figure 2.4: SIRI Communication Structure

On figure 2.4 it can be seen on how SIRI manages the overall communication of real-time

public transportation data between two organizations in layers.

The SIRI interface is built around a communication layer that manages the processes in-

volved in data requests and responses, ensuring uniformity in message referencing, error han-

dling, and data flow management across all services[11]. SIRI can be used selectively based on

specific system requirements, allowing organizations to utilize only the necessary services such

as Service 1 and Service n, while omitting unnecessary ones. This adaptability enables efficient

utilization of resources like bandwidth and processing power.

Two primary communication patterns supported by SIRI are Request/Response, in which

one system requests data from another and receives a response, and Publish/Subscribe, a dy-

14

namic model that enables systems to subscribe to specific types of data and receive updates as

they become available [11].

2.3.2. NeTEx (Network Timetable Exchange)

The NeTEx standard is a product of European development intended to simplify sharing

static public transportation data. It encompasses schedules, fare details, and intricate network

configurations, including routes, stops, and operator specifics [12].

NeTEx is especially well-suited for multimodal transportation systems, where buses, trains,

and other transit modes operate cohesively in an interconnected network. Offering a more com-

prehensive dataset than GTFS, NeTEx is well-suited for managing intricate transit operations,

such as adaptable scheduling or long-distance travel with transfers. NeTEx can potentially

enhance urban planning and transportation system design in cities like Zagreb by supplying

planners with data to optimize routes, timetables, and fare structures [12].

Figure 2.5 shows an overall NeTEx data structure divided into different parts and frames

to manage various public transport data exchange aspects. They are divided into sections like

framework and three types of functional data, which are separated based on the information

provided to the user.

Figure 2.5: NeTEx data structure

2.3.3. Additional Standards and Regional Usage

The UK uses TransXChange as the standard for sharing bus schedule information, while

GTFS and GTFS-RT (General Feed Specification Real-Time) are more commonly used in the

U.S. and other regions. European transit systems prefer NeTEx, SIRI, and IFOPT (Identification

of Fixed Objects in Public Transport), focusing on infrastructure components like stops and

15

stations. Moreover, IFOPT standardizes data regarding physical locations such as stops and

interchange points, making it a valuable addition to NeTEx and SIRI for developing quality

transportation systems.

In the following chapter 3 it will be discussed how the acquired and formatted data frame

from the ZET GTFS feed could be utilized within the application framework and also how it is

designed to do so from the front-end, back-end and storage side.

16

3. Application Design and Implementation

3.1. Application Architecture

Application in this thesis is designed by the front-end and back-end structure system with

the connection in between handled by the used framework’s internal connections. The primary

framework used is Dash, a Python-based platform that can create a synergy between backend

data processing and frontend visualization. In the next chapters 3.1.1 and 3.1.2, the used tech-

nologies for development will be explained and the overall system structure implemented.

3.1.1. Used Technologies

To develop the real-time visualization application various technologies and libraries have

been used so that the application can achieve its functionality. In the following, all of the main

technologies which are used together with Python are described:

– Dash: the center of the application is Dash which is built on top of Flask, React.js and

Plotly.js. This framework can be used to create web applications with interactive visual-

izations using only Python code. With Dash, processing in the backend is possible since

every function written in Python can be easily called upon with callback decorators.

This enables the framework to send the processed data directly to the front-end where it

can be rendered. There are two main components of Dash.

• Dash(app. layout): described as a component which defines how components

like User Interface (UI) elements, dropdowns or graphs on specific tabs are han-

dled and displayed. It can be said that this is the overall layout of the whole web

application which ensures that all visual components are properly arranged by

following basic horizontal ruling.

• Dash(app.callback): this component handles the connection from the front-end

to the function getters of the backend as a Python decorator. The user inputs

like tab switching, dropdown selection or even button clicks are connected to

corresponding actions which return information that can be updated in the lay-

out. This enables the application to have dynamic content like graph updates in

17

https://dash.plotly.com

response to the user input.

– Flask: for Dash to work properly, the backend server should be initialized and that’s

where Flask comes into play. It enables functionalities like handling HTTP requests and

managing sessions which in a way then enables a Dash app to be hosted.

– Plotly: this library is integrated into Dash and it provides tools for creating complex

graphs that can also be interacted with. There is a wide range of chart types and because

of this, it represents the main essential for visualizing the prediction graphs and overall

GTFS data.

– Pandas and NumPy: Pandas and Numpy are used for data manipulation and compu-

tations. If there is structured data NumPy and Pandas have the functions to interact

with it. They offer not only functions for data manipulation but also support for multi-

dimensional arrays and matrices with already integrated mathematical functions.

– Scikit-learn: this is a machine learning library used with Python. It is used for model

training and evaluation within the application. Various supervised and unsupervised

learning algorithms are utilized to forecast delays in public transportation.

– Prophet: Prophet, created by Facebook, is a forecasting tool utilized for time series

forecasting within the application. It is especially beneficial in forecasting patterns using

past information, like delays in public transportation.

– Dash Leaflet: this library, an expansion of Dash, is employed for displaying maps

and managing geospatial information. It works together with Leaflet.js, a JavaScript

library for interactive maps, enabling in-depth geographic visualizations in the Dash

framework.

– MySQL Connector: this library is used for SQL database interaction. It allows direct

communication with the MysQL database for data storage and also retrieval.

– GeoPandas and Shapely: these libraries are expansions of pandas library which allows

operations on geometric-type data. Geopandas makes it easier to perform spatial joins

and calculate distances, tasks that are essential for analyzing public transportation routes

and stops.

– BeautifulSoup and Requests: when in need to scrape the web these tools come in

handy because they have the utilities to fetch and parse HTML and XML documents.

This library is used to gather data from specific web sources.

– Threading and concurrent.futures: this are Python modules which enable concurrent

execution. This means that the application can handle multiple tasks simultaneously,

which in this application can be for example downloading GTFS static data, recording

GTFS real-time data and visualizing the data with Plotly graphs at the same time.

18

https://flask.palletsprojects.com/en/3.0.x/##user-s-guide
https://plotly.com
https://pandas.pydata.org
https://numpy.org
https://scikit-learn.org/stable/
https://facebook.github.io/prophet/
https://www.dash-leaflet.com
https://www.mysql.com/products/connector/
https://geopandas.org/en/stable/
https://pypi.org/project/shapely/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://pypi.org/project/requests/
https://docs.python.org/3/library/concurrent.futures.html

All of the aforementioned technologies and libraries work together to create an application

that can handle real-time data, provide visualizations with rendering and also train and predict

at the same time.

3.1.2. Overall System Structure

The system structure of every application should focus on communication between the front-

end and the back-end. It should be planned so that the application can parse large datasets in

between and store the data in one specific session if it’s server-based and accessed through a

browser. To enable that, the system has been organized into specific components or classes,

where each has specific roles and responsibilities. The following components are the most

important ones which enable the application to function properly:

– GtfsDataDownloader: Responsible for acquiring and downloading static GTFS data,

as well as initializing and downloading OpenStreetMap (OSM) data for a specified city

which can be used for extracting polylines for trajectory drawings.

– GtfsSqlDBParser: Responsible for managing and storing GTFS data in a MySQL

database, insertion of static and live data with multi-threaded data insertion and mainte-

nance sub-tasks which are in the field of periodical backups and overall table manage-

ment.

– GTFS Public Transport Net Constructor: This component is used for filtering bus

and tram extracted OSM transport network data based on specific criteria such as route

IDs, and stop IDs which enables detailed analysis of routes and stops.

– DatePolygonDBProcessor: This utility processes database records within specified

date ranges and polygon coordinates, enabling spatial and temporal queries to extract

relevant data for analysis.

– GraphHistoricalConstructor: This utility is used for creating constructor objects for

specific types of graphs for historical delay data visualization. The function enables the

user to create graphs like average delay by stop, delay distribution histograms, on-time

performance pi-charts and similar. Additionally to that it also supports machine learning

error metrics for model comparisons.

– Backup and Scheduling System: This component is used in situations when scheduled

tasks are important for long-run data recordings. Automated backup functionality for

MySQL database is implemented which ensures data availability in case some serious

errors occurred when inserting or retrieving data.

– LogParser: Handles logging events within the application server. Log entries with

various message levels (info, warning, error, debug) and store the last 100 entries in a

19

log buffer, which can be accessed on request. This is used to monitor and debug the

application.

One thing that was thought over time is that the system should have modularity; while

designing the app at the start, it was not planned to have functionalities divided into separate

abstract layers, which did present a problem later in development when it was important, for

example, to log messages additionally while the application is running on a server or have the

functionality to seamlessly add any ml_model to the mix. The modular system simplifies overall

development and eases maintenance since the developer knows exactly where specific things are

located. Figure 3.1 shows a diagram of the overall system structure and the interactions between

the components.

Figure 3.1: Simplified diagram of Dash app structure

It illustrates the data flow within the Dash application, which enables user interface com-

ponents to be connected to the backend data processing and utility scripts. The component

"layout" can be categorized as the front-end layer of the Dash application, which can be inter-

acted through Python code or directly through HTML, CSS and JavaScript. This contains the

structure of the UI elements, that can be dropdowns, buttons, graphs and etc. The element "call-

back" then interacts between the user interface and the backend functions by wrapping them

as a decorator. The functions "XYZ" are then called via the decorator and executed where the

data then is parsed back to the frontend components. There are additional "back end processing

initialization" functions called once at the beginning. For example, if properly set up with the

JSON configuration, the layout will trigger the downloading of static GTFS data only once at

the beginning. This illustrates how the layout interacts with the processed data and then brings

20

it back to the user to interact with it.

3.2. Front-End Integration with Back-End

3.2.1. Front-End Implementation

Front-end development is a part of the application creation that is mostly focused on how

the user interacts with the app directly through the web browser. This involves creating layouts,

designing them and making sure that the interactivity of the application is on a specific level,

etc. Front-end technologies like HTML, CSS, and JavaScript are primarily used where it is

important to understand how user input is handled and ensure that the interface does what it is

designed to do [13].

The application’s front-end layout is centred around the Single-PAge (SPA) design paradigm.

Dash usually can’t function with a multi-page approach and was not meant to do that. It was,

in most cases, used as a dashboard for data analysis or machine learning showcases, which did

not require multiple separate pages.

A single-page application is a web application or website that rewrites its active web page

with new data from the web server dynamically while the user is interacting with it. It is not

loading any new pages, only one page is open which constantly refreshes and gets new data on

the same page. It can sometimes seem like the web page has multiple pages overall and loads

extremely fast even though it is only one page, which loads its resources dynamically and adds

them to the page when necessary, usually as a response to the user’s actions [14].

The "app.layout" in Figure 3.2 shows the application’s structure from the front-end side.

It mentions the most relevant components, which interact directly with the user or the active

session of the application instance in the browser. The "header" component, which contains the

logos and application titles, is logically at the top, where every part of the big SPA is separated

by a horizontal ruling. In the same layer, the session data storage is reserved for storing appli-

cation states, such as which graphs were selected on the "Info" tab or on which coordinates and

zoom level you left the "Map" tab.

The layer underneath manages the interactions that require some kind of confirmation. In

this case, when you miss clicking some buttons, it will create a pop-up warning you not to do

so, etc. On the other hand, interval counters are used for periodic updates to the interface. This

functionality is very important since it is used to frequently update the vehicle positions on the

map so that the user is informed of the vehicle location at stop arrival.

The Tab content is divided into three parts, which are in the following:

– Map Tab: this is used for visualizing real-time data directly on the map. That includes

the current position of the vehicle for the selected route and other descriptions. Users

21

can additionally click and crate polygons to include or exclude specific stops for later

evaluation.

– Options Tab: this tab allows users to select specific routes or batches of routes then

be shown on the "Map" tab through the "Tram or Bus Dropdowns" and, with that, also

the data that should be loaded. Additionally, it also includes controls for starting and

stopping of GTFS data recording and loading of static data.

– Info Tab: this tab is primarily used for displaying graphs and filtering through the ex-

tracted "store_dataframe" dataset so that specific data can be excluded or included in

graph visualization. It also allows the user to select different machine-learning models

to test out.

The layout is set up with the application’s first initialization, and HTML containers with

specific IDs are assigned to the callback, which then waits for the user input or interval trigger.

Figure 3.2: GTFS application front-end structure

22

3.2.2. Back-End Implementation

Back-end development is how the server side of the application is implemented to make

the application do what it is supposed to. When a user interacts with the application, he trig-

gers components located on the front-end side that communicate to the processing components

on the server. The logic behind every component, the application’s database, and the overall

server state compose the back end. To maintain the server’s state, developers use program-

ming languages like Python, PHP, and Java, as well as frameworks that use the corresponding

programming language, like Django, Node.js, or Flask, in the case of this thesis. For every

user’s interaction with trigger front-end components, he, in translation, makes a client request

that the server, for example, executes some data transactions or assigned functions with specific

server-side logic [15].

The GTFS application’s back end is implemented with scripts and classes to handle data

processing, machine learning, model training and concurrent database interactions. When the

user triggers a button with a specific HTML container ID, which corresponds to a specific

function with its Dash callback decorator, it starts a specific chain reaction where data starts

being fetched, processed and then afterwards prepared for graph visualization in the front-end.

The main components which make this work in the back-end were already explained in chapter

3.1.2, where the overall functionalities were described.

In the following figure 3.3, it can be seen that the front-end part with its corresponding tabs is

connected to the back-end process chain. To better understand the corresponding figure, it first

needs to start from the front-end side, which are the "init functions" and the "dash. callback"

connectors.

In this regard when the functions are called directly from the "app.layout" the init functions

will trigger the "DatePolygonDBProcessor", which, for example, processes "date_ranges" at

every initialization of the app by doing a query to fetch the minimum and maximum timestamp

from the database. This triggers the "DatePolygonDBProcessor" to call for the "GtfsSqlDB-

Parser" which then connects to the database and inserts or fetches data on request. Onward,

"GtfsSqlDBParser" in addition to that, then requests the "GtfsDataDownloader" to, if needed,

fetch the GTFS data or process the OSM data that should be shown on the "Map Tab".

The same thing applies to the "dash.callback" where this can also trigger the "MiModelCon-

structor" with a drop-down selection from the "Info Tab" interface. The "MiModelConstructor"

after training and predicting, and creating the data for visualization triggers the "GraphHis-

toricalConstructor" that takes this data and then generates or updates the graphs. In the end

then, "GraphHistoricalConstructor" send the corresponding constructed figure object back to

the callback to update the "app.layout".

All of this is designed to operate asynchronously, so fetching the data processing as de-

scribed can be done separately on a different thread. This enables the GTFS application’s most

23

Figure 3.3: GTFS application Back-End process chain

important functionalities to operate even though fetching and processing are being done in the

background to create evaluation data.

3.2.3. Fron-Back Integration

Integration, from a software development perspective, occurs when specific subsystems or

parts of the software are integrated to create one whole system. Integrated systems like this

demonstrate better performance than separate independent ones. If the application is separated

into specific parts, it delivers greater functional significance [16].

There are different types of software integrations, such as star, horizontal, and vertical, and

there are implementations of the common data format type integration. Since connecting the

front and back end with Dash is only discussed, the focus will be on the integration type most

accustomed to callbacks, the horizontal one [16].

Horizontal integration refers to creating subsystems specifically for communication pur-

poses. The middle man between the server with processing functionalities and the application

user is the "Enterprise Service Bus", which reduces the number of connections of each subsys-

tem to one. This creates a layer that translates one interface into another where an example

24

of the architecture can be seen on figure 3.4. For the GTFS application, it happens through

callbacks, which Dash employs.

Figure 3.4: Horizontal Integration Example [16]

Horizontal integration of front-end and back-end only using the Python programming lan-

guage, with the middle man being the callbacks, creates a cohesive system that can function

independently. For example, when a user selects a date range or the route from the drop-down

menu, the callback is triggered, initiating the back-end processing and operations.

In figure 3.5, it can be seen that the architecture is constructed with boundaries between each

component. It also illustrated how horizontal integration is implemented in the Dash core with

callbacks and setup_callbacks() function to emulate a central hub between the "layout" and the

back-end functions. As seen from the central part of the figure, Dash App manages user inputs

session data with server initialization, which is then connected to other backend components

like "GtfsDataDownloader", "GtfsSqlDBParser", and etc. These components then interact with

the callback interface, making the architecture easily changeable.

One of the important aspects was the logging part since debugging was always important in

any big application, and the object logger is attached to every class with the "config" initializa-

tion import. This means that the "LogParser" is initialized once in a separate script where the

object is created, and then afterwards, the object is imported to another script that needs to be

used.

25

Figure 3.5: Detailed architecture of the whole GTFS Dash application

Ultimately, this creates a full application that can be flexible and scaled according to the

user’s needs. Regarding scaling, new functions and graphs can easily be integrated by adding

new functions to classes for object creation, like "MIModelConstructor" and "GraphHistorical-

Constructor."

In the following chapter 3.3, the way this data is stored with the "GtfsSqlDBParser" will be

explained, focusing mostly on how to interact with the real-time and static GTFS data and the

creation of the main "zet_feed_data" table.

26

3.3. Database Implementation

3.3.1. Overview of Databases

Databases are a collection of structured data. These data collections are connected to each

other and can be served further to the end user. Databases are usually contained from spe-

cific elements, which are pieces of data called "data_items", for example, a "route_long_name"

from the "zet_feed_data", and then there is a group of related data which are called "records"

[17]. Records are viewed as separate entities in databases, such as "routes_id" connected to

"zet_feed_data" as a column of the same entity. Since columns are attributes and records are

rows, this together forms a relation, as shown in figure 3.6.

Figure 3.6: Zed_feed_data records

In addition to data, a relational database creates relationships between data groups. From

what it can be concluded, the data must have meaning and mutual relationships for something to

be considered a database. A group of data that is just random cannot be considered a database.

Since the database cannot be managed independently, DataBase Management Systems (DBMS)

and software tools enable the creation, definition, handling and sharing of databases with the

end users and applications [17]. When you join the DBMS and the database, you get a database

system, as shown in figure 3.7.

Figure 3.7: The composition of a database system [18]

27

Database systems were developed in conjunction with databases because long-term data

storage and simultaneous access from multiple users have been needed. This data approach is

evident through centralized data management, where independence between data and applica-

tion increases integrity, supports different data views, and reduces data inconsistency [17].

Database systems are usually divided based on the number of logical levels and where soft-

ware support is located. Two-tier, three-tier, or more-tier database architectures exist. Two-

tier database architectures are client-server types of architecture in which the client has the

Graphical User Interface (GUI), applications, and software support for business operations or

processing, while the server side has software support for querying, servicing, and transaction

processing. These functions are needed for data retrieval and manipulation. These types of

servers are also called query servers or transaction servers. A two-tier database implementation

can be seen in figure 3.8 [19].

Figure 3.8: Tier-2 database architecture

If, in some regards, a tier between the server and the client is added, the client could achieve

better performance since it provides great scalability of applications and can reuse the imple-

mented software component. As can be seen from Figure 3.9, a three-tier architecture is con-

structed by adding a middle tier between the database system and the data presentation layer.

Figure 3.9: Tier-3 database architecture

28

This tier is an application or web server containing procedures and data retrieval and au-

thentication methods. In this regard, the database server, logic, applications, and programs are

separated completely from the client level, which is only for presenting data on a web or a

graphical interface [17].

In the case of the GTFS application, tier-3 architecture is implemented, where clients could

be every user who interacts with the Dash front-end presented on the web browser, which is

hosted on a Flask server in the application tier. In this regard, every callback triggered by

the user from the front-end could potentially also initialize the "GtfsSqlDBParser," which will

either start retrieving or processing some data in the data tier.

3.3.2. GTFS Database Structure

In the previous sections, GTFS application development was discussed from the perspective

of back-end processing and efficient data management, but now, with transitions, it is forwarded

to the application’s database design, which ensures that the application has efficient data storage

with a function of retrieval and processing in the data tier. The GTFS database is structured as

a relational database, which is important when dealing with data like public transport schedules

and real-time vehicle tracking on stop arrival regarding data management.

The GTFS database organizes real-time feed and static data into tables with corresponding

rows and columns. Each table stores data about a specific entity, such as routes, stops, trips,

etc., in the context of GTFS public transportation system data. Every table has some relationship

with another table where everything is defined using foreign and primary keys. This principle

links records of one table to another, ensuring that data integrity exists. This also helps the user

execute complex queries that are needed occasionally.

The relational GTFS database implemented is illustrated in the following schema on figure

3.10. This schema type can handle static and real-time data related to GTFS public transport

data.

The main tables of the schema are the following:

– zet_feed_data: this table stores real-time data about vehicles’ location on stop arrival.

It also stores timestamps, route IDs, delays, geospatial data etc. This is the central

piece regarding real-time data recording. It is referenced through foreign keys to tables

"stops", "routes", and "trips".

– stops: the table contains static data about each stop in the ZET transport network, in-

cluding the stop name, latitude, longitude and other metadata. It is referenced through

primary keys to tables "zet_feed_data" and "stop_times".

– trips: this table specifies information about each trip taken. It has information like trip

head signs and directions. It is the most referenced table in the schema which is con-

29

nected with its primary and foreign keys to tables "zet_feed_data", "time_record_static",

"stop_times", "calendar", "routes", "calendar_dates".

– routes: this table stores data about each route, which includes the route ID, name and,

most importantly, type (bus, tram). It is connected through its foreign key to "trips", and

through its primary key to "agency".

– stop_times: this table stores the static data about scheduled arrival and departure times

for each trip stop. This also includes the full stop sequence so that it is recognized which

stop it is for which trip. It is connected through its foreign key to "trips" and its primary

key to "stops. "

– calendar: this table stores data about service availability through the week and service

changes. It is connected through its foreign key to "trips".

– agency: stores data about the agency’s metadata. Not so important in this regard since

we are only dealing with one agency, and that is ZET. It is connected through its foreign

key to the "routes" table.

These tables are interconnected, allowing the data to be retrieved in different ways and

conditions. For example, if the link is established between the "trip_id" in the "zet_feed_data"

table to the "trips" table and then afterwards to the "routes" table using JOIN operators and

adding columns in the final query result to get the data, we get the complete picture of a trip’s

nature in the transport network.

30

Figure 3.10: Relational Schema for ZET GTFS database

31

3.3.3. GTFS Database Data Handling

Data retrieval and insertion are parts of the basic ZET GTFS database data handling which

are important in the scope of the GTFS application. After constructing the database schema,

the tables, which are interconnected, allow for data insertion and retrieval when triggered by the

user. These requests that the user can make could be to get a batch of information correlated to

specific routes or a specific time frame for the chosen route. For this to be possible, three main

functionalities were implemented:

Inserting real-time data

For real-time data insertion it is important to have a script that can handle dynamic data

updates accordingly. On figure 3.11 it can be seen that the script first prepares the incoming

real-time data so that it matches the database schema format. Columns and placeholders for the

data positions are counted and the correctness of geospatial data types is checked. The script

uses the "mysql.connector.cursor.execute" to execute the SQL command within the transaction

block. Afterwards the the whole transaction can be committed accordingly.

Figure 3.11: Python Script for inserting real-time data into GTFS database

For each row of real-time data, the script constructs an SQL "INSERT IGNORE." This was

set up intentionally so that when the GTFS data is corrupted due to problems in the data format,

etc., it will not break but continue to record further. This approach creates redundancy, but with

the time-frame extension of the data-interval update, it would be minimal even though some

redundant entries are created. This did not significantly impact the data quality in the end.

Additionally, the script employs the "tqdm" library, which was not mentioned before, to

provide an overview of the user’s progress. This was really significant when inserting large

volumes of data like "stop_times," for example, in the database, where it usually takes around

3-4 minutes to record the whole static data block completely.

32

The result for one row insert through "connection.execute" adding data placeholders to the

transaction can be seen in figure 3.12 before commit. Also, in this regard, since this only

enables the creation of the placeholder, all of the row record data is then inserted by adding the

"tuple(row)" with its data to its corresponding placeholders.

Figure 3.12: Result of one-row append to the transaction for real-time data

Inserting Static data

Static data insertion, which can include routes, stops, and agencies, for example, is imple-

mented using a different approach since the updates are not as frequent as those in real-time

insertion. The figure 3.13 shows the Python script which handles static data insertion into the

GTFS database.

Figure 3.13: Python Script for inserting static data into GTFS database

In a similar manner, as it has been discussed in 3.3.3, the key columns of the placeholders

are constructed to align with those of the "zet_feed_data" table so that the data can be placed

accordingly. The script dynamically constructs a SQL "INSERT INTO...ON DUPLICATE KEY

UPDATE" which inserts new records and updates existing ones if duplicates are detected based

33

on primary keys. For static data, it is important to eliminate redundancy since appending static

data would create problems later when fetching data for analysis since it doubles the querying

time.

The outcome for one-row insertion is depicted in figure 3.14, which shows how the data is

inserted with appropriate placeholders and values to its table.

Figure 3.14: Result of one-row append to the transaction for static data

Fetching data for graphs and analysis

Fetching the data from the GTFS database for use in machine learning, average delays by

stop, etc., required a slightly more complex SQL query. In this regard, it is also needed to define

specific stops based on their location and how it is drawn through the polygon tool and select

routes with other boundaries. The Python script shown in Figure 3.15 demonstrates how the

data is fetched to be used later for analysis.

Figure 3.15: Python Script to fetch data for analysis and evaluation

34

The script dynamically builds the SQL query based on parameters that the user defines from

the front-end side. Routes, date ranges, and geographical polygon coordinates are included in

the query.There are two functions included which are "ST_CONTAINS" and "ST_GEOMFRO-

MTEXT" which filter data based on geographical location using polygons and between

specific date ranges. This type of querying is important when the user wants to analyse delays

for specific stations in a chosen area and time period.

Figure 3.16 shows an example of a query constructed by the script with an example of a

polygon area on the map, route, and time frame.

Figure 3.16: Result of a constructed SQL query to fetch data from the GTFS database

Collected GTFS data description

The collected data provides essential static and real-time information about the transit sys-

tem, and the description of the static collected data can be seen from the following table 3.1,

which gives an overview of the different static data tables in the GTFS dataset, their respective

record counts, and file sizes.

35

Table 3.1 GTFS Data Overview

Table Total Records File Size

agency 1 256 b

calendar 8 392 b

calendar_dates 72 1.22 kb

feed_info 1 178 b

routes 157 8.65 kb

stop_times 1,213,893 80.2 MB

stops 3,854 211 kb

trips 72,664 3.64 MB

The smallest ones are "agency" and "feed_info" which contain only one record, with the

sizes of 256 bytes and 178 bytes. Additionally, the "calendar" and "calendar_dates" contain

schedule information with 8 and 72 records, ranging from 392 bytes to 1.22 kilobytes. The

"routes" table, at 8.65 kilobytes, stores details of 157 transit routes. The largest, "stop_times",

has over 1.2 million records and occupies around 80.2 MB, detailing the schedule for each stop.

The "stops" table, with 3,854 records, describes physical stops and is 211 kilobytes in size,

while the "trips" table has 72,664 records with a size of 3.64 MB, providing information about

trips.

In addition to the static data, real-time data is stored in the "zet_feed_data", which gives

a dynamic picture of the whole transit system’s operation in real time. The "zet_feed_data"

overall contains 35,958,139 records and occupies 5.735 GB of storage. This is a large dataset

compared to the static GTFS data and reflects the quantity of real-time updates the system

captures.

The earliest recorded event in this dataset has a timestamp of 1690164797, corresponding

to July 24, 2023. The latest recorded event has a timestamp of 1692172828, corresponding to

August 16, 2023.

The figure 3.17 displays real-time delays (in seconds) of transit vehicles recorded in the

"zet_feed _data" from July 24, 2023, to August 17, 2023. On the x-axis, time in days is visible,

and the y-axis represents the delay in seconds, with negative values indicating vehicles arriving

earlier than scheduled.

Some data regarding trams consistently shows a shift towards negative values, with many

delays concentrated around -200 seconds. This suggests that trams often arrive earlier than

scheduled, likely due to the absence of traffic delays that affect buses. Unlike buses, which can

be affected by traffic congestion, trams typically run on dedicated tracks and this enables them

to have free passage when traffic jams are frequent.

36

Figure 3.17: All delays in the collected GTFS data for the full period

A structured GTFS database utilizes the three main data handling approaches to ensure the

data is readily accessible for analysis and adequately collected. This is important for the next

chapter 4 where it will be seen how the data collected for the GTFS database can be used for

machine learning to predict trends in delays.

37

4. Trend Prediction Modeling

Trend prediction is a vital component in public transport since it enables forecasting a series

of future delays based on specific historical patterns. If machine learning techniques are applied

to the GTFS Time-series data used in the ZET GTFS application, then it is possible to capture

patterns and relationships in the data that can make the predictions more accurate.

4.1. Overview of Predictive Modeling

4.1.1. Machine learning for predictive modelling

Predictive modelling uses machine learning algorithms and statistical techniques to specify

and create models more accustomed to predicting future outcomes based on historical data.

When underlying patterns are detected, the user of the algorithms can predict future events to

some extent based on the overall error metric. In public transportation, for example, this can

be implemented to predict vehicle speeds or add the prediction to multivariate algorithms to

predict service times and delays based on the weather or route conditions.

Machine Learning (ML) overall is a subset of collective artificial intelligence, which focuses

on constructing and implementing algorithms that enable computers to learn from chosen data.

Making predictions and decisions on the way without being programmed to do so explicitly.

As described in predictive modelling, machine learning algorithms check and analyze histor-

ical data and develop models to forecast future trends and specific behaviours. Since ML is

more flexible than implementing traditional statistical methods, it is also more accustomed to

handling large datasets consisting of numerous variables. To fully understand the concept, the

machine learning process is divided into multiple steps like in the following:

1) Data Collection: data collection is the first foundational step when starting with machine

learning, where relevant information like zet_feed_data with its corresponding routes and

stops are collected to train the model. For instance, data on stop_directions for specific

stops is relevant to distinguish if the vehicle has currently stopped on an inbound or out-

bound type of stop. Of course, the quality and diversity of the data are important since

the model directly learns from it. In translation, the more data you have, the more chance

38

is there that the model results in more accurate predictions. More diverse data enables the

model to understand various patterns and reduces the risk of errors during its operation

[20], [21].

2) Data Preparation: after data collection, the next step is to analyze it and see if something

is wrong with the data. This involves data preprocessing, where inconsistencies and errors

are removed, and then, afterwards, the data is split into training and testing sets. The data

split usually occurs in the ratio of 80% data used for training and 20% for testing, but

sometimes it is also ok to do a 70:30 ratio. This separation is done so that over-fitting

does not occur. This happens if the model learns too well but fails to recognize the new

data [20], [21].

3) Choosing the Model: one of the big aspects is choosing the model to fit the data. Since

different models are suited to different data types, for example, the time-series type of

data is different from the cluster type data where regression algorithms would work best.

It is the same thing that decision trees would be more akin to classification tasks, while

neural networks would be a better fit for image recognition tasks. The choice of a model

should align with the specific objective a machine learning project brings. The other

aspect is the nature of the data since more quality data would presume more accurate

predictions [20].

4) Training: the training starts when the model has been chosen and the data is ready. With

training, the model will identify patterns and relationships between data records, and

during this stage, the model can also adjust its parameters iteratively to minimize errors

and improve accuracy. This step is time-consuming since it requires multiple iterations,

especially for complex models. If the training process is longer and refined, there is

more chance that the model can generalize new data, making it very important for trend

prediction [20].

5) Evaluation: after model training, the result or predictions should be evaluated using the

testing dataset, which is just data that the model has not yet seen. This is an important step

since, in this way, it can be seen how the model generalizes new unseen data so that it can

perform correctly in real-world situations. The evaluation is also used so that overfitting

of the model and underfitting could be eliminated. Before deploying a machine learning

model, this step must always be passed [20].

6) Hyperparameter Tuning: if, from the evaluation, it can be seen that the model’s per-

formance is not optimal, the tuning of hyper-parameters is necessary. By tweaking the

model’s parameters, potentially, some of the accuracy and efficiency is improved, but that

can be a long run if the data overall does not have good quality or if the data is just too

39

stochastic. This iterative process requires going in and out of training multiple times and

testing different configurations so that the best combination is found. This minimizes

errors in prediction results [20].

7) Prediction: after the models has been optimized and all the errors were dealt with as

much as possible, the model could be ready for deployment. At this moment the mod-

els can then make predictions on new data. This is the resulting phase where the ma-

chine learning model can then be used to generate insight and impact on overall decision-

making when planning specific things in the future [20].

Types of Machine Learning

There are three main types of machine learning, as visible from figure 4.1, and in most cases,

they are used for different purposes, which can be described in the following:

Figure 4.1: Types of Machine Learning [22]

1) Supervised Learning: Supervised learning is when training is conducted on labelled

data. In this type of data, the correct output is already known for each input, which means

that the model learns to map inputs to its outputs, and based on that, it tries to forecast new

inputs accurately. This type of learning could be divided into classification (e.g. when

trying to detect spam messages or binary patterns) and regression (e.g. commonly used

for forecasting sales). This labelled data type helps the model to learn faster and more

accurately than other types [21], [22].

2) Unsupervised Learning: Unsupervised learning is when some part of the data has no

labelled responses. This type of learning tries to identify patterns and relationships within

the data by clustering similar items. This is extremely useful when there is a need to

discover hidden patterns data which can provide insights in situations when labelled data

is unavailable [21], [22].

40

3) Reinforcement Learning: Reinforcement learning is a specific type of machine learning

since it requires feedback from the environments and then iterates multiple times with the

newfound data to learn better and make better decision. Decisions are based by maxi-

mizing rewards trough trial and error. This is commonly used in robotics, gaming and

navigation systems where it is extremely important for the model to adapt to changing

conditions and also learn over time from new data obtained from environments [21], [22].

Figure 4.2 shows the most common algorithms used for specific types of machine learning.

Regarding the time-series data obtained for the ZET GTFS application, the scope adequately

falls into the spectre of supervised machine learning models accustomed to time-series data like

Facebook’s prophet, which will be described more in the next chapter 4.1.2.

Figure 4.2: Machine learning algorithms used for specific ML types[23]

41

4.1.2. Implemented Machine learning model

The ZET GTFS application implements one primary machine learning model best suited

for time-series data to predict trends in public transport: Facebook’s Prophet. Prophet is best

accustomed to time-series forecasting with large quantities of data, which can predict quite well

even if missing data exists.

The primary variable used for predictions with Prophet is the delay variable. This variable is

important because, if predicted, it can increase the efficiency of the overall public transportation

system evaluated. In cities where trams and buses usually operate, through predicting the delay

variable, bottlenecks can be identified and used to adjust schedules for better operating service

of the transport system. Predicting delays usually helps specify situations where trams or buses

may arrive early or late, which can improve service reliability. The delay variable is crucial since

it makes optimizing the public transport systems possible, especially when focusing on multi-

modal transportation networks. It is also one of the reasons why it was chosen for predictions

with the Prophet.

Since this model focuses on scenarios with strong seasonal effects and non-linear trends,

like those present with delay prediction when, for example, there is no data between 11:00 PM

and 4:20 AM, it is most appropriate to use it here. In figure 4.3, the missing data at night can be

seen since the route is inactive at that time. This can present a daily seasonality, but it can only

be useful if there is enough data if you want to add additional seasonality to the model. This will

be more clearly described in chapter 4.2.2 since adding seasonality is one part of initializing a

model.

Figure 4.3: Example of Prophet night seasonality pattern for ZET GTFS data

Prophet is a type of additive model in which non-linear trends are fitted with yearly, weekly,

and daily seasonality, including holiday effects. Since it has a logistic growth mode, it can

easily capture trend changes. Other important factors are the quality and quantity of data on

which the model depends.

The time-series data obtained gets segmented into multiple linear segments, where everyone

has their growth rate. With their growth rate, these segments are separated but then connected

42

with continuity constraints afterwards, so the connection happens smoothly. Sometimes, when

there is a sudden shift in trend, for example, if there are active day-time routes at night, it could

adapt very easily.

The following equation represents the general form of Prophet [24]:

y(t) = g(t) + s(t) + h(t) + ϵt (4.1)

Where:

– g(t) is the trend component used to model non-periodic changes in the time series.

– s(t) captures the regular fluctuations, like those occurring weekly or annually.

– h(t) considers the influence of holidays or special events on the time series.

– ϵt represents an error term in the model is assumed to follow a normal distribution and

represents any unique noise in the data.

Trend Component

A piece-wise linear or logistic growth function can extract the trend component g(t). The

piece-wise linear model allows the growth rate to change at specific points, making it suitable

for data with sudden trends. In contrast, the logistic growth model is used for data exhibiting

saturating growth, such as in population growth models for example [24].

In the following, the piece-wise linear trend model is shown:

g(t) = (k + a(t)T δ)t+ (m+ a(t)Tγ) (4.2)

Where:

– k is the base growth rate.

– a(t) is an indicator vector which indicates if time t has passed a changepoint.

– δ signifies the rate modifications made at every changepoint.

– m and γ are parameters to adjust the offset at changepoints.

Seasonality Component

Seasonality can be represented by using a Fourier series, which enables the model to capture

periodic patterns over different periods (e.g. weekly, yearly, etc.) The seasonal component s(t)

can be represent by [24]:

s(t) =
N∑

n=1

(
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

))
(4.3)

43

Where:

– P is the length of the seasonal pattern (e.g., P = 365.25 for yearly patterns).

– N represents the count of Fourier components.

– an and bn are the coefficients derived from the data.

Holidays and Events Component

Holidays and Special Events Component

Holidays and special events often have a significant impact on time series, causing devia-

tions from typical patterns. Prophet allows users to explicitly include holidays as part of the

forecasting model. The holiday effect h(t) is modeled as:

h(t) =
∑
i

κi1t∈Di
(4.4)

Where κi represents the magnitude of the effect of holiday i on the time series. 1t∈Di
is

an indicator function that is equal to 1 when t falls within the set of holiday dates Di, and 0

otherwise.

Model Fitting

The Prophet models are typically fitted using maximum a posteriori estimation (MAP), a

method that combines the likelihood of the data given in the model with prior distributions

on the parameters. Fitting the model involves optimizing parameters such as k, m, δ, and the

seasonality and holiday effects coefficients to effectively capture the observed data patterns

[24].

4.2. Data Preparation and Training

Predictive modelling usually relies on the data type’s quality, quantity, and structure to suc-

cessfully train machine learning models. Proper data preparation is important for the model to

learn effectively and produce reliable predictions.

4.2.1. Data Preprocessing

Data preprocessing is when data is transformed from a raw format to a suitable dataset that

can be used for modelling. This is usually necessary since real-world data is often incomplete,

noisy, and inconsistent. Preprocessing enables the machine learning algorithm to detect patterns

much more easily.

44

In the case of ZET GTFS data, which is public transportation time-series data, it is necessary

to be sure that the data is clean from any unnecessary outliers that could skew the model’s

accuracy. Outliers sometimes GO to extreme measures (e.g. sudden delays of -1498), which

are not representative of typical conditions. This kind of outlier tends to distort the trend and

seasonality patterns in Prophet, which leads to not-so-accurate predictions, and it is removed

with the following approaches:

Outlier detection and removal: In this thesis, Z-score and Interquartile Range (IQR) are used

to identify and remove outliers.

– Z-score Method: The Z-score method of removing outliers identify these outlier points

by measuring how far each one is from the average. So, when every data point is taken

and subtracted from the average, it is then divided by the standard deviation (standard

spread of all points). So, if a point with a Z-score is too far from zero, it is considered

an outlier and removed.

Z =
X − µ

σ
(4.5)

where X represents a data point, µ is the average, and σ is the standard deviation (stan-

dard spread of all points).

– Interquartile Range (IQR) Method: This method finds outliers by looking at the spread

of the middle half of the data. If the 25th percentile (Q1) and the 75th percentile (Q3)

are taken, it will calculate the range between them. In some cases, regarding getting

better prediction results, the collected data was too stochastic, creating problems for the

model when finding patterns. Because of this reason, the interquartile range shrunk,

going from 0.33 percentile to 0.58 percentile, which enabled the model to find patterns

in data more easily. In this regard, it can be taken that if a data point is lower than

Q1 − 1.5 × IQR or from the other side much higher than Q3 + 1.5 × IQR, then it is

considered an outlier. The IQR is :

IQR = Q3−Q1 (4.6)

where Q1 and Q3 are the 25th and 75th percentiles of the data.

Handling Missing Values: Regarding the missing NaN values, they were dropped since it is

important to maintain data quality, ensuring that the data is complete and reliable. The percent-

age of "null" values in relevant columns like "arrival_time" is 56.85% and "departure_time"

is 51.96%. This shows that more than half of the collected data was unusable and had to be

discarded to prevent inaccurate predictions. Keeping incomplete records could introduce bias

or inconsistency in model training, negatively affecting the results, which is why they were

dropped in this case. However, this also highlights a need for ZET, as a provider of GTFS

45

data, to improve its data collection processes to ensure better service provision and higher data

quality for future analyses.

With the preprocessing steps applied, the dataset becomes much more reliable in this regard,

and that enhances the model’s performance in detecting patterns in data, reduces noise and

results in more accurate predictions. With the time-series data, there is still a limit to how much

minimum data you can have, and that is the only aspect that could affect the model; nevertheless,

the preprocessing/prefiltering techniques are applied. This should be considered when handling

a small amount of time-series data.

4.2.2. Training for the Chosen Model

When training a machine learning model, it is important to fit the overall model to the

filtered/preprocessed data to learn the underlying patterns. In the following steps in algorithm

2, the model is initialized with added seasonalities and fitted to preprocessed data to make better

predictions.

The train/test ratio was set to 80/20, meaning that 80% of the available data was used for

training the model, while the remaining 20% was reserved for testing and evaluating the model’s

performance. Splitting data with the Prophet is usually done manually, and Prophet cross-

validation tools are used to evaluate the prediction.

46

Algorithm 2 Training Prophet Model for Time Series Forecasting
Input: Preprocessed time series data self.filtered_data, forecast period

forecast_period

Initalize: Trained Prophet model and forecast results

1: Initialize Prophet model:
2: model← Prophet(

3: yearly_seasonality=False,

4: weekly_seasonality=True,

5: daily_seasonality=True,

6: changepoint_prior_scale=0.05,

7: seasonality_prior_scale=1.2)

8: # Set seasonality modes and priors

9: Add custom seasonalities if needed (in case of datasets that have less than a month of
data, there is no need):

10: model.add_seasonality(

11: name=’daily’,

12: period=1,

13: fourier_order=10)

14:

15: Fit model to data:
16: model.fit(self.filtered_data[[’ds’, ’y’, ’cap’, ’floor’]])

17: # Train model using preprocessed data

18: Create future data frame and make predictions:
19: future← model.make_future_dataframe(

20: periods=forecast_period,

21: freq=’H’)

22: # Generate future dates for prediction

23: future[’cap’]← 400

24: future[’floor’]← -400

25: forecast← model.predict(future)

26: # Predict future values using trained model

27: forecast

28: # Return forecast results

The parameters show that the Prophet object is initialized with weekly and daily seasonality.

Still, based on the amount of collected data, there is no need to use this parameter, meaning they

could be ignored. The "changepoint_prior_scale" was set to 0.05 to better fit the smaller amount

47

of collected data, and the fitting frequency was set to hours or "H" in this case. The future

flooring and capping were necessary since sometimes there were situations when the prediction

would overfit and lose stability when predicting the forecast, as shown in the figure 4.4.

Figure 4.4: Example of Prophet instability with a added yearly seasonality for ZET GTFS data

If monthly and yearly seasonality with "model. add_seasonality" is added, the data amount

should be at least 2 months of recordings. So, seasonality is only applicable when more data is

in the dataset. Unfortunately, in this case, when only 3 weeks were collected, there is no need

to use this. It can be commented out (only shown here as an explanatory reference).

4.2.3. Evaluation Metrics

When assessing any predictive model’s performance, it is always important to use specific

evaluation metrics. These metrics offer insight into how well the model recognizes patterns

and generalizes new data. Choosing appropriate metrics is also important since they reflect

variability in data, especially if the data contains noise or outliers.

– Mean Squared Error (MSE): The MSE calculates the average of the squared differ-

ences between the predicted and observed values, providing an overall evaluation of the

model’s performance, with particular sensitivity to outliers [25]:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.7)

where yi is the actual value and ŷi is the predicted value.

– Root Mean Squared Error (RMSE): RMSE is the square root of the MSE, offering a

measure of error in the same units as the target variable [25]:

RMSE =
√

MSE (4.8)

– Mean Absolute Error (MAE): MAE calculates the average of the absolute differences

48

between the predicted and observed values, providing an intuitive measure of average

error [25]:

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.9)

– Mean Absolute Percentage Error (MAPE): MAPE expresses the error as a percent-

age, showing the accuracy of a forecast in relative terms [25]:

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (4.10)

– Symmetric Mean Absolute Percentage Error (SMAPE): SMAPE is a variation of

MAPE that accounts for both over- and under-predictions, providing a more balanced

error measurement [26]:

SMAPE =
100%

n

n∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|)/2

(4.11)

Only four are shown in the ZET GTFS application: the RMSE, MAE, MAPE, and SMAPE.

This decision occurred because of the data quality, and at some stops when trying to predict

a forecast, an extreme MSE metric error was calculated, which, when compared to the other

metrics, would skew the graph.

After implementing the database, getting the data, preprocessing and learning the model, it

is now important to take a look in the next chapter 5 at the finished application with the imple-

mented machine learning model to see the overall functionality of the ZET GTFS application

and also evaluate the predictive model performance based on the acquired data.

49

5. Results and Analysis

5.1. Real-time Data Visualization

One of the main goals of this thesis is to visualize the ZET GTFS data in real time. It should

provide users with a dynamic and interactive map-based interface to view the current status

of public transportation regarding trams and buses in Zagreb, as well as record and evaluate

collected data. The code for real-time data processing and visualization is available at the

following link: GTFS Master Thesis Code.

5.1.1. User Interaction with the Application

The application’s design was already described in the chapter 3.2.1. It was divided into three

primary tabs: map, options, and info. Each tab communicates with the other when interacting

with it since updating data on the Map and Info tab requires interaction from the Options tab, and

every one of them complements each other. To better describe this, the specific tab interactions

were divided by its tab in the following:

Map Tab Interaction

The main feature of the ZET GTFS application is that it visualizes real-time data of vehicles’

current positions on stop arrival directly on the interactive map, which, when it first loads, shows

all of the tram and bus collected public transport network visible in figure 5.1. The positions

of public transport vehicles are filtered trough selected routes. Specific locations of trams and

buses can be seen, which are represented by yellow for trams and blue for buses.

If clicked, the icons will also present details such as the route’s name, stop name, and arrival

times (see Figures 5.2 and 5.3). This tab also allows users to select specific stops for later

processing and evaluation by circling with the polygon tool around the area of interest. This, in

a way, allows the user to customize the view of the transit network by data filtering with spatial

selection.

50

https://dev.azure.com/cronical-studios/_git/GTFS_master_thesis

Figure 5.1: Map Tab on the first load showing all the tram and bus networks in Zagreb

Figure 5.2: Map Tab with chosen routes

51

Figure 5.3: Polygon selection for stops and a view of the additional details of the vehicle on stop arrival

Options Tab Interaction

The options tab usually communicates with other tabs either through filtering the coordi-

nates of the routes specified by the drop-down visible on figure 5.4 to parse it to the Map tab

for visualization or by executing query-s already described in the chapter 3.3.3. The queries are

executed with recording and load buttons, which can stop and start GTFS data collection, load

static data, and, through the "Load Data" button, create a database file called "store_dataframe",

which will be used by the Info tab to create evaluations and trigger machine learning models to

use it for forecasting after preprocessing.

Figure 5.4: Options Tab Overview

52

Info Tab Interaction

The Info tab, when interacted with, displays graphs based on the "store_dataframe" histori-

cal data located in the application’s .csv database. It is primarily used for data analysis. Users

can filter on request through the drop-down buttons, which select a specific stop to be evaluated.

This gives the user insight into the performance of the implemented predictive model and its

forecast accuracy through error metrics.

Figure 5.5: Info Tab Overview

Since the application was designed to be handled as a SPA, as explained in chapter 3.2.1, it

makes things much faster when switching through the aforementioned tabs since the interaction

occurs within the same window where the data gets updated dynamically.

The overall functionalities of the application do perform well and do provide a seamless

interface for tracking public transport in real-time, but of course, in every application, there

53

exist some problems, either it is because of bugs or just data limitations, which will be discussed

in the chapter 5.1.2.

5.1.2. Application Troubleshooting

Although the GTFS application performs well in most cases, users could occasionally ex-

perience issues, especially when interacting more with the data shown on the Map tab. One of

the main problems is the lagging and slow responsiveness when displaying a batch of routes

selected from the drop-down menu on the Options tab.

This usually happens because of the high volume of data being processed and rendered si-

multaneously, especially when multiple routes are selected (more than 4 routes simultaneously).

This can also happen if some complicated polygons are made to select outlier stops on the city’s

edges.

Users could select fewer routes to address these performance issues, reducing the data pro-

cessing load and improving the application’s responsiveness. Also, selecting far-fetched areas

with stops is not advised when using the polygon tool. If more stops are included in the area of

interest, it will not affect the processing much. Still, if the areas are far from each other (when

the polygon is stretched out), the historical data retrieval will be slowed down.

Users can refer to the debug log feature at the bottom of the application’s interface on the

Options tab if some specific lagging occurs. This makes it easier to identify whether the ZET

GTFS application is fetching new data or if there is an error in the processing pipeline.

5.2. Predictive Model Performance

The predictive performance of a model is measured based on the error metric described in

the chapter 4.2.3, and it analyses how well a model predicts or is fitted correctly. Focusing

on the data records per stop, a preprocessed ZET GTFS data collection was introduced to the

machine learning model, which spans from the 24th of July to the 16th of August 2023. This

data collection was already filtered out from the global data frame and only made it specified

for one route specifically. To understand the model’s effectiveness in forecasting delays, it was

also important to fit the model correctly, so sometimes that means changing the upper and lower

IRQ boundaries and similar so that the models fit the bets to get more accurate results.

5.2.1. Data Records per Stop

In the case of this evaluation, two tram routes (2, 7) and two bus routes (136, 109) were

used. The number of data records/points can be seen from figure 5.7 to figure 5.13 for each stop

along different routes.

54

Route 2 (Tram)

Route 2, as shown in figure 5.7, runs from Črnomerec to Žitnjak. Based on the data col-

lected, the stops with the highest data density include Glavni Kolodvor, Vodnikova, Držićeva,

and Branimirova Tržnica. The stop with the most recorded data points is Glavni Kolodvor,

which appears across all recorded data. These stops have between 3000 to 4000 data records

each, making them suitable for forecasting. However, the quality of data and seasonal variations

must also be considered.

Figure 5.6: Geographical view of route 2

Figure 5.7: Data Records per Stop for Route 2

Route 7 (Tram)

Route 7, illustrated in figure 5.9, travels between Savski Most and Dubec. The busiest stops

in terms of data collection include Tržnica Kvatrić, Mašićeva, and Trg P. Krešimira. These stops

have a significant amount of data recorded, with 2000 to 3000 data points each. As with Route

2, there are several stops with low data collection, indicating that some parts of the route were

not consistently recorded.

55

Figure 5.8: Geographical view of route 7

Figure 5.9: Data Records per Stop for Route 7

Route 136 (Bus)

Route 136 is a bus route that connects Črnomerec and Špansko, as seen in figure 5.11.

The data points show that stops such as Vrapčanska and I. Brlić Mažuranić have the highest

number of data points collected, with over 1000 records each. This indicates a high frequency

of recordings at these stops compared to other bus routes.

56

Figure 5.10: Geographical view of route 136

Figure 5.11: Data Records per Stop for Route 136

Route 109 (Bus)

Route 109, depicted in figure 5.13, connects Črnomerec and Dugave. The data shows that

stops such as Središće and Baštijanova were recorded the most frequently, with around 1000

data points each. Several stops along this route, such as Bolšićeva, have very few data points,

which could affect the reliability of predictions if used, and in these regards, are ignored.

57

Figure 5.12: Geographical view of route 109

Figure 5.13: Data Records per Stop for Route 109

For all four routes, certain stops have a high density of recorded data points, making them

more suitable for forecasting and analysis. However, some stops with low data collection were

excluded from the analysis to maintain data integrity and avoid bias in the results. The charts

clearly indicate that the density of data points varies significantly across different routes and

stops.

5.2.2. Prediction Error Metrics

For each route, specific error metrics are included to evaluate prediction accuracy. In the

case of this thesis, RMSE, MAE, MAPE, and SMAPE were used to evaluate the model’s abil-

ity to accurately and correctly predict arrival delays. The following tables summarise prediction

error metrics for each chosen route from Table 5.1 to Table 5.4.

58

The analysis of Route 2 data shows that the model delivers its best performance at Glavni

Kolodvor, producing the lowest RMSE (26.7s), MAE (23s), and MAPE (7.58%). The large

amount of available data at this stations probably contributes to this, allowing the model to un-

derstand the patterns of delays. Additionally, stops such as Vodnikova and Branimirova Tržnica

display higher errors, with Vodnikova registering an RMSE of 51.94s and a MAPE of 11.96%.

The model’s accurate prediction may be challenged by external factors like traffic congestion

or delays at crossings, for example.

Table 5.1 Prediction Performance Metrics for Route 2

Station
RMSE
(s)

MAE
(s)

MAPE
(%)

SMAPE
(%)

Glavni Kolodvor 26.7 23 7.58 7.54

Vodnikova 51.94 44.97 11.96 11.72

Držićeva 37.59 32.15 10.34 10.19

Branimirova Tržnica 37.06 31.42 10.66 10.47

The prediction performance for Route 7 remains fairly consistent, with Tržnica Kvatrić and

Trg P. Krešimira exhibiting MAPE values near 10%, suggesting that the model effectively pre-

dicts delays for these stops. The lower errors at these stops may be attributed to regularity in

traffic flow and stop usage along these segments. Additionally, Mašićeva and Držićeva display

higher errors, especially Mašićeva with a MAPE of 15.87%. These stops could be more vul-

nerable to unpredictable delays, possibly due to their proximity to high-traffic areas or frequent

disruptions along the route, resulting in greater variability in arrival times.

Table 5.2 Prediction Performance Metrics for Route 7

Station
RMSE
(s)

MAE
(s)

MAPE
(%)

SMAPE
(%)

Tržnica Kvatrić 23.35 19.75 10.76 10.54

Mašićeva 30.84 26.65 15.87 15.48

Trg. P.Krešimira 23.58 20.07 10.87 10.73

Držićeva 35.58 30.38 15.32 14.93

The performance of the model on Route 136 is good, particularly at stops like Vrapčanska,

where the values for RMSE and MAE are relatively low (11.84s and 10.04s, respectively).

The MAPE is also at a moderate level, indicating a reasonable level of prediction accuracy.

However, stops such as Nikole Gučetića show a high MAPE (19.02%), suggesting that the

59

model’s predictions for these stops are less dependable. This might be due to unpredictable

factors such as road conditions or variations in bus operations, which pose challenges for the

model to accommodate.

Table 5.3 Prediction Performance Metrics for Route 136

Station
RMSE
(s)

MAE
(s)

MAPE
(%)

SMAPE
(%)

Vrapčanska 11.84 10.04 14.86 14.56

Ivane Brlić Mažu-

ranić
15.57 13.52 14.66 14.88

MUP 7.21 6.21 5.36 5.33

Nikole Gučetića 8.39 7.4 19.02 18.02

The performance metrics for Route 109 indicate a combination of outcomes. Središće

demonstrates the most favorable error metrics, achieving a MAPE of 5.54%, highlighting its

precise prediction capabilities. Furthermore, Zagorska and similar stops show higher error val-

ues, with a MAPE of 21.66%, which illustrates the challenges of predicting delays in the in-

consistent parts of the route. These difficulties may arise from traffic congestion, which leads

to irregular delays.

Table 5.4 Prediction Performance Metrics for Route 109

Station
RMSE
(s)

MAE
(s)

MAPE
(%)

SMAPE
(%)

Središće 15.58 12.74 5.54 5.52

Baštijanova 26.7 22.53 13.13 12.76

Savski Gaj 33.13 28.43 9.65 9.54

Zagorska 33.35 28.4 21.66 20.16

5.2.3. Prophet Arrival Prediction Graphs for Specified Routes

Regarding the forecast of arrival delay by the Prophet model for specific stops on every

route, the predictive accuracy can be observed in the figures labeled 5.14 through 5.17. These

visual representations portray the real delays (depicted by yellow points) in comparison to their

predicted delays (illustrated by the red line), providing insights into the model’s precision for

each route based on the data points outlined in 5.2.1.

At Črnomerec - Savišće, Figure 5.14 depicts Route 2. The Prophet model effectively cap-

tures the predominant trend of negative delays, indicating early arrivals. The trend closely

60

matches the red predicted line, with a difference of about -200 seconds, corresponding to the

early arrivals in the data. The model’s confidence intervals, represented by the blue bounds,

indicate its relative confidence in the predictions, as they tightly envelop the predicted values.

Figure 5.14: Prediction Graph for Route 2 – Črnomerec - Savišće

At Savski Most - Dubrava, the graph in Figure 5.15 demonstrates that the model effectively

tracks the overall delay trend, despite a few outliers. The red line representing predicted delays

consistently aligns with the yellow data points reflecting recorded delays, indicating a reason-

able level of accuracy. Additionally, the blue area representing the prediction interval remains

consistent, suggesting that the Prophet model has access to quality data for generating confident

predictions for this stop.

Figure 5.15: Prediction Graph for Route 7 – Savski Most - Dubrava

In Figure 5.16, the model displays a precise prediction for Route 136 at Črnomerec - Špan-

sko, with a reduced number of significant outliers. The narrower prediction bounds indicate

greater confidence in this specific forecast. The recorded delays consistently show positive

values, indicating that vehicles on this route typically arrive after the schedule, a pattern suc-

cessfully captured by the model.

61

Figure 5.16: Prediction Graph for Route 136 – Črnomerec - Špansko

In conclusion, with regards to Route 109 at Črnomerec-Dugave as depicted in Figure 5.17,

the model effectively monitors the overall delay pattern, although the prediction range is slightly

wider compared to other routes. This may indicate a higher degree of uncertainty in the data,

potentially influenced by external factors impacting this specific stop. Nevertheless, the pre-

dicted line (in red) closely aligns with the general trend of recorded delays, indicating that the

model continues to offer valuable predictions.

Figure 5.17: Prediction Graph for Route 109 – Črnomerec-Dugave

62

6. Conclusion

The thesis examined the creation of an application to visualize real-time transit data for

Zagreb and use machine learning models to predict transit vehicle arrival times. It involved

gathering and processing GTFS data for static and real-time feeds, focusing on the city’s key

tram and bus routes. The real-time data visualization enabled users to dynamically engage with

the public transportation system, providing insights into vehicle positions and delays throughout

the network. While the app effectively delivered real-time data and was responsive, it encoun-

tered performance challenges when handling large data volumes or complex spatial queries.

These challenges underscored the importance of enhancing data optimization techniques and

improving the handling of complex spatial queries for smoother user interaction.

When looking through the point of predictive modelling, the Prophet time-series forecasting

model played an important role in anticipating arrival delays. Various error metrics, including

RMSE, MAE, MAPE, and SMAPE, were used to evaluate the model’s performance, revealing

specific variations in results across different routes and stops. Stops with dense data, such as

Glavni Kolodvor on Route 2, showed lower error rates and more accurate predictions. However,

the model encountered challenges with routes that had sporadic or inconsistent data, such as

Route 109, resulting in higher prediction errors. These findings emphasized the essential need

for comprehensive and high-quality data to achieve accurate forecasting. This is a problem

since the collected data overall has too much NaN values and the GTFS service provider which

in this case is ZET should calibrate the sensors or enable adequate parsing of the data so that it

can be continuous and not often broken.

In addition, an important lesson was learned during the app’s development: the significance

of designing a modular system. At first, the absence of modularity in the app’s architecture

led to difficulties in expanding functionalities, such as adding more machine learning models

or logging features. As time passed, it became clear that implementing a modular system with

multiple layers enabled overall development and simplified maintenance, enabling the integra-

tion of new features. This provided a clear framework for debugging and updates.

To conclude, the ZET GTFS app successfully demonstrated its ability to track public trans-

portation in real-time, specifically public transportation vehicles like trams and buses, on stop

arrivals and predict delays. However, specific areas can be improved, particularly in managing

63

larger datasets, which means recording more data over a longer period of time to see if more

seasonality can be added to the Prophet model and additionaly if more features can be added to

the overall data.

64

BIBLIOGRAPHY

[1] Biondić P. Implementacija GTFS-a za pomorski javni prijevoz. University of Rijeka,

Faculty of Maritime Studies; 2023. Downloaded from: https://urn.nsk.hr/urn:

nbn:hr:187:354997.

[2] Galac D, Carić T. Izrada multimodalnog planera putovanja za područje

grada Zadra. University of Zagreb; 2015. Downloaded from: https:

//repozitorij.fpz.unizg.hr/islandora/object/fpz:747.

[3] Šarić A. Obrada i vizualizacija podataka pružatelja javnog gradskog prijevoza u re-

alnom vremenu. Fakultet prometnih znanosti; 2023. Downloaded from: https:

//repozitorij.fpz.unizg.hr/islandora/object/fpz:3036.

[4] Google Developers. General Transit Feed Specification (GTFS) Reference; 2024.

https://developers.google.com/transit/gtfs/reference. Accessed:

2024-08-24.

[5] Uravić M, Brčić D. Analiza prometno-prostornog planiranja u Gradu Zagrebu; 2017.

Downloaded from: https://urn.nsk.hr/urn:nbn:hr:119:277205.

[6] Majstorović I, Ahac M, Ahac S. The City of Zagreb Lower Town Urban mobility develop-

ment program. Transportation Research Procedia. 2022;60:362–369. Downloaded from:

https://doi.org/10.1016/j.trpro.2021.12.047.

[7] Klarić D. Analiza javnog gradskog prometa u Zagrebu; 2020. Downloaded from: https:

//repozitorij.fpz.unizg.hr/islandora/object/fpz%3A1962.

[8] Dragicevic M. Real-Time GTFS Data Dashboard in Python; 2022. Medium. Downloaded

from: https://medium.com/@mladen.dragicevic/real-time-gtfs-

data-dashboard-in-python-209801ba32f1.

[9] rep hr. ZET testira podatke o pozicijama tramvaja u stvarnom vremenu; 2024.

https://rep.hr/vijesti/mobiteli/zet-testira-podatke-o-

pozicijama-tramvaja-u-stvarnom-vremenu/8538/. Accessed: 2024-

08-24.

65

https://urn.nsk.hr/urn:nbn:hr:187:354997
https://urn.nsk.hr/urn:nbn:hr:187:354997
https://repozitorij.fpz.unizg.hr/islandora/object/fpz:747
https://repozitorij.fpz.unizg.hr/islandora/object/fpz:747
https://repozitorij.fpz.unizg.hr/islandora/object/fpz:3036
https://repozitorij.fpz.unizg.hr/islandora/object/fpz:3036
https://developers.google.com/transit/gtfs/reference
https://urn.nsk.hr/urn:nbn:hr:119:277205
https://doi.org/10.1016/j.trpro.2021.12.047
https://repozitorij.fpz.unizg.hr/islandora/object/fpz%3A1962
https://repozitorij.fpz.unizg.hr/islandora/object/fpz%3A1962
https://medium.com/@mladen.dragicevic/real-time-gtfs-data-dashboard-in-python-209801ba32f1
https://medium.com/@mladen.dragicevic/real-time-gtfs-data-dashboard-in-python-209801ba32f1
https://rep.hr/vijesti/mobiteli/zet-testira-podatke-o-pozicijama-tramvaja-u-stvarnom-vremenu/8538/
https://rep.hr/vijesti/mobiteli/zet-testira-podatke-o-pozicijama-tramvaja-u-stvarnom-vremenu/8538/

[10] Transmodel. SIRI - Service Interface for Real-Time Information; 2024. https://

transmodel-cen.eu/index.php/siri/. Accessed: 2024-08-24.

[11] Normes Donnees TC. SIRI - Service Interface for Real-Time Information (Part

1); 2015. http://www.normes-donnees-tc.org/wp-content/uploads/

2015/04/SIRI-part1.pdf. Accessed: 2024-08-24.

[12] NeTEx. NeTEx Getting Started White Paper (Version 1.06); 2015. https://netex-

cen.eu/wp-content/uploads/2015/12/02.NeTEx-GettingStarted-

WhitePaper_1.06.pdf. Accessed: 2024-08-24.

[13] GeeksforGeeks. Front-End Development; 2024. https://

www.geeksforgeeks.org/front-end-development/. Accessed: 2024-

08-24.

[14] Wikipedia contributors. Single-page application; 2024. https://

en.wikipedia.org/wiki/Single-page_application. Accessed: 2024-

08-24.

[15] GeeksforGeeks. Backend Development - What is Backend Development?; 2024.

https://www.geeksforgeeks.org/backend-development/#what-is-

backend-development-. Accessed: 2024-08-24.

[16] Webcase Studio. What is Integration in Software Development?; 2024. https:

//webcase.studio/what-integration-software-development/. Ac-

cessed: 2024-08-24.

[17] Goldner H, Erdelić T. Razvoj usluge interaktivne karte za prikaz podataka o kretanju

vozila prometnom mrežom. In: Sveučilište u Zagrebu, Fakultet prometnih znanosti. Za-

greb, Croatia; 2023. Downloaded from: https://repozitorij.fpz.unizg.hr/

islandora/object/fpz:2995.

[18] Zeng Z, Zhu X, Qi S, Shen X, Cai S. Database Programming under Labwindows/CVI

Platform. IOP Conference Series: Materials Science and Engineering. 2018;394:032024.

Downloaded from: https://doi.org/10.1088/1757-899X/394/3/032024.

[19] Ndemo P. 2 and 3 Tier Architecture; 2024. https://medium.com/@paulndemo/

2-and-3-tier-architecture-4a473e5ced3d. Accessed: 2024-08-24.

[20] NetSuite. Predictive Modeling; 2024. https://www.netsuite.com/

portal/resource/articles/financial-management/predictive-

modeling.shtml. Accessed: 2024-08-24.

66

https://transmodel-cen.eu/index.php/siri/
https://transmodel-cen.eu/index.php/siri/
http://www.normes-donnees-tc.org/wp-content/uploads/2015/04/SIRI-part1.pdf
http://www.normes-donnees-tc.org/wp-content/uploads/2015/04/SIRI-part1.pdf
https://netex-cen.eu/wp-content/uploads/2015/12/02.NeTEx-GettingStarted-WhitePaper_1.06.pdf
https://netex-cen.eu/wp-content/uploads/2015/12/02.NeTEx-GettingStarted-WhitePaper_1.06.pdf
https://netex-cen.eu/wp-content/uploads/2015/12/02.NeTEx-GettingStarted-WhitePaper_1.06.pdf
https://www.geeksforgeeks.org/front-end-development/
https://www.geeksforgeeks.org/front-end-development/
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application
https://www.geeksforgeeks.org/backend-development/#what-is-backend-development-
https://www.geeksforgeeks.org/backend-development/#what-is-backend-development-
https://webcase.studio/what-integration-software-development/
https://webcase.studio/what-integration-software-development/
https://repozitorij.fpz.unizg.hr/islandora/object/fpz:2995
https://repozitorij.fpz.unizg.hr/islandora/object/fpz:2995
https://doi.org/10.1088/1757-899X/394/3/032024
https://medium.com/@paulndemo/2-and-3-tier-architecture-4a473e5ced3d
https://medium.com/@paulndemo/2-and-3-tier-architecture-4a473e5ced3d
https://www.netsuite.com/portal/resource/articles/financial-management/predictive-modeling.shtml
https://www.netsuite.com/portal/resource/articles/financial-management/predictive-modeling.shtml
https://www.netsuite.com/portal/resource/articles/financial-management/predictive-modeling.shtml

[21] Aleksić D. Mogućnosti primjene metoda strojnog učenja u području telekomunikacija.

University of Zagreb, Faculty of Transport and Traffic Sciences; 2021. Downloaded from:

https://urn.nsk.hr/urn:nbn:hr:119:003361.

[22] Data Flair. Types of Machine Learning Algorithms; 2024. https://data-

flair.training/blogs/types-of-machine-learning-algorithms/.

Accessed: 2024-08-24.

[23] NimbleBox. Supervised, Unsupervised, and Reinforcement Learning; 2024. https:

//blog.nimblebox.ai/supervised-unsupervised-reinforcement-

learning. Accessed: 2024-08-24.

[24] Taylor SJ, Letham B. Forecasting at Scale. PeerJ Preprints. 2017 September;5:e3190v2.

Downloaded from: https://doi.org/10.7287/peerj.preprints.3190v2.

CC BY 4.0 Open Access.

[25] Jedox. Error Metrics: How to Evaluate Forecasts; 2024. https://www.jedox.com/

en/blog/error-metrics-how-to-evaluate-forecasts/. Accessed:

2024-08-24.

[26] Kothari V. Time Series Evaluation Metrics: MAPE vs WMAPE vs SMAPE -

Which One to Use, Why, and When (Part 1); 2024. https://medium.com/

@vinitkothari.24/time-series-evaluation-metrics-mape-

vs-wmape-vs-smape-which-one-to-use-why-and-when-part1-

32d3852b4779. Accessed: 2024-08-24.

67

https://urn.nsk.hr/urn:nbn:hr:119:003361
https://data-flair.training/blogs/types-of-machine-learning-algorithms/
https://data-flair.training/blogs/types-of-machine-learning-algorithms/
https://blog.nimblebox.ai/supervised-unsupervised-reinforcement-learning
https://blog.nimblebox.ai/supervised-unsupervised-reinforcement-learning
https://blog.nimblebox.ai/supervised-unsupervised-reinforcement-learning
https://doi.org/10.7287/peerj.preprints.3190v2
https://www.jedox.com/en/blog/error-metrics-how-to-evaluate-forecasts/
https://www.jedox.com/en/blog/error-metrics-how-to-evaluate-forecasts/
https://medium.com/@vinitkothari.24/time-series-evaluation-metrics-mape-vs-wmape-vs-smape-which-one-to-use-why-and-when-part1-32d3852b4779
https://medium.com/@vinitkothari.24/time-series-evaluation-metrics-mape-vs-wmape-vs-smape-which-one-to-use-why-and-when-part1-32d3852b4779
https://medium.com/@vinitkothari.24/time-series-evaluation-metrics-mape-vs-wmape-vs-smape-which-one-to-use-why-and-when-part1-32d3852b4779
https://medium.com/@vinitkothari.24/time-series-evaluation-metrics-mape-vs-wmape-vs-smape-which-one-to-use-why-and-when-part1-32d3852b4779

LIST OF FIGURES

2.1. View of Zagreb’s transit network [6] . 9

2.2. Python script for ZET GTFS real-time trip updates retrieval 10

2.3. Difference between trip update and vehicle position feed from different countries 11

2.4. SIRI Communication Structure . 14

2.5. NeTEx data structure . 15

3.1. Simplified diagram of Dash app structure . 20

3.2. GTFS application front-end structure . 22

3.3. GTFS application Back-End process chain . 24

3.4. Horizontal Integration Example [16] . 25

3.5. Detailed architecture of the whole GTFS Dash application 26

3.6. Zed_feed_data records . 27

3.7. The composition of a database system [18] . 27

3.8. Tier-2 database architecture . 28

3.9. Tier-3 database architecture . 28

3.10. Relational Schema for ZET GTFS database 31

3.11. Python Script for inserting real-time data into GTFS database 32

3.12. Result of one-row append to the transaction for real-time data 33

3.13. Python Script for inserting static data into GTFS database 33

3.14. Result of one-row append to the transaction for static data 34

3.15. Python Script to fetch data for analysis and evaluation 34

3.16. Result of a constructed SQL query to fetch data from the GTFS database 35

3.17. All delays in the collected GTFS data for the full period 37

4.1. Types of Machine Learning [22] . 40

4.2. Machine learning algorithms used for specific ML types[23] 41

4.3. Example of Prophet night seasonality pattern for ZET GTFS data 42

4.4. Example of Prophet instability with a added yearly seasonality for ZET GTFS

data . 48

68

5.1. Map Tab on the first load showing all the tram and bus networks in Zagreb . . . 51

5.2. Map Tab with chosen routes . 51

5.3. Polygon selection for stops and a view of the additional details of the vehicle

on stop arrival . 52

5.4. Options Tab Overview . 52

5.5. Info Tab Overview . 53

5.6. Geographical view of route 2 . 55

5.7. Data Records per Stop for Route 2 . 55

5.8. Geographical view of route 7 . 56

5.9. Data Records per Stop for Route 7 . 56

5.10. Geographical view of route 136 . 57

5.11. Data Records per Stop for Route 136 . 57

5.12. Geographical view of route 109 . 58

5.13. Data Records per Stop for Route 109 . 58

5.14. Prediction Graph for Route 2 – Črnomerec - Savišće 61

5.15. Prediction Graph for Route 7 – Savski Most - Dubrava 61

5.16. Prediction Graph for Route 136 – Črnomerec - Špansko 62

5.17. Prediction Graph for Route 109 – Črnomerec-Dugave 62

69

LIST OF TABLES

2.1. ZET GTFS trip updates data rows . 13

3.1. GTFS Data Overview . 36

5.1. Prediction Performance Metrics for Route 2 59

5.2. Prediction Performance Metrics for Route 7 59

5.3. Prediction Performance Metrics for Route 136 60

5.4. Prediction Performance Metrics for Route 109 60

70

University of Zagreb

Faculty of Transport and Traffic Sciences

10000 Zagreb

Vukelićeva 4

I declare and confirm by my signature that this

is an exclusive result of my own work based on my research and relies on published literature,

as can be seen by my notes and references.

I declare that no part of the thesis is written in an illegal manner,

nor is copied from unreferenced work, and does not infringe upon anyone's copyright.

I also declare that no part of the thesis was used for any other work in

any other higher education, scientific or educational institution.

I hereby confirm and give my consent for the publication of my

titled

on the website and the repository of the Faculty of Transport and Traffic Sciences and

the Digital Academic Repository (DAR) at the National and University Library in Zagreb.

DECLARATION OF ACADEMIC INTEGRITY AND CONSENT

graduate thesis

Student:

 graduate thesis

Real-time visualization of city public transport provider data and
 prediction of future trends

In Zagreb, 16.09.2024
(signature)

	Introduction
	Background and Motivation
	Thesis Objectives
	Thesis Structure

	Transit Feed Standards
	General Transit Feed Specification
	Definition and History
	GTFS Components

	GTFS Data Sources for Zagreb
	Public Transport and GTFS in Zagreb
	ZET GTFS Data Collection

	SIRI, NeTEx and other transit standards in public transportation
	SIRI (Service Interface for Real-time Information)
	NeTEx (Network Timetable Exchange)
	Additional Standards and Regional Usage

	Application Design and Implementation
	Application Architecture
	Used Technologies
	Overall System Structure

	Front-End Integration with Back-End
	Front-End Implementation
	Back-End Implementation
	Fron-Back Integration

	Database Implementation
	Overview of Databases
	GTFS Database Structure
	GTFS Database Data Handling

	Trend Prediction Modeling
	Overview of Predictive Modeling
	Machine learning for predictive modelling
	Implemented Machine learning model

	Data Preparation and Training
	Data Preprocessing
	Training for the Chosen Model
	Evaluation Metrics

	Results and Analysis
	Real-time Data Visualization
	User Interaction with the Application
	Application Troubleshooting

	Predictive Model Performance
	Data Records per Stop
	Prediction Error Metrics
	Prophet Arrival Prediction Graphs for Specified Routes

	Conclusion
	Bibliography
	List of Figures
	List of Tables

