Procjena aerodinamičkih karakteristika zrakoplova Diamond DV 20

Papoči, Petar

Undergraduate thesis / Završni rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Transport and Traffic Sciences / Sveučilište u Zagrebu, Fakultet prometnih znanosti

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:119:138159

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-14

Repository / Repozitorij:

Faculty of Transport and Traffic Sciences -Institutional Repository

SVEUČILIŠTE U ZAGREBU FAKULTET PROMETNIH ZNANOSTI

Petar Papoči

PROCJENA AERODINAMIČKIH KARAKTERISTIKA ZRAKOPLOVA DIAMOND DV 20

ZAVRŠNI RAD

Zagreb, 2018.

SVEUČILIŠTE U ZAGREBU FAKULTET PROMETNIH ZNANOSTI ODBOR ZA ZAVRŠNI RAD

Zagreb, 3. travnja 2018.

Zavod:Zavod za aeronautikuPredmet:Teorija leta l

ZAVRŠNI ZADATAK br. 4735

Pristupnik:Petar Papoči (0135240528)Studij:AeronautikaSmjer:PilotUsmjerenje:Civilni pilot

Zadatak: Procjena aerodinamičkih karakteristika zrakoplova Diamond DV 20

Opis zadatka:

Poznavanjem aerodinamičkih karakteristika nekoga zrakoplova moguće je dobiti uvid u njegove performanse i stabilnost tijekom leta. U radu je potrebno za zrakoplov Diamond DV 20 prikazati geometrijske karakteristike istog, te na temelju dostupnih podataka izvršiti procjenu uzdužnih stacionarnih aerodinamičkih koeficijenata metodama projektne aerodinamike. Dobivene podatke potrebno je usporediti s podacima iz dostupne literature.

Mentor:

Predsjednik povjerenstva za završni ispit:

dr. sc. Karolina Krajček Nikolić

Sveučilište u Zagrebu Fakultet prometnih znanosti

ZAVRŠNI RAD

PROCJENA AERODINAMIČKIH KARAKTERISTIKA ZRAKOPLOVA DIAMOND DV 20

ESTIMATION OF AERODYNAMIC CHARACTERISTICS FOR AIRCRAFT DIAMOND DV 20

Mentor: dr. sc. Karolina Krajček Nikolić

Student: Petar Papoči JMBAG: 0135240528

Zagreb, 2018.

Sažetak

U ovom radu određene su geometrijske i aerodinamičke karakteristike malog zrakoplova opće avijacije Diamond DV-20 pomoću projektnih i računalnih metoda. Neke od karakteristika dostupne su u priručniku zrakoplova, a neke su izmjerene ili dobivene proračunom. Uvid u eksploatacijske karakteristike zrakoplova djelomično se ostvaruje pomoću njegovih geometrijskih i aerodinamičkih karakteristika, koje su ujedno i cilj ovoga rada. Geometrijske karakteristike određene su proračunima projektnih metoda, dok su aerodinamičke karakteristike određene proračunima projektnih metoda i računalnim simulacijama. Na kraju rada izloženi su rezultati svih proračunatih veličina.

Ključne riječi

Zrakoplov opće avijacije, metode projektne aerodinamike, geometrijske karakteristike, aerodinamičke karakteristike

Summary

In this paper, the geometric and aerodynamic characteristics of a small general aviation aircraft Diamond DV-20 are determined by project and computer methods. Some of the characteristics are available in the aircraft manual, and some are measured or calculated. Insight into the exploitation characteristics of the aircraft is partly achieved by its geometric and aerodynamic characteristics, which are at the same time the aim of this work. Geometric characteristics are determined by calculation of project methods, while the aerodynamic characteristics are determined by calculations of project methods and computer simulations. At the end of the work, the results of all calculated sizes are outlined.

Keywords

General aviation aircraft, project methods, geometric characteristics, aerodynamic characteristic

Sadržaj

1.	. Uvod	1
2.	. Osnovni podatci o zrakoplovu	2
	2.1. Proizvođač zrakoplova	2
	2.2. Zrakoplov DV20	2
	2.3. Dimenzije i karakteristike zrakoplova DV20	3
3.	. Geometrijske karakteristike zrakoplova	6
	3.1. Geometrijske karakteristike krila zrakoplova	6
	3.2. Geometrijske karakteristike trupa zrakoplova	9
	3.3. Geometrijske karakteristike horizontalnog stabilizatora zrakoplova	
	3.4. Geometrijske karakteristike vertikalnog stabilizatora zrakoplova	12
	3.5. Geometrijske karakteristike zrakoplova	14
4.	. Aerodinamičke karakteristike zrakoplova	16
	4.1. Aerodinamičke karakteristike aeroprofila	16
	4.1.1. Aerodinamičke karakteristike aeroprofila Wortmann FX63-137	16
	4.1.2. Aerodinamičke karakteristike aeroprofila NACA 0015	
	4.2. Otpori trenja zrakoplovnih komponenti	21
	4.2.1. Otpor trenja krila	21
	4.2.2. Otpor trenja trupa	
	4.2.3. Otpor trenja horizontalnog stabilizatora	
	4.2.4. Otpor trenja vertikalnog stabilizatora	23
	4.2.5. Otpor trenja podvozja	24
	4.2.6. Otpor trenja zrakoplova	24
	4.3. Normalna sila i momenti propinjanja	25
	4.3.1. Krilo	
	4.3.2. Tijelo	
	4.3.3. Povijanje struje zraka	
	4.3.4. Horizontalni stabilizator	
	4.3.5. Statički koeficijenti normalne sile i momenata propinjanja zrakoplova	
	4.4. Bočna sila i moment skretanja	
	4.4.1. Vertikalni stabilizator	
	4.4.2. Bočna sila zrakoplova	

4.4.3. Moment skretanja zrakoplova	37
4.4.4. Moment valjanja zrakoplova	39
4.5. Proračunati aerodinamički koeficijenti zrakoplova	41
Zaključak	42
Literatura	43
Popis slika	44
Popis tablica	45
Popis oznaka	46

1. Uvod

U ovom radu određene su geometrijske i aerodinamičke karakteristike malenog zrakoplova opće avijacije Diamond DV-20 pomoću projektnih metoda.

Prvo poglavlje predstavlja uvod.

U drugom poglavlju ovog rada izneseni su podatci o proizvođaču zrakoplova, kao i same karakteristike zrakoplova, nadalje su tablično prikazane geometrijske karakteristike zrakoplova dostupne u priručniku zrakoplova.

Treće poglavlje predstavlja geometrijske karakteristike zrakoplova. Neke od karakteristika su poznate iz drugog poglavlja, odnosno iz priručnika zrakoplova, dok su ostale dobivene proračunom ili mjerenjem.

Aerodinamičke karakteristike aeroprofila i ostalih površina iznesene su u četvrtom poglavlju ovog rada. Kroz potpoglavlja određene su karakteristike aeroprofila, otpori trenja zrakoplovnih komponenti, normalne sile i momenti propinjanja, bočne sile i momenti skretanja i valjanja.

2. Osnovni podatci o zrakoplovu

Kroz ovo poglavlje predstavljen je zrakoplov, njegove glavne karakteristike i proizvođač, isto tako navedene su geometrijske karakteristike dostupne u priručniku zrakoplova [1].

2.1. Proizvođač zrakoplova

Zrakoplov DV20 poznatiji pod nazivom "Katana" proizveden je od austrijskog proizvođača zrakoplova Diamond Aircraft sa sjedištem u Bečkom Novom Mjestu (njemački: Wiener Neustadt) u Austriji.

Diamond Aircraft osnovan je 1981. godine također u Austriji pod nazivom Hoffmann Flugzeugbau [2]. Od osnivanja proizvodili su motorne jedrilice i lake jednomotorne zrakoplove. Nakon nekoliko promjena u vlasništvu tvrtke, 1998. službeno je odabran naziv proizvođača kao Diamond Aircraft Industries. Od tada nadalje u ponudi su imali jedrilice i zrakoplove od staklenih vlakana čime su osigurali dovoljnu čvrstoću konstrukcije uz smanjenje mase.

U 2004. godini proizvođač Diamond Aircraft predstavlja svoj prvi višemotorni zrakoplov Diamond DA42 Twin Star, vrlo popularan za civilnu i vladinu uporabu. Nakon čega dolazi do razvoja bespilotne letjelice koja ima mogućnosti duge istrajnosti na srednjim visinama.

Nekoliko godina proizvođač Diamond Aircraft je bio u fazi dizajna i testiranja jednomotornog mlaznog zrakoplova, poznatog kao Diamond D-Jet, za civilnu i vojnu uporabu. No zbog nemogućnosti financiranja prekinut je razvoj istog.

U prosincu 2017. godine Diamond Aircraft Industries je kupila kineska tvrtka Wanfeng Aviation.

2.2. Zrakoplov DV20

Zrakoplov DV20 je niskokrilac, s dva sjedišta i podvozjem u obliku tricikla, prikazan je na slici 1.

Razvoj zrakoplova baziran je na uspješnom dizajnu Diamond HK36 Dimona motorne jedrilice. Također razvoj zrakoplova bio je usmjeren tako da se izbjegne konkurentnost bazirana na performansama. Proizvođač je želio postići jedinstvenost na tržištu [3].

Tijekom 1991. godine zrakoplov je ostvario svoj prvi let, te su započela testiranja. Nakon dvije godine zrakoplov je dobio svjedodžbu o tipu, te je službeno predstavljen javnosti na Paris Air Show događaju. Velik udio korisnika ovog zrakoplova koriste ga upravo za osposobljavanje, pretežito zbog njegove jednostavnosti, jednostavnosti upravljanja, jeftinijeg održavanja i manje potrošnje goriva.

Slika 1: Diamond DV-20

2.3. Dimenzije i karakteristike zrakoplova DV20

Za procjenu aerodinamičkih karakteristika određenog zrakoplova potrebno je poznavati njegove geometrijske karakteristike, odnosno njegove dimenzije. Neke od geometrijskih karakteristika potrebnih za procjenu aerodinamičkih karakteristika poznate su nam iz priručnika zrakoplova, dok su neke dobivene mjerenjem, a neke proračunom.

Dimenzije i karakteristike dostupne u priručniku zrakoplova [1] navedene su u tablično od tablice 1 do tablice 8.

Osnovne dimenzije zrakoplova	
Raspon (s bljeskalicama) [m]	10.84
Raspon (bez bljeskalica) [m]	10.78
Duljina [m]	7.28
Širina [m]	1.75

Tablica	1.	Ochound	dimon	Trakon	lova	[1]
rubiicu	1.	USHOVILE	unnenzije	гикорі	ovu	

Dimenzije i karakteristike krila zrakoplova		
Aoroprofil	Wortmann	
Aeroprofit	FX 63-137	
Površina krila [m ²]	11.6	
Srednja aerodinamička tetiva [m]	1.09	
Aspektni odnos	10	
Kut dijedra [deg]	+4	
Kut strijele prednjeg brida [deg]	+1	
Površina krilaca [m ²]	0.658	
Površina zakrilaca [m ²]	1.236	

Tablica 2: Dimenzije i karakteristike krila zrakoplova [1]

Tablica 3: Dimenzije i karakteristike horizontalnog stabilizatora [1]

Dimenzije i karakteristike horizontalnog stabilizatora		
Površina stabilizatora [m ²]	1.692	
Površina krilca stabilizatora (elevatora) [m ²]	0.441	
Ugradbeni kut stabilizatora [deg]	-2	

Tablica 4: Dimenzije i karakteristike vertikalnog stabilizatora [1]

Dimenzije i karakteristike vertikalnog stabilizate		
Površina stabilizatora [m ²]	1.134	
Površina krilca stabilizatora (rudder) [m ²]	0.426	

Tablica 5: Dimenzije i karakteristike podvozja [1]

Dimenzije i karakteristike podvozja		
Raspon glavnog podvozja [m]	1.9	
Međuosovinski razmak podvozja [m]	1.75	

Tablica 6: Karakteristike motora [1]

Karakteristike motora	
Prijenosni omjer	2.43 : 1
Radni volumen [l]	1.352
	73.5 kW
Maksimalna snaga	(5800
	rpm)

Tablica 7: Dimenzije i karakteristike propelera [1]

Dimenzije i karakteristike propele	ra
Raspon postavnog kuta propelera [deg]	15 - 35
Promjer propelera [m]	1.7

Tablica 8: Karakteristike spremnika goriva [1]

	Ukupni kapacitet spremnika [l]	79 I
	Iskoristivi kapacitet spremnika [l]	77

3. Geometrijske karakteristike zrakoplova

Kroz ovo poglavlje određuju se sve potrebne geometrijske karakteristike zrakoplova i njegovih pojedinih komponenti. Neke karakteristike definirane su u priručniku zrakoplova [1], dok su druge mjerene na samom zrakoplovu ili su dobivene proračunom. One dimenzije koje u ovom poglavlju nisu rezultat proračuna, ili nisu definirane u drugom poglavlju kao dimenzije dostupne iz priručnika zrakoplova, dobivene su mjerenjem.

3.1. Geometrijske karakteristike krila zrakoplova

Krila zrakoplova Diamond DV-20 smještena su ispod trupa, izrađena su od jednog aeroprofila i nisu geometrijski uvijena [1]. Kut strijele na prednjem bridu iznosi 1°, dok je kut strijele stražnjeg brida jednak nuli, odnosno stražnji brid krila okomit je na uzdužnu os zrakoplova. Kut dijedra krila iznosi 4°. Zrakoplov leti brzinama između 40 i 160 kts, što odgovara 20,58 m/s i 82,31 m/s, te Reynoldsovim brojevima od 1 000 000 do 6 000 000.

Krila su izrađena od polimera ojačanog karbonskim vlaknima, zbog čega su izuzetno malene mase, te osiguravaju bolje performanse i bolju ekonomičnost eksploatacije zrakoplova, prikazana su na slici 3 [1].

Slika 2: Krilo zrakoplova Diamond DV-20 [4]

Poznavanjem površine krila i kuteva strijela krila moguće je odrediti duljine tetiva u korijenu pod trupom i na vrhu krila na sljedeći način pomoću projektnih metoda [5].

Izraz za referentnu površinu S_{ref} definiran je rasponom b i duljinama tetiva u korijenu pod trupom c_0 i na vrhu c_t :

$$S_{ref} = b\left(\frac{c_0 + c_t}{2}\right)$$

Duljina tetive krila na vrhu c_t definirana je pomoću tetive u korijenu c_0 , kuta strijele prednjeg brida krila Λ_{LE_W} i rasponom krila b:

$$c_t = c_0 - \tan \Lambda_{LE_W} * \frac{b}{2}$$

Nakon uvrštavanja izraza za tetivu na vrhu krila u jednadžbu za referentnu površinu moguće je odrediti duljine tetive u korijenu c_0 i na vrhu c_t :

$$S_{ref} = b \left(\frac{c_0 + c_0 - \tan \Lambda_{LE_W} * \frac{b}{2}}{2} \right)$$

$$c_0 = \frac{\frac{2S_{ref}}{b} + \tan \Lambda_{LE_W} * \frac{b}{2}}{2} = \frac{\frac{2 * 11.6}{10.78} + \tan 1^\circ * \frac{10.78}{2}}{2} = 1,1231 \text{ m}$$

$$c_t = c_0 - \tan \Lambda_{LE_W} * \frac{b}{2} = 1,1231 - \tan 1^\circ * \frac{10.89}{2} = 1,029 \text{ m}$$

Iz dosad izračunatih dimenzija moguće je odrediti duljinu tetive krila u korijenu c_r na mjestu spoja s trupom:

$$c_r = c_0 - \tan \Lambda_{LE_W} * \frac{W_B}{2} = 1,1231 - \tan 1^\circ * \frac{1,21}{2} = 1,1125 m$$

Dalje se određuje raspon dva polukrila b_W , bez trupa, površina dva polukrila S_W , vitkost dva polukrila AR_W , suženje polukrila λ_W :

$$b_W = b - W_B = 10,78 - 1,21 = 9,57 m$$

$$S_W = b_W \left(\frac{c_r + c_t}{2}\right) = 9,57 \left(\frac{1,1125 + 1,029}{2}\right) = 10,2471 m^2$$

$$AR_W = \frac{b_W^2}{S_W^2} = \frac{9,57^2}{10,2471} = 8,9376$$

$$\lambda_W = \frac{c_t}{c_r} = \frac{1,029}{1,1125} = 0,9249$$

Na kraju se određuju srednja aerodinamička tetiva c_{A_W} koja se koristi u daljnjim proračunima kao referentna duljina, te njena udaljenost od prednjeg brida krila x_{A_W} i od prednjeg brida zrakoplova l_{A_W} :

$$c_{A_W} = \frac{4}{3} \frac{S_W}{b_W} \left(1 - \frac{\lambda_W}{(1+\lambda_W)^2} \right) = \frac{4}{3} \frac{10,2471}{9,57} \left(1 - \frac{0,9249}{(1+0,9249)^2} \right) = 1,0713 m$$

$$x_{A_W} = b_W \frac{1 + 2\lambda_W}{6(1 + \lambda_W)} \tan \Lambda_{LE_W} = 9,57 \frac{1 + 2 * 0,9249}{6(1 + 0,9249)} \tan 1^\circ = 0,0412 m$$
$$l_{A_W} = l_{0_W} + x_{A_W} = 1,67 + 0,0412 = 1,7112 m$$

U tablici 9 prikazane su određene geometrijske karakteristike krila bez podtrupnog dijela proračunate pomoću projektnih metoda na temelju dostupnih podataka, iz poglavlja 2 i podataka izmjerenim na samom zrakoplovu.

Geometrijske karakteristike krila zrakoplova Diamond DV-20				
Raspon [m]	b_W	9,57		
Tetiva u korijenu [m]	C_r	1,1125		
Tetiva na vrhu [m]	Ct	1,029		
Kut strijele prednjeg brida [deg]	Λ_{LE_W}	1		
Kut strijele stražnjeg brida [deg]	Λ_{TE_W}	0		
Površina [m²]	S_W	10,2471		
Vitkost	AR_W	8,9376		
Suženje	λ_W	0,9249		
Srednja aerodinamička tetiva [m]	C_{A_W}	1,0713		
Udaljenost srednje aerodinamičke tetive od	γ.	0.0/12		
prednjeg brida krila [m]	λ_{A_W} (0,0412		
Udaljenost srednje aerodinamičke tetive od	1.	1 7112		
prednjeg brida zrakoplova [m]	A_W 1,71	1,/112		

Tablica 9: Geometrijske karakteristike krila zrakoplova Diamond DV-20

3.2. Geometrijske karakteristike trupa zrakoplova

Trup zrakoplova Diamond DV-20 oblikovan je aerodinamički i ima oblik kapljice, no zbog jednostavnosti proračuna koristi se pojednostavljeni oblik načinjen od dva krnja stošca i jednog cilindra prikazan na slici 3.

Slika 3: Oblik pojednostavljenog trupa zrakoplova

Površina trupa S_B koja će se kasnije koristiti u proračunima određena je na sljedeći način pomoću promjera trupa d_1 i d_2 , te duljinama trupa l_1 , l_2 i l_3 :

$$S_B = \frac{2\left(\frac{d_1}{2}\right)\pi + 2\left(\frac{d_2}{2}\right)\pi}{2}l_1 + 2\left(\frac{d_2}{2}\right)\pi l_2 + \frac{2\left(\frac{d_2}{2}\right)\pi + 2\left(\frac{d_1}{2}\right)\pi}{2}l_3$$

= (0,12 + 0,605)1,22\pi + 2 * 0,605\pi + (0,605 + 0,12)2,68\pi
= 16,5995 m^2

3.3. Geometrijske karakteristike horizontalnog stabilizatora zrakoplova

Horizontalni stabilizator zrakoplova Diamond DV-20 proizveden je od polimera ojačanog karbonskim vlaknima [1] te je smješten iznad vertikalnog stabilizatora. Ta kombinacija konstrukcije horizontalnog i vertikalnog stabilizatora imaju oblik "T" repa kao što je prikazano na slici 4.

Slika 4: Horizontalni stabilizator zrakoplova Diamond DV-20 [4]

Prema dostupnim dimenzijama horizontalnog stabilizatora određuju se tetive u korijenu c_r i na vrhu krila c_t na jednak način kao i kod krila zrakoplova [5] iz površine horizontalnog stabilizatora S_{HS} , raspona b_{HS} i kuteva strijele prednjeg $\Lambda_{LE_{HS}}$ i stražnjeg $\Lambda_{TE_{HS}}$ brida:

$$S_{HS} = b_{HS} \left(\frac{c_r + c_t}{2}\right)$$

$$c_t = c_r - \tan \Lambda_{LE_{HS}} * \frac{b_{HS}}{2} + \tan \Lambda_{TE_{HS}} * \frac{b_{HS}}{2} = c_r - \frac{b_{HS}}{2} (\tan \Lambda_{LE_{HS}} - \tan \Lambda_{TE_{HS}})$$

$$S_{HS} = b_{HS} \left(\frac{c_r + c_r - \frac{b_{HS}}{2} (\tan \Lambda_{LE_{HS}} - \tan \Lambda_{TE_{HS}})}{2}\right)$$

$$c_r = \frac{\frac{2S_{HS}}{b_{HS}} + \frac{b_{HS}}{2} (\tan \Lambda_{LE_{HS}} - \tan \Lambda_{TE_{HS}})}{2} = \frac{\frac{2 * 1,692}{2,64} + \frac{2,64}{2} (\tan 10^\circ - \tan(-5^\circ))}{2}$$

$$c_t = c_r - \frac{b_{HS}}{2} \left(\tan \Lambda_{LE_{HS}} - \tan \Lambda_{TE_{HS}} \right) = 0.815 - \frac{2.64}{2} \left(\tan 10^\circ - \tan(-5^\circ) \right) = 0.4668 \, m$$

S prethodno izračunatim dimenzijama moguće je odrediti vitkost AR_{HS} i suženje λ_{HS} horizontalnog stabilizatora:

$$AR_{HS} = \frac{b_{HS}^{2}}{S_{HS}} = \frac{2,64^{2}}{1,692} = 4,1191$$
$$\lambda_{HS} = \frac{c_{t}}{c_{r}} = \frac{0,4668}{0,815} = 0,5728$$

Naposljetku određuju se duljina srednje aerodinamičke tetive $c_{A_{HS}}$, njena udaljenost od prednjeg brida horizontalnog stabilizatora $x_{A_{HS}}$ i udaljenost od prednjeg brida srednje aerodinamičke tetive krila $h_{0_{HS}}$:

$$c_{AHS} = \frac{4}{3} \frac{S_{HS}}{b_{HS}} \left(1 - \frac{\lambda_{HS}}{(1 + \lambda_{HS})^2} \right) = \frac{4}{3} \frac{1,692}{2,64} \left(1 - \frac{0,5728}{(1 + 0,5728)^2} \right) = 0,6567 m$$

$$x_{AHS} = b_{HS} \frac{1 + 2\lambda_{HS}}{6(1 + \lambda_{HS})} \tan \Lambda_{LE_{HS}} = 2,64 \frac{1 + 2 * 0,5728}{6(1 + 0,5728)} \tan 10^\circ = 0,1058 m$$

$$h_{0HS} = l_{0HS} + x_{AHS} = 6,37 - 1,7112 + 0,1058 = 4,7646 m$$

Geometrijske karakteristike horizontalnog stabilizatora prikazane su u tablici 10, a dobivene su proračunom upotrebom dostupnih podataka iz priručnika zrakoplova i podataka izmjerenih na zrakoplovu.

Tablica 10: Geometrijske karakteristike horizontalnog stabilizatora zrakoplova Diamond DV-20

Geometrijske karakteristike horizontalnog stabilizatora		
zrakoplova Diamond DV-	20	
Raspon [m]	b_{HS}	2,64
Tetiva u korijenu [m]	Cr	0,815
Tetiva na vrhu [m]	Ct	0,4668
Kut strijele prednjeg brida [deg]	$\Lambda_{LE_{HS}}$	10
Kut strijele stražnjeg brida [deg]	$\Lambda_{TE_{HS}}$	-5
Površina [m²]	S_{HS}	1,692
Vitkost	AR_{HS}	4,1191
Suženje	λ_{HS}	0,5718
Srednja aerodinamička tetiva [m]	$C_{A_{HS}}$	0,6567
Udaljenost srednje aerodinamičke tetive od		
prednjeg brida horizontalnog stabilizatora	$x_{A_{HS}}$	0,1058
[m]	-	
Udaljenost srednje aerodinamičke tetive od		
prednjeg brida srednje aerodinamičke	$h_{0_{HS}}$	4,7646
tetive krila [m]		

3.4. Geometrijske karakteristike vertikalnog stabilizatora zrakoplova

Vertikalni stabilizator zrakoplova Diamond DV-20 također je proizveden od polimera ojačanog karbonskim vlaknima [1]. Na njega je ugrađen horizontalni stabilizator pa zajedno tvore "T" rep prikazan na slici 5.

Slika 5: Vertikalni stabilizator zrakoplova Diamond DV-20 [4]

Geometrijske karakteristike vertikalnog stabilizatora računaju se na isti način kao i karakteristike horizontalnog stabilizatora [5] iz površine vertikalnog stabilizatora S_{VS} , raspona stabilizatora b_{VS} , kuteva strijela $\Lambda_{LE_{VS}}$ i $\Lambda_{TE_{VS}}$, duljina tetiva u korijenu c_r i na vrhu c_t pa postupak nije detaljno objašnjen:

$$S_{VS} = b_{VS} \left(\frac{c_r + c_t}{2}\right)$$

$$c_t = c_r - \tan \Lambda_{LE_{VS}} b_{VS} + \tan \Lambda_{TE_{VS}} b_{VS} = c_r - b_{VS} \left(\tan \Lambda_{LE_{VS}} - \tan \Lambda_{TE_{VS}}\right)$$

$$S_{VS} = b \left(\frac{c_r + c_r - b_{VS} \left(\tan \Lambda_{LE_{VS}} - \tan \Lambda_{TE_{VS}}\right)}{2}\right)$$

$$c_r = \frac{\frac{2S_{VS}}{b_{HS}} + b_{VS} \left(\tan \Lambda_{LE_{VS}} - \tan \Lambda_{TE_{VS}}\right)}{2} = \frac{\frac{2 * 1,134}{1,02} + 1,02 (\tan 35^\circ - \tan 5^\circ)}{2}$$

 $c_t = c_r - b_{VS} (\tan \Lambda_{LE_{VS}} - \tan \Lambda_{TE_{VS}}) = 1,4243 - 1,02(\tan 35^\circ - \tan 5^\circ) = 0,7993 m$

$$AR_{VS} = \frac{b_{VS}^2}{S_{VS}} = \frac{1,02^2}{1,134} = 0,9175$$

$$\lambda_{VS} = \frac{c_t}{c_r} = \frac{0,7993}{1,4243} = 0,5612$$

$$c_{A_{VS}} = \frac{4}{3} \frac{S_{VS}}{b_{VS}} \left(1 - \frac{\lambda_{VS}}{(1+\lambda_{VS})^2}\right) = \frac{4}{3} \frac{1,134}{1,02} \left(1 - \frac{0,5612}{(1+0,5612)^2}\right) = 1,1532 m$$

$$x_{A_{VS}} = b_{VS} \frac{1+2\lambda_{VS}}{6(1+\lambda_{VS})} \tan \Lambda_{LE_{VS}} = 1,02 \frac{1+2*0,5612}{6(1+0,5612)} \tan 35^\circ = 0,1618 m$$

Geometrijske karakteristike vertikalnog stabilizatora dobivene proračunom poput vitkosti AR_{VS} , suženja λ_{VS} , srednje aerodinamičke tetive $c_{A_{VS}}$ i njene udaljenosti od prednjeg brida vertikalnog stabilizatora $x_{A_{VS}}$ prikazane su u tablici 11.

Geometrijske karakteristike vertikalnog stabilizatora zrakoplova Diamond DV-20		
Raspon [m]	b_{VS}	1,02
Tetiva u korijenu [m]	Cr	1,4243
Tetiva na vrhu [m]	Ct	0,7993
Kut strijele prednjeg brida [deg]	$\Lambda_{LE_{VS}}$	35
Kut strijele stražnjeg brida [deg]	$\Lambda_{TE_{VS}}$	5
Površina [m²]	S_{VS}	1,134
Vitkost	AR_{VS}	0,9175
Suženje	λ_{VS}	0,5612
Srednja aerodinamička tetiva [m]	$C_{A_{VS}}$	1,1532
Udaljenost srednje aerodinamičke tetive od prednjeg brida vertikalnog stabilizatora [m]	$x_{A_{VS}}$	0,1618

Tablica 11: Geometrijske karakteristike vertikalnog stabilizatora zrakoplova Diamond DV-20

3.5. Geometrijske karakteristike zrakoplova

Nakon proračuna kojima su utvrđene geometrijske karakteristike pojedinih komponenata zrakoplova, određuju se geometrijske karakteristike trupa i krila zrakoplova sa podtrupnim dijelom [6].

Referentna površina zrakoplova S_{ref} , na koju će se kasnije svoditi svi aerodinamički koeficijenti definira se kao površina krila s podtrupnim dijelom pomoću raspona b i tetiva u korijenu c_0 i na vrhu c_t :

$$S_{ref} = b\left(\frac{c_0 + c_t}{2}\right) = 10,78\left(\frac{1,1231 + 1,029}{2}\right) = 11,6 m^2$$

Kao i u prijašnjim poglavljima računaju se vitkost AR, suženje λ , srednja aerodinamička tetiva c_A i njena udaljenost od prednjeg brida x_A :

$$AR = \frac{b^2}{S_{ref}} = \frac{10,78^2}{11,6} = 10,018$$

$$\lambda = \frac{c_t}{c_0} = \frac{1,029}{1,1231} = 0,9162$$

$$c_{A} = \frac{4}{3} \frac{S_{ref}}{b} \left(1 - \frac{\lambda}{(1+\lambda)^{2}} \right) = \frac{4}{3} \frac{11.6}{10.78} \left(1 - \frac{0.9162}{(1+0.9162)^{2}} \right) = 1,0768 m$$

$$x_{A} = b \frac{1+2\lambda}{6(1+\lambda)} \tan \Lambda_{LE_{W}} = 10,78 \frac{1+2*0.9162}{6(1+0.9162)} \tan 1^{\circ} = 0,0464 m$$

$$l_{A} = l_{0} + x_{A} = 1,66 + 0.0464 = 1,7064 m$$

Uz do sada izračunate karakteristike moguće je odrediti udaljenost težišta zrakoplova od prednjeg brida srednje aerodinamičke tetive zrakoplova h_m , te postotak te udaljenosti u odnosu na duljinu srednje aerodinamičke tetive zrakoplova $\overline{h_m}$:

$$h_m = l_m - l_A = 1,95 - 1,7064 = 0,2436 m$$

 $\overline{h_m} = \frac{h_m}{c_A} = \frac{0,2436}{1,0768} = 0,2262$

Također moguće je odrediti Oswaldov koeficijent e i koeficijent induciranog otpora κ :

$$e = \frac{1}{1+\delta} = \frac{1}{1+0.07} = 0.9345$$
$$\kappa = \frac{1}{\pi eAR} = \frac{1}{\pi * 0.9345 * 10.018} = 0.034$$

Izračunate karakteristike zrakoplova prikazane su u tablici 12.

Geometrijske karakteristike zrakoplova Diamond DV-20		
Raspon [m]	b	10,78
Tetiva u korijenu [m]	<i>C</i> ₀	1,1231
Tetiva na vrhu [m]	Ct	1,029
Površina [m ²]	S_{ref}	11,6
Vitkost	AR	10,018
Suženje	λ	0,9162
Srednja aerodinamička tetiva [m]	C_A	1,0768
Udaljenost srednje aerodinamičke tetive od	1	1 7064
prednjeg brida zrakoplova [m]	ι_A	1,7004
Oswaldov koeficijent	е	0,9345
Koeficijent induciranog otpora	κ	0,034
Udaljenost težišta zrakoplova od prednjeg		
brida srednje aerodinamičke tetive u	$\overline{h_m}$	0,2262
postotcima srednje aerodinamičke tetive		

Tablica 12:	Geometrijske	karakteristike	zrakoplova	Diamond	DV-20

4. Aerodinamičke karakteristike zrakoplova

U ovom poglavlju određene su aerodinamičke karakteristike aeroprofila, koeficijenti otpora trenja pojedinih komponenti kao i cjelokupnog zrakoplova. Također određeni su koeficijenti normalne sile i momenata propinjanja, te koeficijenti bočne sile i momenata skretanja i valjanja.

4.1. Aerodinamičke karakteristike aeroprofila

Karakteristike aeroprofila određene su pomoću programa Xflr5 koji koristi pouzdanu Xflow metodu određivanja karakteristika aeroprofila [4]. Određene su karakteristike aeroprofila krila Wormann FX63-137, te aeroprofila horizontalnog i vertikalnog stabilizatora NACA 0015.

4.1.1. Aerodinamičke karakteristike aeroprofila Wortmann FX63-137

Krila zrakoplova Diamond DV-20 izrađena su uporabom aeroprofila Wortmann FX63-137 bez aerodinamičkog i geometrijskog uvijanja, što znači da se rasponom cijelog krila ne mijenja aeroprofil ili njegov ugradbeni kut [1].

Aerodinamičke karakteristike aeroprofila Wortmann FX63-137 dobivene su računalnom simulacijom u području Reynoldsovih brojeva od 1 000 000 do 6 000 000 [4], koji su dobiveni proračunom temeljem na srednjoj aerodinamičkoj tetivi krila i minimalnoj odnosno maksimalnoj brzini leta zrakoplova.

Osnovne aerodinamičke karakteristike aeroprofila Wortmann FX63-137 prikazane u tablici 13, očitane su vrijednosti iz grafova dobivenih računalnom simulacijom [4].

Aerodinamičke karakteristike aeroprofila V	Vortmann F	X63-137
Koeficijent uzgona pri nultom napadnom kutu	$c_{L_{\alpha_0}}$	0,904
Napadni kut nultog uzgona [deg]	α_{L_0}	-7,781
Ovisnost koeficijenta uzgona o napadnom kutu [deg ⁻¹]	$C_{L_{\alpha}}$	0,1162
Maksimalni koeficijent uzgona	$C_{L_{max}}$	1,944
Napadni kut maksimalnog uzgona [deg]	$\alpha_{c_{L_{max}}}$	15,5
Koeficijent minimalnog otpora	c_{D_0}	0,01
Koeficijent momenta propinjanja pri nultom napadnom kutu	C_{M_0}	-0,2045

Tablica 13: Aerodinamičke karakteristike aeroprofila Wortmann FX63-137

Grafovi dobiveni računalnom simulacijom prikazani su na slikama 7, 8 i 9:

Slika 6: Wortmann FX63-137 - Ovisnost koeficijenta uzgona o napadnom kutu [4]

Slika 7: Wortmann FX63-137 - Ovisnost koeficijenta otpora o napadnom kutu [4]

Slika 8: Wortmann FX63-137 - Ovisnost momenta propinjanja o napadnom kutu [4]

4.1.2. Aerodinamičke karakteristike aeroprofila NACA 0015

Horizontalni i vertikalni stabilizator zrakoplova Diamond DV-20 izrađeni su uporabom aeroprofila NACA 0015. Aeroprofil NACA 0015 je simetrični aeroprofil kojem je maksimalna debljina 15% od tetive aeroprofila, prema čemu nosi i oznaku NACA 0015.

Aerodinamičke karakteristike aeroprofila NACA 0015 očitane su iz grafova dobivenih računalnom simulacijom u području Reynoldsovih brojeva od 1 000 000 do 6 000 000 [4].

Osnovne aerodinamičke karakteristike aeroprofila NACA 0015 prikazane su tablično u tablici 14, a očitane su iz grafova.

Aerodinamičke karakteristike aeroprofila NACA 0015		
Koeficijent uzgona pri nultom napadnom	<u>C.</u>	0
kutu	$c_{L_{\alpha_0}}$	U
Napadni kut nultog uzgona [deg]	α_{L_0}	0
Ovisnost koeficijenta uzgona o napadnom	C	0 1100
kutu [deg ⁻¹]	$c_{L_{\alpha}}$	0,1109
Maksimalni koeficijent uzgona	$C_{L_{max}}$	1,622
Napadni kut maksimalnog uzgona [deg]	$\alpha_{c_{L_{max}}}$	18,5
Koeficijent minimalnog otpora	c_{D_0}	0,006
Koeficijent momenta propinjanja pri nultom	C	0
napadnom kutu	c_{M_0}	U

Tablica 14: Aerodinamičke karakteristike aeroprofila NACA 0015

Grafovi dobiveni računalnom simulacijom prikazani su na slikama 10, 11 i 12.

Slika 9: NACA 0015 - Ovisnost koeficijenta uzgona o napadnom kutu [4]

Slika 10: NACA 0015 - Ovisnost koeficijenta otpora o napadnom kutu [4]

Slika 11: NACA 0015 - Ovisnost koeficijenta momenta propinjanja o napadnom kutu [4]

4.2. Otpori trenja zrakoplovnih komponenti

Kroz ovo poglavlje određeni su koeficijenti otpora trenja svih zrakoplovnih komponenata uporabom projektnih metoda [6].

4.2.1. Otpor trenja krila

Iz geometrijskih karakteristika krila i poznate brzine leta zrakoplova moguće je odrediti otpor trenja krila [6].

Za određivanje otpora trenja krila potreban je Reynoldsov broj krila Re, koji se računa pomoću brzine zrakoplova v i duljine srednje aerodinamičke tetive krila c_A :

$$Re = \frac{vc_A}{v} = \frac{51,4444 * 1,0768}{1,46 * 10^{-5}} = 4015460$$
$$Re_{krit} = 10^6$$
$$Re > Re_{krit}$$

Pomoću dobivenog rezultata Reynoldsovog broja, zaključuje je se da je granični sloj krila turbulentan. Te se otpor trenja krila nadalje računa pomoću izraza za turbulentan granični sloj.

Prvo je potrebno odrediti iznos koeficijenta otpora trenja ravne ploče $(C_f)_{nloce}$:

$$(C_f)_{ploce} = \frac{3,91}{(\ln Re)^{2,58}} = \frac{3,91}{(\ln 4015460)^{2,58}} = 0,0035$$

Da bi se koeficijent otpora trenja ravne ploče prilagodio zakrivljenom krilu određene debljine, računa se faktor oblika F_F pomoću najveće debljine aeroprofila \overline{t} i pozicije najveće debljine aeroprofila \overline{x}_t :

$$F_F = \left(1 + \frac{0.6\bar{t}}{\bar{x}_t} + 100\bar{t}^4\right) = \left(1 + \frac{0.6*0.1317}{0.303} + 100*0.1317^4\right) = 1,2909$$

Kod malih brzina moguće je zanemariti faktor Mahovog broja F_{Ma} , jer iznosi približno jedan:

$$F_{Ma} \sim 1$$

Dok se faktor kuta strijele F_S računa na sljedeći način:

$$F_S = \cos^{0,28} \Lambda_{0,4} = \cos^{0,28} 0,6^\circ \sim 1$$

Uslijed malog kuta strijele krila faktor kuta strijele iznosi približno jedan pa je moguće isti zanemariti.

Na kraju je moguće odrediti koeficijent otpora trenja krila C_D i svesti ga na referentnu površinu $(C_{D_f})_{w}$:

$$C_D = F_F F_{Ma} F_S 2 (C_f)_{ploce} = 1,2909 * 1 * 1 * 2 * 0,0035 = 0,009$$
$$(C_{D_f})_W = \frac{S_W}{S_{ref}} C_D = \frac{10,2471}{11,6} * 0,009 = 0,008$$

4.2.2. Otpor trenja trupa

Određivanje otpora trenja trupa računa se na sličan način kao i otpor trenja krila [6]. Prvo je potrebno odrediti Reynoldsov broj trupa *Re*:

$$Re = \frac{vl_B}{v} = \frac{51,4444 * 5,93}{1,46 * 10^{-5}} = 20894883$$
$$Re_{krit} = 10^6$$
$$Re > Re_{krit}$$

Pomoću dobivenog rezultata Reynoldsovog broja, zaključuje je se da je granični sloj trupa turbulentan. Te se otpor trenja krila nadalje računa pomoću izraza za turbulentan granični sloj.

Prvo je potrebno odrediti iznos koeficijenta otpora trenja ravne ploče koja zamjenjuje trup $(C_f)_{nloce}$:

$$(C_f)_{ploce} = \frac{3,91}{(\ln Re)^{2,58}} = \frac{3,91}{(\ln 20894883)^{2,58}} = 0,0027$$

Koeficijent otpora trenja ravne ploče svodi se na koeficijent trenja zakrivljenog trupa određene debljine na sljedeći način pomoću faktora oblika F_F :

$$f = \frac{l_B}{d_{max}} = \frac{5,93}{1,21} = 4,9008$$
$$F_F = 1 + \frac{60}{f^3} + \frac{f}{400} = 1 + \frac{60}{4,9008^3} + \frac{4,9008}{400} = 1,522$$

Dobiveni faktor oblika dodatno se povećava za 10% zbog oblika kabine i 30% zbog oblika cjelokupnog trupa zrakoplova:

$$F_F = 1,522 * 1,1 * 1,3 = 2,1765$$

Kod malih brzina moguće je zanemariti faktor Mahovog broja F_{Ma} , jer iznosi približno jedan:

$$F_{Ma} \sim 1$$

Na kraju je moguće odrediti koeficijent otpora trenja trupa uz pomoć dobivenih koeficijenata i svesti ga na referentnu površinu $(C_{D_f})_{R}$:

$$\left(C_{D_f}\right)_B = \frac{S_B}{S_{ref}} \left(C_f\right)_{ploce} F_F F_{Ma} = \frac{16,5995}{11,6} * 0,0027 * 2,1765 * 1 = 0,0084$$

4.2.3. Otpor trenja horizontalnog stabilizatora

Određivanje otpora trenja horizontalnog stabilizatora određuje se na isti način kao i otpor trenja krila [6] pa postupak nije ponovno detaljno opisan:

$$Re = \frac{vc_A}{v} = \frac{51,4444 * 0,6567}{1,46 * 10^{-5}} = 2313940$$

$$Re_{krit} = 10^6$$

$$Re > Re_{krit}$$

$$(C_f)_{ploce} = \frac{3,91}{(\ln Re)^{2,58}} = \frac{3,91}{(\ln 2313940)^{2,58}} = 0,0038$$

$$F_F = \left(1 + \frac{0,6\bar{t}}{\bar{x}_t} + 100\bar{t}^4\right) = \left(1 + \frac{0,6 * 0,15}{0,2929} + 100 * 0,15^4\right) = 1,3579$$

$$F_{Ma} \sim 1$$

$$F_S = \cos^{0,28} \Lambda_{0,4} = \cos^{0,28} 9^\circ \sim 1$$

$$C_D = F_F F_{Ma} F_S 2(C_f)_{ploce} = 1,3579 * 1 * 1 * 2 * 0,0038 = 0,0103$$

$$\left(C_{D_f}\right)_{HS} = \frac{S_{HS}}{S_{ref}} C_D = \frac{1,692}{11,6} * 0,0103 = 0,0015$$

4.2.4. Otpor trenja vertikalnog stabilizatora

Otpor trenja vertikalnog stabilizatora određuje se jednako kao i otpor trenja krila i otpro trenja horizontalnog stabilizatora [6] pa postupak nije detaljno objašnjen:

$$Re = \frac{vc_A}{v} = \frac{51,4444 * 1,1532}{1,46 * 10^{-5}} = 4063402$$
$$Re_{krit} = 10^6$$
$$Re > Re_{krit}$$
$$(C_f)_{ploce} = \frac{3,91}{(\ln Re)^{2,58}} = \frac{3,91}{(\ln 4063402)^{2,58}} = 0,0035$$

$$F_F = \left(1 + \frac{0.6\bar{t}}{\bar{x}_t} + 100\bar{t}^4\right) = \left(1 + \frac{0.6*0.15}{0.2929} + 100*0.15^4\right) = 1,3579$$

$$F_{Ma} \sim 1$$

$$F_S = \cos^{0.28} \Lambda_{0.4} = \cos^{0.28} 23^\circ = 0.977$$

$$C_D = F_F F_{Ma} F_S 2 (C_f)_{ploce} = 1,3579*1*0.977*2*0.0035 = 0.0093$$

$$\left(C_{D_f}\right)_{VS} = \frac{S_{VS}}{S_{ref}} C_D = \frac{1,134}{11,6}*0.0093 = 0.0009$$

4.2.5. Otpor trenja podvozja

Otpor trenja podvozja određuje se pomoću projektnih metoda [6].

Čeona površina glavnog kotača $S_{m_{front}}$ izložena je u potpunosti struji zraka, a ona se računa na sljedeći način uporabom promjera kotača d_m i njegove širine w_m :

$$S_{m_{front}} = d_m w_m = 0,38 * 0,15 = 0,057 \ m^2$$

Prednji kotač je nešto manjih dimenzija ali mu se površina $S_{n_{front}}$ računa na isti način:

$$S_{n_{front}} = d_n w_n = 0.3 * 0.1 = 0.03 \ m^2$$

Čeona površina nosača glavnog kotača $S_{ms_{front}}$ predstavljen je promjerom nosača d_{ms} i njegove duljine l_{ms} :

$$S_{ms_{front}} = d_{ms}l_{ms} = 0,05 * 0,58 = 0,029 \ m^2$$

Nosač prednjeg kotača nakošen je pravcu zrakoplova, pa je njegova če
ona površina $S_{ns_{front}}$ manja:

$$S_{ns_{front}} = d_{ns}l_{ns} = 0.05 * 0.22 = 0.011 \ m^2$$

Otpor podvozja $\left(\mathcal{C}_{D_{f}}\right)_{LG}$ za tri kotača iznosi:

$$\left(C_{D_f}\right)_{LG} = k_w \frac{S_{n_{front}}}{S_{ref}} + k_s \frac{S_{n_{sfront}}}{S_{ref}} + 2\left(k_w \frac{S_{m_{front}}}{S_{ref}} + k_s \frac{S_{m_{sfront}}}{S_{ref}}\right)$$

= 0,25 $\frac{0,03}{11,6} + 1,2\frac{0,011}{11,6} + 2\left(0,25\frac{0,057}{11,6} + 1,2\frac{0,029}{11,6}\right) = 0,0102$

4.2.6. Otpor trenja zrakoplova

Zbroj parcijalnih otpora svake komponente predstavlja nulti otpor zrakoplova C_{D_0} [6]:

$$C_{D_0} = (C_{D_f})_W + (C_{D_f})_B + (C_{D_f})_{HS} + (C_{D_f})_{VS} + (C_{D_f})_{LG}$$

= 0,008 + 0,0084 + 0,0015 + 0,0009 + 0,0102 = 0,029

4.3. Normalna sila i momenti propinjanja

Normalna sila zrakoplova određena je pomoću projektnih metoda [6]. Djelovanje normalne sile na određenom kraku dovodi do pojave momenta oko težišta zrakoplova, a taj moment se naziva momentom propinjanja. Moment propinjanja također je određen pomoću projektnih metoda.

4.3.1. Krilo

Iz prije izračunatih, odnosno određenih podataka za krilo, moguće je proračunom odrediti određene aerodinamičke koeficijente krila.

Ovisnost koeficijenata uzgona o napadnom kutu manja je nego kod aeroprofila jer dolazi do prestrujavanja oko vrhova krila čime se smanjuje razlika tlaka na vrhovima krila i smanjuje im se uzgon.

Za određivanje ovisnosti koeficijenta uzgona o napadnom kutu potreban nam je koeficijent stlačivosti, a za njegov izračun Mahov broj *Ma*:

$$Ma = \frac{v}{a} = \frac{51,444}{340,3} = 0,1512$$

Iz izračunatog Mahovog broja moguće je odrediti koeficijent stlačivosti β :

$$\beta = \sqrt{1 - Ma^2} = \sqrt{1 - 0.1512^2} = 0.9885$$

U jednom od prethodnih poglavlja određene su aerodinamičke karakteristike aeroprofila pomoću kojega je napravljeno krilo, pomoću tih podataka može se odrediti promjena koeficijenta uzgona ovisno o napadnom kutu za krilo $(C_{L_{\alpha}})_{\mu}$:

$$c_{L_{\alpha}} = 0,1162 \ [deg^{-1}] = 0,1162 * \frac{180}{\pi} = 6,6578 \ rad^{-1}$$

$$AR_{W} = 8,9376$$

$$\Lambda_{0,5} = 0,5^{\circ}$$

$$\left(C_{L_{\alpha}}\right)_{W} = \frac{2\pi AR}{2 + \sqrt{4 + \left(\frac{2\pi AR}{c_{L_{\alpha}}}\right)^{2} \left(1 + \frac{\tan^{2}\Lambda_{0,5}}{\beta^{2}}\right)}} = \frac{2\pi * 8,9376}{2 + \sqrt{4 + \left(\frac{2\pi * 8,9376}{6,6578}\right)^{2} \left(1 + \frac{\tan^{2}0,5^{\circ}}{0,9885^{2}}\right)}}$$

$$= 5,2636 \ rad^{-1} = 0,0919 \ deg^{-1}}$$

Položaj hvatišta sile uzgone na krilu određuje se pomoću sljedećih parametara:

$$\lambda_W = 0.9249$$

 $AR_W\beta = 8.9376 * 0.9885 = 8.8348$
 $AR_W \tan \Lambda_m = 8.9376 * \tan 0.5^\circ = 0.078$

Položaj hvatišta sile $\overline{h_c}$ na krilu očitan je iz dijagrama na slici 12:

 $\overline{h_c}$ ~0,48

Slika 12: Položaj hvatišta normalne sile [6]

Nadalje, računa se normalna sila kombinacije krilo-trup $(C_N)_{WB}$:

$$(C_N)_{WB} = (C_{N_\alpha})_W \frac{S_W}{S_{ref}} (K_{BW}\alpha + k_{WB}(i_W - \alpha_{L_0}))$$

Za prethodnu jednadžbu potrebno je odrediti koeficijente interferencije K_{BW} i k_{BW} za krilo-trup:

$$\bar{d} = \frac{d_{max}}{b} = \frac{1,21}{10,78} = 0,1122$$

 $K_{BW} = 1 + 3\bar{d} - \lambda_W \bar{d} (1 - \bar{d}) = 1 + 3 * 0,1122 - 0,9249 * 0,1122(1 - 0,1122) = 1,2445$

$$k_{BW} = \left(\frac{1+0.41\bar{d}}{1+\bar{d}}\right)^2 K_{BW} = \left(\frac{1+0.41*0.1122}{1+0.1122}\right)^2 * 1.2445 = 1.1008$$

Kut nultog uzgona aeroprofila Wortmann FX63-137 iznosi -7,781°, prema tome može se odrediti ekvivalentni napadni kut α_{ef} :

$$\alpha_{ef} = K_{BW}\alpha + k_{BW}(i_W - \alpha_{L_0}) = 1,2445\alpha + 1,1008\left(i_W - \frac{-7,781}{\frac{180}{\pi}}\right)$$
$$= 1,2445\alpha + 1,1008i_W + 0,1495$$

S poznatim ekvivalentnim napadnim kutem moguće je naposljetku izraziti koeficijent normalne sile $(C_N)_{WB}$:

$$(C_N)_{WB} = (C_{N_{\alpha}})_W \frac{S_W}{S_{ref}} (K_{BW}\alpha + k_{BW}(i_W - \alpha_{L_0}))$$

= 5,2636 $\frac{10,2471}{11,6} (1,2445\alpha + 1,1008i_W + 0,1495)$
= 5,7866\alpha + 5,1184i_W + 0,6951

Koeficijent momenta $(C_{m_0})_W$ potrebno je svesti na referentnu površinu kao i sve aerodinamičke koeficijente do sada:

$$(C_{m_0})_W = c_{m_0} \frac{AR_W \cos \Lambda_m}{AR_W + 2 \cos \Lambda_m} \frac{S_W}{S_{ref}} = -0.2045 \frac{8.9376 \cos 0.7738^\circ}{8.9376 + 2 \cos 0.7738^\circ} \frac{10.2471}{11.6}$$

= -0.1476

Na kraju definiran je koeficijent momenta propinjanja kombinacije krilo-trup $(C_m)_{WB}$:

$$(C_m)_{WB} = (C_{m_0})_W - (C_N)_{WB} (\overline{h_{CW}} - \overline{h_m})$$

= -0,1476 - (5,7866\alpha + 5,1184i_W + 0,6951)(0,475 - \overline{h_m})
= -(2,7486 - 5,7866\overline{h_m})\alpha - (2,4312 - 5,1184\overline{h_m})i_W - 1,8062
+ 0,6951\overline{h_m}

4.3.2. Tijelo

Tijelo zrakoplova Diamond DV-20 oblikovano je vrlo simetrično i nije velikog obujma pa se zaključuje da ono nema velik doprinos stvaranju normalne sile, zato je ona zanemarena.

No ta sila svejedno pridonosi spregu sila, pa je moment $(C_m)_B$ proračunat na sljedeći način [6]:

$$(C_m)_B = \frac{K_B W_B^2 L_B}{c_A S_{ref}} \alpha$$

Potrebno je odrediti i položaj krila na trupu zrakoplova, izražen je u odnosu na cijelu duljinu zrakoplova.

$$\frac{l_{CW}}{L_B} = \frac{l_{0W} + c_A \overline{h_c}}{L_B} = \frac{1,67 + 1,0173 * 0,48}{5,93} = 0,364$$

Iz dijagrama na slici 13 očitava se vrijednost K_B :

 $K_B \sim 0,85$

Slika 13: Koeficijent sprega propinjanja trupa [6]

Na kraju uvrštavaju se vrijednosti u početni izraz i određuje se koeficijent momenta $(C_m)_B$:

$$(C_m)_B = \frac{0.85 * 1.21^2 * 5.93}{1.0713 * 11.6} \alpha = 0.5938\alpha$$

4.3.3. Povijanje struje zraka

Iza kombinacije krilo-trup nastaje određeno savijanje struje zraka koje je potrebno odrediti kako bi bilo moguće odrediti aerodinamičke karakteristike horizontalnog stabilizatora.

To povijanje struje zraka $\frac{d\varepsilon}{d\alpha}$ definira se pomoću koeficijenta na sljedeći način [6]:

$$\frac{d\varepsilon}{d\alpha} = 4,44 \left(K_{AR} K_{\lambda} K_{H} \sqrt{\cos \lambda_{1/4}} \right)^{1,19}$$

Za primjenu prethodnog izraza potrebno je odrediti koeficijente vitkosti krila K_{AR} , suženja krila K_{λ} i udaljenosti horizontalnog stabilizatora K_{H} :

$$K_{AR} = \frac{1}{AR} - \frac{1}{1 + AR^{1,7}} = \frac{1}{10,018} - \frac{1}{1 + 10,018^{1,7}} = 0,0803$$
$$K_{\lambda} = \frac{10 - 3\lambda}{7} = \frac{10 - 3 * 0,9162}{7} = 1,0359$$
$$l_{c_{HS}} - l_{c_{W}} = l_{0_{HS}} + \frac{c_{HS}}{4} - \left(l_{A} + \frac{c_{A}}{4}\right) = 6,37 + \frac{0,6567}{4} \left(1,7064 + \frac{1,0713}{4}\right) = 6,6941$$
$$K_{H} = \frac{1 - \frac{h}{b}}{\sqrt[3]{\frac{l_{c_{HS}} - l_{c_{W}}}{\frac{b}{2}}}} = \frac{1 - \frac{1,23}{10,78}}{\sqrt[3]{\frac{6,4758 - 1,7112}{2}}} = 0,9231$$
$$\tan \Lambda_{1/4} = 0,75^{\circ}$$

Nakon proračuna potrebnih koeficijenata moguće je definirati skretanje struje zraka iza kombinacije krilo-trup:

$$\frac{d\varepsilon}{d\alpha} = 4,44 \left(0,0803 * 1,0359 * 0,9231 \sqrt{\cos 0,75^{\circ}} \right)^{1,19} = 0,2093$$

4.3.4. Horizontalni stabilizator

Prema prethodno izračunatom savijanju struje zraka iza kombinacije krilo-trup moguće je definirati napadni kut horizontalnog stabilizatora α_{HS} [6]:

$$\alpha_{HS} = \alpha - \frac{d\varepsilon}{d\alpha} \alpha_{ef}$$

 $\alpha_{HS} = \alpha - 0,2093(1,2445\alpha + 1,1008i_W + 0,1495) = \alpha - 0,2605\alpha - 0,2304i_W - 0,0313$ $= 0,7395\alpha - 0,2304i_W - 0,0313$

Također potrebno je odrediti koeficijent utjecaja stlačivosti β :

$$\beta = \sqrt{1 - Ma^2} = \sqrt{1 - 0.1512^2} = 0.9885$$

Prema otprije definiranim karakteristikama aeroprofila NACA 0015 prema kojem je napravljen horizontalni stabilizator moguće je odrediti ovisnost koeficijenta uzgona horizontalnog stabilizatora o napadnom kutu $(C_{N_{\alpha}})_{HS}$:

$$(C_{N_{\alpha}})_{HS} = \frac{2\pi AR}{2 + \sqrt{4 + \left(\frac{2\pi AR}{c_{L_{\alpha}}}\right)^2 \left(1 + \frac{\tan^2 \Lambda_{0,5}}{\beta^2}\right)}} = \frac{2\pi * 4,1191}{2 + \sqrt{4 + \left(\frac{2\pi * 4,1191}{6,3541}\right)^2 \left(1 + \frac{\tan^2 2,5^\circ}{0,9885^2}\right)}} = 0,0743 \ deg^{-1}$$

Hvatište normalne sile nalazi se na četvrtini tetive stabilizatora:

$$h_{c_{HS}} = h_{0_{HS}} + 0.24c_{A_{HS}} = 4.7646 + 0.24 * 0.6567 = 4.9222 m$$
$$\overline{h_{c_{HS}}} = \frac{h_{c_{HS}}}{c_A} = \frac{4.9222}{1.0713} = 4.5946$$

Nadalje moguće je definirati normalnu silu horizontalnog stabilizatora $(C_N)_{HSB}$:

$$(C_N)_{HSB} = \frac{S_{HS}}{S_{ref}} \left(\left(C_{N_\alpha} \right)_{HS} (K_{BHS} \alpha + k_{BHS} i_{HS}) + \left(C_{N_\delta} \right)_{HS} \delta_m \right)$$

Koeficijente interferencije za horizontalni stabilizator K_{BHS} i k_{BHS} moguće je proračunati na sljedeći način:

$$\bar{d} = \frac{d_e}{b_{HS}} = \frac{0,1199}{2,64} = 0,0454$$

 $K_{BHS} = 1 + 3\bar{d} - \lambda\bar{d}\left(1 - \bar{d}\right) = 1 + 3 * 0,0454 - 0,5718 * 0,0454(1 - 0,0454) = 1,1114$

$$k_{BHS} = \left(\frac{1+0.41\bar{d}}{1+\bar{d}}\right)^2 K_{BHS} = \left(\frac{1+0.41*0.0454}{1+0.0454}\right)^2 * 1.1114 = 1.0552$$

Utjecaj otklona kormila visine na gradijent normalne sile $(C_{N_{\delta}})_{HS}$ određuje se pomoću sljedećih izraza:

$$\left(C_{N_{\delta}}\right)_{HS} = 0.9 \frac{S_{\delta}}{S_{HS}} \left(\frac{C_{N_{\alpha}}}{c_{L_{\alpha}}}\right)_{HS} \left(C_{L_{\delta}}\right)_{prof} \cos \Lambda_{LE_{HS}} K_{f}$$

U podzvučnim letovima kada se upravljačka površina prostire cijelom duljinom stabilizatora, površina upravljačke površine i površina stabilizatora smatraju se jednakima:

$$\frac{S_{\delta}}{S_{HS}} = 1$$
$$\frac{c_{\delta}}{c_{HS}} = 0,2727$$
$$\bar{t} = 0,15$$

Za prikazane parametre iz dijagrama sa slike 14 određuje se sljedeće:

Slika 14: Ovisnost gradijenta normalne sile upravljačke površine [6]

Uz dobivene parametre definira se koeficijent normalne sile kombinacije horizontalni stabilizator-trup $(C_N)_{HSB}$:

$$(C_N)_{HSB} = \frac{1,692}{11,6} \left(4,2588(1,1114(0,7395\alpha - 0,2304i_W - 0,0313) + 1,0552i_{HS}) + 2,1742K_f \delta_m \right)$$

= 0,5107\alpha - 0,1591i_W + 0,6557i_{HS} - 0,0216 + 0,3172K_f \delta_m

Normalna sila definirana prethodnim izrazom može se podijeliti u dva dijela, onaj bez otklona kormila visine koji ima hvatište sile definirano pomoću proračuna i onaj generiran zbog otklona kormila visine. Sila generirana kormilom visine naziva se upravljačkom silom i njeno hvatište očitano je iz dijagrama sa slike 15:

$$\frac{x_{\delta}}{c_A} = 0,42$$

Slika 15: Položaj hvatišta sile upravljačke površine [6]

To hvatište potrebno je definirati u odnosu na aerodinamički centar zrakoplova:

$$\overline{h_{c_{\delta}}} = \frac{h_{0_{HS}} + c_{A_{HS}} \frac{x_{\delta}}{c_{A}}}{c_{A}} = \frac{4,7646 + 0,6567 * 0,42}{1,0713} = 4,705$$

Koeficijent momenta propinjanja horizontalnog stabilizatora $(C_m)_{\rm HSB}$ iznosi:

$$\begin{aligned} (C_m)_{HSB} &= -(0,5107\alpha - 0,1591i_W + 0,6557i_{HS} - 0,0216)(4,5946 - \overline{h_m}) \\ &\quad -0,3172K_f \delta_m (4,705 - \overline{h_m}) \\ &= -(2,3465 - 0,5107\overline{h_m})\alpha + (0,731 - 0,1591\overline{h_m})i_W \\ &\quad -(3,0127 - 0,6557\overline{h_m})i_{HS} + (0,0992 - 0,0216\overline{h_m}) \\ &\quad -(1,4924 - 0,3172\overline{h_m})K_f \delta_m \end{aligned}$$

4.3.5. Statički koeficijenti normalne sile i momenata propinjanja zrakoplova

Iz do sada napravljenih proračuna može se definirati koeficijent normalne sile cijelog zrakoplova C_N [6]:

$$C_N = (C_N)_{WB} + (C_N)_{HSB}$$

$$C_N = (5,7866\alpha + 5,1184i_W + 0,6951) + (0,5107\alpha - 0,1591i_W + 0,6557i_{HS} - 0,0216 + 0,3172K_f\delta_m) = 6,2973\alpha + 4,9593i_W + 0,6557i_{HS} + 0,3172K_f\delta_m + 0,6735$$

Na isti način na koji je definiran koeficijent normalne sile zrakoplova može se definirati i koeficijent momenta propinjanja zrakoplova C_m :

$$C_m = (C_m)_{WB} + (C_m)_B + (C_m)_{HSB}$$

$$C_m = \left(-(2,7486 - 5,7866\overline{h_m})\alpha - (2,4312 - 5,1184\overline{h_m})i_W - 1,8062 + 0,6951\overline{h_m})\right)$$

$$+ (0,5938\alpha)$$

$$+ (-(2,3465 - 0,5107\overline{h_m})\alpha + (0,731 - 0,1591\overline{h_m})i_W$$

$$- (3,0127 - 0,6557\overline{h_m})i_{HS} + (0,0992 - 0,0216\overline{h_m})$$

$$- (1,4924 - 0,3172\overline{h_m})K_f\delta_m)$$

$$= -(4,5013 - 6,2973\overline{h_m})\alpha - (1,7002 - 4,9593\overline{h_m})i_W$$

$$- (3,0127 - 0,6557\overline{h_m})i_{HS} - 1,707 + 0,6735\overline{h_m}$$

$$- (1,4924 - 0,3749\overline{h_m})K_f\delta_m$$

4.4. Bočna sila i moment skretanja

Do sada su definirani otpori trenja zrakoplova, normalna sila i moment propinjanja. U ovom poglavlju određuju se bočne sile i momenti skretanja [6].

4.4.1. Vertikalni stabilizator

Aeroprofil vertikalnog stabilizatora jednak je onome što čini horizontalni stabilizator, te ima iste aerodinamičke karakteristike.

Gradijent normalne sile po napadnom kutu $(C_{N_{\alpha}})_{VS}$ računa se jednako kao i kod krila i horizontalnog stabilizatora:

$$(C_{N_{\alpha}})_{VS} = \frac{2\pi AR}{2 + \sqrt{4 + \left(\frac{2\pi AR}{C_{L_{\alpha}}}\right)^2 \left(1 + \frac{\tan^2 \Lambda_{0,5}}{\beta^2}\right)}} = \frac{2\pi * 0,9175}{2 + \sqrt{4 + \left(\frac{2\pi * 0,9175}{6,3541}\right)^2 \left(1 + \frac{\tan^2 20^\circ}{0,9885^2}\right)}} = 1,3656 \ rad^{-1} = 0,0238 \ deg^{-1} }$$

Za sljedeće karakteristike kormila pravca očitava se gradijent normalne sile profila $(C_{L_{\delta}})_{prof}$ vertikalnog stabilizatora iz grafa sa slike 14:

$$\frac{c_{\delta}}{c_{VS}} = 0,4375$$
$$\bar{t} = 0,15$$

$$\left(C_{L_{\delta}}\right)_{prof}=5,6$$

Pomoću očitane vrijednosti moguće je definirati gradijent normalne sile vertikalnog stabilizatora $(C_{N_{\delta}})_{VS}$ uz istu pretpostavku da su površine upravljačke površine i stabilizatora jednake u podzvučnim letovima ako se protežu cijelom duljinom površine:

$$\frac{S_{\delta}}{S_{VS}} = 1$$

$$(C_{N_{\delta}})_{VS} = 0.9 \frac{S_{\delta}}{S_{VS}} \left(\frac{C_{N_{\alpha}}}{c_{L_{\alpha}}}\right)_{VS} (C_{L_{\delta}})_{prof} \cos \Lambda_{LE_{VS}} K_{f} = 0.9 * 1 * \frac{1.3656}{6.3541} * 5.6 * \cos 35^{\circ} K_{f}$$

= 0.8873K_f

Sljedeći parametri potrebni su za određivanje hvatišta normalne sile na stabilizatoru:

$$AR_{VS} \tan \Lambda_m = 0.9175 * \tan 20^\circ = 0.3339$$
$$AR_{VS}\beta = 0.9175 * 0.9885 = 0.9069$$
$$\lambda_{VS} = 0.5612$$

Iz dijagrama na slikama 16 i 17 dobiveni su sljedeći podatci:

$$\overline{y_C} = 0,42$$
$$\overline{h_c} = 0,352$$

Slika 16: Položaj hvatišta sile polukrila [6]

Slika 17: Položaj hvatišta normalne sile [6]

Hvatište normalne sile vertikalnog stabilizatora:

$$z_c = r_{VS} + b_{VS}\overline{y_c} = 0.12 + 1.02 * 0.42 = 0.5484 m$$

 $l_{c_{VS}} = l_{0_{VS}} + x_{A_{VS}} + c_{A_{VS}}\overline{h_c} = 5,91 + 0,1618 + 1,1532 * 0,352 = 6,4777 m$

Pomoću dijagrama sa slike 15 određeno je hvatište normalne sile kormila pravca:

$$\frac{x_{\delta}}{c} = 0,37$$

$$l_{\delta_{VS}} = l_{0_{VS}} + x_{A_{VS}} + c_{A_{VS}} \frac{x_{\delta}}{c} = 5,91 + 0,1618 + 1,1532 * 0,37 = 6,4985 m$$

Na kraju je određen koeficijent interferencije K_{VSB} :

$$\bar{d} = \frac{0,12}{1,14} = 0,1053$$

 $K_{VSB} = 1 + 3\bar{d} - \lambda \bar{d} (1 - \bar{d}) = 1 + 3 * 0,1053 - 0,5612 * 0,1053(1 - 0,1053) = 1,263$

4.4.2. Bočna sila zrakoplova

Pomoću sljedećeg izraza definirana je bočna sila zrakoplova C_Y :

$$C_Y = C_{Y_\beta}\beta + C_{Y_p}p + C_{Y_r}r + C_{Y_{\delta_{VS}}}\delta_{VS}$$

Gradijent vertikalnog stabilizatora ovisan o kutu klizanja zrakoplova $(C_{Y_{\beta}})_{VS}$ određen je sljedećim izrazom:

$$\left(C_{Y_{\beta}}\right)_{VS} = -\frac{S_{VS}}{S_{ref}} \left(C_{N_{\alpha}}\right)_{VS} K_{VB} = -\frac{1,134}{11,6} \, 1,3656 * 1,263 = -0,1686$$

Gradijent vertikalnog stabilizatora ovisan o otklonu kormila pravca $(C_{Y_{\delta}})_{VS}$:

$$\left(C_{Y_{\delta}}\right)_{VS} = \frac{S_{VS}}{S_{ref}} \left(C_{N_{\delta}}\right)_{VS} = \frac{1,134}{11,6} \,0.8873K_{f_{VS}} = 0.0867K_{f_{VS}}$$

Gradijenti vertikalnog stabilizatora ovisni o kutnoj brzini valjanja C_{Y_p} i kutnoj brzini skretanja C_{Y_r} dobivaju se sljedećim jednadžbama:

$$C_{Y_p} = C_{Y_\beta} \frac{|z_c|}{b} = -0,1686 * \frac{0,5484}{10,78} = -0,0086$$
$$C_{Y_r} = \frac{S_{VS}}{S_{ref}} (C_{N_\alpha})_{VS} \frac{l_{c_{VS}} - l_m}{b} = \frac{1,134}{11,6} 1,3656 \frac{6,4777 - 1,95}{10,78} = 0,0561$$

Koeficijent bočne sile zrakoplova C_Y :

$$C_Y = -0.1686\beta - 0.0086p + 0.0561r + 0.0867K_{fys}$$

4.4.3. Moment skretanja zrakoplova

Moment skretanja C_n zrakoplova definiran je pomoću sljedećeg izraza:

$$C_n = C_{n_\beta}\beta + C_{n_p}p + C_{n_r}r + C_{n_{\delta_W}}\delta_W + C_{n_{\delta_{VS}}}\delta_{VS}$$

Gradijent momenta skretanja zrakoplova po kutu klizanja $C_{n_{\beta}}$:

$$C_{n_{\beta}} = \left(C_{n_{\beta}}\right)_{W} + \left(C_{n_{\beta}}\right)_{VS} + \left(C_{n_{\beta}}\right)_{B}$$

Gradijent krila po kutu klizanja $\left(C_{n_{\beta}}\right)_{W}$:

$$B_{1} = \frac{\tan \Lambda_{1/4}}{\left(AR + 4\cos \Lambda_{1/4}\right)} \left(\cos \Lambda_{1/4} - \frac{AR}{2} - \frac{AR^{2}}{8\cos \Lambda_{1/4}}\right)$$
$$= \frac{\tan 0.75^{\circ}}{(10.018 + 4\cos 0.75^{\circ})} \left(\cos 0.75^{\circ} - \frac{10.018}{2} - \frac{10.018^{2}}{8\cos 0.75^{\circ}}\right) = -0.0155$$

$$B_2 = 6 \frac{\left(\sin \Lambda_{1/4}\right)^2}{AR \cos \Lambda_{1/4} \left(AR + 4 \cos \Lambda_{1/4}\right)} = 6 \frac{\left(\sin 0.75^\circ\right)^2}{10,018 \cos 0.75^\circ (10,018 + 4 \cos 0.75^\circ)} = 0,000007$$

$$\left(C_{n_{\beta}}\right)_{W} = \frac{C_{L}^{2}}{\pi A R} \left(\frac{1}{4} - B_{1} - B_{2}(l_{c_{W}} - l_{m})\right)$$

= $\frac{0,3808^{2}}{\pi 10,018} \left(\frac{1}{4} + 0,0155 - 0,000007(1,7112 - 1,95)\right) = 0,0012$

Gradijent momenta skretanja tijela po kutu klizanja $(C_{n_{\beta}})_{R}$:

$$\left(C_{n_{\beta}}\right)_{B} = -1.3 \frac{V_{B} D_{B}}{S_{ref} b W_{B}} = -1.3 \frac{4.1845 * 1.21}{11.6 * 10.78 * 1.21} = -0.0435$$

Gradijent momenta skretanja vertikalnog repa po kutu klizanja $\left(C_{n_{\beta}}\right)_{VS}$:

$$(C_{n_{\beta}})_{VS} = -(C_{Y_{\beta}})_{VS} \frac{l_{c_{VS}} - l_{m}}{b} = -(-0.1686) \frac{6.4777 - 1.95}{10.78} = 0.0708$$

Gradijent momenta skretanja zrakoplova po kutu klizanja $C_{n_{\beta}}$:

$$C_{n_{\beta}} = \left(C_{n_{\beta}}\right)_{W} + \left(C_{n_{\beta}}\right)_{VS} + \left(C_{n_{\beta}}\right)_{B} = 0,0012 + 0,0708 - 0,0435 = 0,0285$$

Gradijent momenta skretanja zrakoplova po kutnoj brzini valjanja \mathcal{C}_{n_p} :

$$C_{n_p} = -C_{Y_p} \frac{l_{c_{VS}} - l_m}{b} = -(-0,0086) \frac{6,4777 - 1,95}{10,78} = 0,0036$$

Gradijent momenta skretanja zrakoplova po kutnoj brzini skretanja C_{n_r} :

$$C_{n_r} = -C_{Y_r} \frac{l_{c_{VS}} - l_m}{b} = -0,0561 \frac{6,4777 - 1,95}{10,78} = -0,0236$$

Za prethodno određene parametre krila može se odrediti položaj hvatišta sile:

$$\overline{y_{c_W}} = 0,48$$

$$y_c = \frac{W_B}{2} + \frac{b_W}{2}\overline{y_{c_W}} = \frac{1,21}{2} + \frac{9,57}{2}0,48 = 2,9018 m$$

Sredina raspona krilaca od osi zrakoplova y_l računa se na sljedeći način:

$$y_l = \frac{y_{in} + y_{out}}{2} = \frac{3,38 + 5,07}{2} = 4,225 m$$

Prema izračunatim vrijednostima određuje se gradijent momenata skretanja po otklonu krilaca $C_{n_{\delta_W}}$:

$$\left(C_{l_{\delta}}\right)_{W} = 0.9 \frac{S_{\delta}}{S_{ref}} \left(\frac{C_{N_{\alpha}}}{c_{l_{\alpha}}}\right) \left(C_{l_{\delta}}\right)_{prof} \cos \Lambda_{W} = 0.9 \frac{0.658}{11.6} \left(\frac{5.2636}{6.6578}\right) 3.7 \cos 1^{\circ} = 0.1493$$

$$C_{n_{\delta_W}} = -2\kappa C_L C_{l_{\delta_W}} \frac{y_c}{y_l} = -2 * 0,034 * 0,3808 * 0,1493 * \frac{2,9018}{4,225} = 0,0027$$

Gradijent momenta skretanja po otklonu kormila pravca $C_{n_{\delta_{VS}}}$:

$$C_{n_{\delta_{VS}}} = -(C_{Y_{\delta}})_{VS} \frac{l_{\delta_{VS}} - l_m}{b} = 0,0867 K_{f_{VS}} \frac{6,4985 - 1,95}{10,78} = -0,0366 K_{f_{VS}}$$

Zaključno, moment sretanja zrakoplova C_n :

$$C_n = -0.0435\beta + 0.0036p - 0.0236r + 0.0027\delta_W + -0.0366\delta_{VS}$$

4.4.4. Moment valjanja zrakoplova

Cjelokupni moment valjanja zrakoplova C_l jednak je izrazu:

$$C_l = C_{l_\beta}\beta + C_{l_p}p + C_{l_r}r + C_{n_{l_W}}\delta_W + C_{n_{l_{VS}}}\delta_{VS}$$

Gradijent momenta valjanja zrakoplova ovisan o kutu klizanja sastoji se od utjecaja krila $(C_{l_{\beta}})_{W}$ i vertikalnog stabilizatora $(C_{l_{\beta}})_{VS}$:

$$C_{l_{\beta}} = \left(C_{l_{\beta}}\right)_{W} + \left(C_{l_{\beta}}\right)_{VS}$$

O tri efekta ovisi gradijent momenta valjanja koji nastaje na krilu:

$$\left(C_{l_{\beta}}\right)_{W} = \left(C_{l_{\beta_{v}}}v\right)_{W} + \left(C_{l_{\beta_{C_{L}}}}C_{L}\right)_{W} + \left(C_{l_{\beta_{z}}}\overline{z_{W}}\right)_{W}$$

Tri efekta o kojima ovisi gradijent momenta valjanja krila definirana su sljedećim jednadžbama:

$$C_{l_{\beta_{v}}}v = -\frac{S_{W}}{S_{ref}} (C_{N_{\alpha}})_{W} \frac{y_{c}}{b}v = -\frac{10,2471}{11,6} 5,2636 \frac{2,9018}{10,78} 0,1358 = -0,17$$

$$C_{l_{\beta_{c_{L}}}}C_{L} = \frac{S_{W}}{S_{ref}} \sin \Lambda_{1/4} \frac{y_{c}}{b}C_{L} = \frac{10,2471}{11,6} \sin 0,75^{\circ} \frac{2,9018}{10,78} 0,3808 = 0,0012$$

$$C_{l_{\beta_{z}}}\overline{z_{W}} = 1,2\sqrt{AR} \frac{D_{B} + W_{B}}{b} \overline{z_{W}} = 1,2 * \sqrt{10,018} \frac{1,21 + 1,21}{10,78} \frac{0,24}{10,78} = 0,019$$
Gradijent krila momenta valjanja po kutu klizanja $(C_{l_{\beta}})_{W}$:

$$(C_{l_{\beta}})_{W} = -0.17 + 0.0012 + 0.019 = -0.1498$$

Gradijent momenta valjanja na vertikalnom repu nastao klizanjem $\left(C_{l_{\beta}}\right)_{VS}$:

$$\left(C_{l_{\beta}}\right)_{VS} = -\frac{S_{VS}}{S_{ref}} \left(C_{N_{\alpha}}\right)_{VS} \frac{|z_c|}{b} = -\frac{1,134}{11,6} 1,3656 \frac{0,5484}{10,78} = -0,0068$$

Gradijent momenta valjanja zrakoplova po kutu klizanja $C_{l_{\beta}}$:

$$C_{l_{R}} = -0,1498 - 0,0068 = -0,1566$$

Gradijent momenta valjanja zrakoplova po kutnoj brzini valjanja \mathcal{C}_{l_p} moguće je zamijeniti gradijentom krila po kutnoj brzini valjanja:

$$C_{l_p} = -(C_{N_{\alpha}})_W f(\lambda, AR \tan \Lambda_m, AR\beta)$$

Koeficijent iz prethodne jednadžbe očitan je iz grafa sa slike 18:

~ ~ ~

$$f(\lambda, AR \tan \Lambda_m, AR\beta) = 0,072$$

$$C_{l_p} = -(C_{N_\alpha})_W f(\lambda, AR \tan \Lambda_m, AR\beta) = -5,2636 * 0,072 = -0,379$$
0.075
0.07

.

Slika 18: Koeficijent momenta valjanja za kutnu brzinu valjanja [6]

Gradijent momenta valjanja zrakoplova po kutnoj brzini skretanja C_{l_r} :

$$C_{l_r} = \frac{(C_N)_W}{6} + C_{Y_r} \frac{|z_c|}{b} = \frac{5,7866\alpha + 0,6951}{6} + 0,0561 \frac{0,5484}{10,78} = 0,9644\alpha + 0,1187$$

Prema podatcima krila očitana je vrijednost iz grafa sa slike 14:

$$C_{l_{\delta}} = 3,7$$

Uz ovaj faktor, gradijent momenta valjanja zrakoplova po otklonu krilaca iznosi $C_{n_{l_{W}}}$:

$$C_{n_{l_W}} = \cos \Lambda_{LE} \frac{2S_{\delta_W}}{S_{ref}} \frac{y_l}{b} (C_{l_\delta})_{prof} K_f = \cos 1^{\circ} \frac{0,658}{11,6} \frac{4,225}{10,78} 3,7K_f = 0,0822K_f$$

Gradijent momenta valjanja po otklonu kormila pravca $C_{n_{l_{VS}}}$:

$$C_{n_{l_{VS}}} = (C_{Y_{\delta}})_{VS} \frac{|z_c|}{b} = 0,0867K_{f_{VS}} \frac{0,5484}{10,78} = 0,0044K_{f_{VS}}$$

Na kraju moment valjanja zrakoplova C_l se zapisuje pomoću jednadžbe:

$$C_l = -0.1566\beta + -0.379p + (0.9644\alpha + 0.1187)r + 0.0822\delta_W + 0.0044\delta_{VS}$$

4.5. Proračunati aerodinamički koeficijenti zrakoplova

Koeficijent nultog otpora zrakoplova C_{D_0} iznosi:

$$C_{D_0} = 0,029$$

Koeficijent normalne sile zrakoplova C_N :

$$C_N = 6,2973\alpha + 4,9593i_W + 0,6557i_{HS} + 0,3172K_f\delta_m + 0,6735$$

Koeficijent momenta propinjanja zrakoplova C_m :

$$C_m = -(4,5013 - 6,2973\overline{h_m})\alpha - (1,7002 - 4,9593\overline{h_m})i_W - (3,0127 - 0,6557\overline{h_m})i_{HS} - 1,707 + 0,6735\overline{h_m} - (1,4924 - 0,3749\overline{h_m})K_f\delta_m$$

Koeficijent bočne sile zrakoplova C_Y :

$$C_Y = -0.1686\beta - 0.0086p + 0.0561r + 0.0867K_{f_{VS}}$$

Koeficijent momenta skretanja zrakoplova C_n :

$$C_n = -0.0435\beta + 0.0036p - 0.0236r + 0.0027\delta_W + -0.0366\delta_{VS}$$

Koeficijent momenta valjanja zrakoplova C_l :

$$C_l = -0.1566\beta + -0.379p + (0.9644\alpha + 0.1187)r + 0.0822\delta_W + 0.0044\delta_{VS}$$

Zaključak

Korištenje metoda projektne aerodinamike dodatno otežava velik broj parametara korišten u proračunima. Oznake pojedinih veličina vrlo su slične ili gotovo iste nekih drugih veličina pa lagano dolazi do konfuzije i pogrešno izračunatih proračuna.

Nastavno korištenje računalnog programa Xflr5 puno olakšava prikupljanje podataka o aeroprofilima iako sam program nije jednostavan za uporabu. Modeliranje krila i stabilizatora ne predstavlja veliku barijeru u modeliranju zrakoplova, no trup nije moguće jednostavno definirati. Zbog nemogućnosti preciznog modeliranja trupa nije moguće provesti računalnu simulaciju nad cijelim zrakoplovom te nije moguća jednostavna usporedba rezultata dobivenih proračunom projektnih metoda i računalne simulacije. Također provedba simulacija nad aeroprofilima ili komponentama zrakoplova nije jednostavna, jer u mnogo slučajeva računalno izračunati podatci dosta variraju i potrebno je vrlo precizno postaviti uvjete simulacije.

Sigurno postoje računalni programi kojima je moguće puno točnije odrediti sve karakteristike zrakoplova nego računskim metodama, no oni nisu dostupni javnosti, odnosno nije isplativo posjedovati jedan od tih računalnih programa za simulaciju samo jednog zrakoplova. Već takve programe koriste velike zrakoplovne tvrtke koje se bave razvojem i konstrukcijom zrakoplova.

Uz sve definirane veličine u radu potrebno je poznavanje podataka o masama i momentima tromosti zrakoplova koji s aerodinamičkim i pogonskim karakteristikama čine jednu cjelinu koja je potrebna za izradu matematičkog i simulacijskog modela zrakoplova. Sve ove dodatne veličine mogu biti tema nekog budućeg završnog rada, te se naposljetku mogu kroz neki rad definirati sve karakteristike i performanse zrakoplova koje bi se onda mogle usporediti s onim podatcima dostupnima u priručniku zrakoplova.

Literatura

- [1] D. A. I. GmbH, Airplane Flight Manual DV 20, 1999.
- [2] »Diamond Aircraft Industries,« [Mrežno]. Available: https://en.wikipedia.org/wiki/Diamond_Aircraft_Industries. [Pokušaj pristupa Kolovoz 2018].
- [3] »Diamond DA20,« [Mrežno]. Available: https://en.wikipedia.org/wiki/Diamond_DA20. [Pokušaj pristupa Kolovoz 2018].
- [4] »Xlfr5,« 2018.
- [5] S. Gudmundsson, General Aviation Aircraft Design Applied methods and procedures, Butterworth-Heinemann, 2014.
- [6] S. Janković, Mehanika leta zrakoplova, Zagreb: Fakultet strojarstva i brodogradnje, Zagreb, 2001.

Popis slika

Slika 1: Diamond DV-20	3
Slika 2: Krilo zrakoplova Diamond DV-20 [4]	6
Slika 3: Oblik pojednostavljenog trupa zrakoplova	9
Slika 4: Horizontalni stabilizator zrakoplova Diamond DV-20 [4]	10
Slika 5: Vertikalni stabilizator zrakoplova Diamond DV-20 [4]	12
Slika 6: Wortmann FX63-137 - Ovisnost koeficijenta uzgona o napadnom kutu [4]	17
Slika 7: Wortmann FX63-137 - Ovisnost koeficijenta otpora o napadnom kutu [4]	17
Slika 8: Wortmann FX63-137 - Ovisnost momenta propinjanja o napadnom kutu [4]	18
Slika 9: NACA 0015 - Ovisnost koeficijenta uzgona o napadnom kutu [4]	19
Slika 10: NACA 0015 - Ovisnost koeficijenta otpora o napadnom kutu [4]	19
Slika 11: NACA 0015 - Ovisnost koeficijenta momenta propinjanja o napadnom kutu [4]	20
Slika 12: Položaj hvatišta normalne sile [6]	26
Slika 13: Koeficijent sprega propinjanja trupa [6]	28
Slika 14: Ovisnost gradijenta normalne sile upravljačke površine [6]	31
Slika 15: Položaj hvatišta sile upravljačke površine [6]	32
Slika 16: Položaj hvatišta sile polukrila [6]	35
Slika 17: Položaj hvatišta normalne sile [6]	36
Slika 18: Koeficijent momenta valjanja za kutnu brzinu valjanja [6]	40

Popis tablica

Tablica 1: Osnovne dimenzije zrakoplova [1]	. 3
Tablica 2: Dimenzije i karakteristike krila zrakoplova [1]	. 4
Tablica 3: Dimenzije i karakteristike horizontalnog stabilizatora [1]	. 4
Tablica 4: Dimenzije i karakteristike vertikalnog stabilizatora [1]	. 4
Tablica 5: Dimenzije i karakteristike podvozja [1]	. 4
Tablica 6: Karakteristike motora [1]	. 4
Tablica 7: Dimenzije i karakteristike propelera [1]	. 5
Tablica 8: Karakteristike spremnika goriva [1]	. 5
Tablica 9: Geometrijske karakteristike krila zrakoplova Diamond DV-20	. 8
Tablica 10: Geometrijske karakteristike horizontalnog stabilizatora zrakoplova Diamond DV	-
20	11
Tablica 11: Geometrijske karakteristike vertikalnog stabilizatora zrakoplova Diamond DV-20)
	13
Tablica 12: Geometrijske karakteristike zrakoplova Diamond DV-20	15
Tablica 13: Aerodinamičke karakteristike aeroprofila Wortmann FX63-137	16
Tablica 14: Aerodinamičke karakteristike aeroprofila NACA 0015	18

Popis oznaka

Λ_{LE}	Kut strijele prednjeg brida
Λ_{TE}	Kut strijele zadnjeg brida
$C_{L_{\alpha}}$	Gradijent koeficijenta uzgona o napadnom kutu
C_L	Koeficijent uzgona
C_N	Koeficijent normalne sile
C_Y	Koeficijent bočne sile
C_f	Koeficijent otpora trenja
C_l	Koeficijent momenta valjanja
C_m	Koeficijent momenta propinjanja
C_n	Koeficijent momenta skretanja
F_F	Faktor oblika
F_Ma	Faktor Mahovog broja
F_S	Faktor kuta strijele
Sref	Referentna površina
$C_{L_{\alpha}}$	Gradijent koeficijenta uzgona aeroprofila po napadnom kutu
Co	Tetiva u korijenu pod trupom
C_A	Srednja aerodinamička tetiva
C _D	Koeficijent otpora aeroprofila
C_L	Koeficijent uzgona aeroprofila
C _M	Koeficijent momenta propinjanja aeroprofila
Cr	Tetiva u korijenu
<i>C</i> t	Tetiva na vrhu
C_{δ}	Duljina tetive upravljačke površine
k_s	Koeficijent otpora nosača kotača
k_w	Koeficijent otpora kotača
<i>x</i> _t	Položaj maksimalne debljine aeroprofila
α_{ef}	Ekvivalentni napadni kut
h	Udaljenost od aerodinamičkog centra zrakoplova
AR	Vitkost
<i>K</i>	Koeficijent interferencije kombinacije
Ма	Mahov broj
Re	Reynoldsov broj
<i>S</i>	Površina
a	Brzina zvuka
<i>b</i>	Raspon
е	Oswaldov koeficijent
k	Koeficijent interferencije kombinacije
<i>l</i>	Udaljenost od ravnine elise zrakoplova
<i>p</i>	Kutna brzina valjanja zrakoplova
r	Kutna brzina skretanja zrakoplova
t	Maksimalna debljina aeroprofila
ν	Brzina zrakoplova

x	Udaljenost od prednjeg brida površine
α	Napadni kut
β	Koeficijent stlačivosti
δ	Otklon upravljačke površine
к	Koeficijent induciranog otpora
λ	Suženje
υ	Kinematička viskoznost

() _B	Veličina trupa
() _{HS}	Veličina horizontalnog stabilizatora
() _{HSB}	Veličina kombinacije horizontalni stabilizator-trup
$()_{LG}$	Veličina podvozja
() _{VS}	Veličina vertikalnog stabilizatora
() _{VSB}	Veličina kombinacije vertikalni stabilizator-trup
() _W	Veličina krila
() _{WB}	Veličina kombinacije krilo-trup
() _{krit}	Kritična vrijednost veličine
() _m	Veličina težišta zrakoplova

Sveučilište u Zagrebu Fakultet prometnih znanosti 10000 Zagreb Vukelićeva 4

IZJAVA O AKADEMSKOJ ČESTITOSTI I SUGLASNOST

Izjavljujem i svojim potpisom potvrđujem kako je ovaj završni rad isključivo rezultat mog vlastitog rada koji se temelji na mojim istraživanjima i oslanja se na objavljenu literaturu što pokazuju korištene bilješke i bibliografija. Izjavljujem kako nijedan dio rada nije napisan na nedozvoljen način, niti je prepisan iz necitiranog rada, te nijedan dio rada ne krši bilo čija autorska prava. Izjavljujem također, kako nijedan dio rada nije iskorišten za bilo koji drugi rad u bilo kojoj drugoj visokoškolskoj, znanstvenoj ili obrazovnoj ustanovi. Svojim potpisom potvrđujem i dajem suglasnost za javnu objavu završnog rada pod naslovom **Procjena aerodinamičkih karakteristika zrakoplova Diamond DV 20**

na internetskim stranicama i repozitoriju Fakulteta prometnih znanosti, Digitalnom akademskom repozitoriju (DAR) pri Nacionalnoj i sveučilišnoj knjižnici u Zagrebu.

U Zagrebu,

13.9.2018

Student/ica: noci Petar

(potpis